Filter Design Toolbox

For Use with MATLAB ${ }^{\circledR}$

Computation

Visualization

Programming

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Web
Newsgroup
Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000
Phone
508-647-7001
Fax
The MathWorks, Inc.
Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Filter Design Toolbox User's Guide

© COPYRIGHT 2000-2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: \begin{tabular}{llll}
March 2000 \& Online only \& New for Version 1.0

September 2000 \& First printing \& | Revised for Vesion 2.0 (Release 12) |
| :--- |
| June 2001 | \& Online only

Revised for Version 2.1 (Release 12.1)

July 2002 \& Online only \& Revised for Version 2.2 (Release 13)

November 2002 \& Online only \& Revised for Version 2.5

June 2004 \& Online only \& Revised for Version 3.0 (Release 14)

October 2004 \& Online only \& Revised for Version 3.1 (Release 14SP1)

March 2005 \& Online only \& Revised for Version 3.2 (Release 14SP2)
\end{tabular}

Filter Design Toolbox Overview

1

What Is Filter Design Toolbox? 1-2
Key Features 1-2
Advanced FIR and IIR Filter Design 1-3
FIR Filters 1-3
IIR Filters 1-3
Analyze and Implement Fixed-Point and Single-Precision Floating-Point Filters 1-4
Implement IIR Filters in Second-Order Sections 1-4
Design, Analyze, and Implement Adaptive and Multirate Filters 1-4
Configuration Information 1-7
Using This Guide 1-8
New Users of This Toolbox 1-8
Experienced Filter Design Toolbox Users 1-9
Filter Design Functions in the Toolbox 1-10
Adaptive Filters 1-12
Multirate Filters 1-13
Fixed-Point Filters in the Toolbox 1-14
Quantized Filters 1-14
Getting Started with the Toolbox 1-17
Example-Creating a Fixed-Point IIR Filter 1-17
Selected Bibliography 1-27

Designing Advanced Filters

2

The Optimal Filter Design Problem 2-2
Optimal Filter Design Theory 2-2
Optimal Filter Design Solutions 2-5
Advanced FIR Filter Designs 2-7
firgr Examples 2-8
firlpnorm Examples 2-36
Advanced IIR Filter Designs 2-42
iirlpnorm Examples 2-45
iirlpnormc Examples 2-50
iirgrpdelay Examples 2-56
Robust Filter Architectures 2-64
Filter Design Example That Includes Quantization 2-67
Selected Bibliography 2-74
Working with Fixed-Point Filters
3
Getting Started with Fixed-Point Filters 3-3
Designing Double Precision Floating-Point Filter Coefficients 3-3
Converting the Filter to Fixed-Point 3-3
Quantizing Filter Coefficients with Automatic Scaling 3-5
Scaling Filter Coefficients Manually 3-6
Specifying Arithmetic Rules 3-8
Constructing Fixed-Point Filters 3-10
Defining Quantized and Fixed-Point Filters 3-10
Constructors for Fixed-Point Filters 3-11
Constructing a Quantized Filter from a Design Object 3-12
Copying Filters to Inherit Properties 3-13
Fixed-Point Filter Structures 3-13
Data Type Handling in Discrete-Time Filters 3-17
Filter Input Signals, Coefficients, and States 3-17
The CastBeforeSum Property 3-24
Introduction to Fixed-Point Arithmetic 3-27
Binary Point Interpretation 3-28
Dynamic Range and Precision 3-31
Overflows and Scaling 3-31
Working with Fixed-Point Direct-Form FIR Filters 3-33
Obtaining the Filter Coefficients 3-33
Creating the Direct-Form FIR Fixed-Point Filter 3-34
Comparing Quantized Coefficients to Nonquantized Coefficients 3-35
Determining the Number of Bits being Used 3-36
Determining the Proper Coefficient Word Length 3-36
Fixed-Point Filtering 3-38
Generating a Baseline Output to Compare Against 3-39
Computing the Fixed-Point Filter Output 3-40
Improving the Filtering Results 3-41
Changing the Filter Output Settings 3-42
Further Reducing Filter Output Quantization 3-43
The Advantages of Guard Bits 3-44
Avoiding Overflow Without Guard Bits 3-47
Designing Adaptive Filters
4
Overview of Adaptive Filters and Applications 4-4
Choosing an Adaptive Filter 4-6
System Identification 4-7
Inverse System Identification 4-8
Noise Cancellation (or Interference Cancellation) 4-9
Prediction 4-9
Adaptive Filters in the Filter Design Toolbox 4-11
Algorithms 4-11
Using Adaptive Filter Objects 4-16
Examples of Adaptive Filters That Use LMS Algorithms 4-17
adaptfilt.lms Example-System Identification 4-18
adaptfilt.nlms Example-System Identification 4-22
adaptfilt.sd Example-Noise Cancellation 4-25
adaptfilt.se Example-Noise Cancellation 4-29
adaptfilt.ss Example—Noise Cancellation 4-32
Example of Adaptive Filter That Uses RLS Algorithm 4-37
adaptfilt.rls Example-Inverse System Identification 4-38
Adaptive Filter Properties Reference 4-42
Adaptive Filter Properties 4-42
Selected Bibliography 4-48
Designing Multirate Filters
5
Introducing Multirate Filters 5-2
Getting Started-Designing Multirate Filters 5-4
Creating Multirate Filters 5-4
Getting and Setting Filter Coefficients 5-6
Analyzing Multirate and Multistage Filters 5-8
Filtering with Multirate Filters 5-9
Specifying Initial Conditions to the Filter 5-10
Streaming Data to the Filter 5-12
Filtering Multichannel Signals 5-12
Generating Simulink Blocks 5-14
Getting Help About Multirate Filters 5-15
FIR Decimation-Filtering with FIR Decimators 5-18
Creating FIR Decimators 5-18
Understanding Input Sample Processing and the InputOffset Property 5-19
Filtering with FIR Decimators 5-21
CIC Filter Example-Using CIC Decimation Filters 5-24
Creating CIC Decimator filters 5-24
Analyzing CIC Decimation Filters 5-26
About the MSB at the Filter Output 5-27
Working with Section Word Lengths 5-28
CIC Filter States 5-31
Filter Implementation-Signal Flow Graph 5-33
Reference 5-35
Analyzing Multirate and Multistage Filters 5-36
Analyzing Single-Stage Multirate Filters 5-37
Comparing Interpolators 5-38
Performing Multistage Filter Analysis 5-40
Analyzing Multistage Interpolators 5-42
Analyzing a Multistage Sample-Rate Converter 5-43
Analyzing Other Multistage Configurations 5-45
Audio Example-Audio Sample Rate Conversion 5-47
Creating the Multirate Filters 5-47
Decreasing the Sample Rate by a Fractional Factor 5-48
Constructing the Fractional Decimator 5-48
Filtering to Change the Sample Rate 5-49
Comparing the Resampled Signals 5-49
Increasing the Sample Rate by a Fractional Factor 5-51
Plotting the Original Signal and the Reconverted Signal 5-52
Converting from 48 kHz to 44.1 kHz 5-53
Plotting the 48 kHz Signal and the 44.1 kHz Signal 5-54

Digital Frequency Transformations

6

Introduction 6-2
Definition of the Problem 6-3
Selecting Features Subject to Transformation 6-6
Mapping from Prototype Filter to Target Filter 6-8
Summary of Frequency Transformations 6-9
Frequency Transformations for Real Filters 6-11
Real Frequency Shift 6-12
Real Lowpass to Real Lowpass 6-13
Real Lowpass to Real Highpass 6-15
Real Lowpass to Real Bandpass 6-17
Real Lowpass to Real Bandstop 6-19
Real Lowpass to Real Multiband 6-21
Real Lowpass to Real Multipoint 6-23
Frequency Transformations for Complex Filters 6-26
Complex Frequency Shift 6-26
Real Lowpass to Complex Bandpass 6-28
Real Lowpass to Complex Bandstop 6-29
Real Lowpass to Complex Multiband 6-31
Real Lowpass to Complex Multipoint 6-33
Complex Bandpass to Complex Bandpass 6-36
Using FDATool with the Filter Design Toolbox
7
Designing Advanced Filters in FDATool 7-5
Switching FDATool to Quantization Mode 7-10
Quantizing Filters in the Filter Design and Analysis Tool 7-14
Coefficients Options 7-15
Input/Output Options 7-17
Filter Internals Options 7-19
Analyzing Filters with a Noise-Based Method 7-25
Using the Magnitude Response Estimate Method 7-25
Comparing the Estimated and Theoretical Magnitude Responses 7-30
Choosing Quantized Filter Structures 7-30
Converting the Structure of a Quantized Filter 7-30
Converting Filters to Second-Order Sections Form 7-31
Scaling Second-Order Section Filters 7-32
Reordering the Sections of Second-Order Section Filters 7-40
Switching FDATool to Reorder Filters 7-40
Viewing SOS Filter Sections 7-48
Importing and Exporting Quantized Filters 7-55
To Export Quantized Filters 7-57
Importing XILINX Coefficient (.COE) Files 7-60
Transforming Filters 7-61
Original Filter Type 7-62
Frequency Point To Transform 7-65
Transformed Filter Type 7-66
Specify Desired Frequency Location 7-66
Designing Multirate Filters in FDATool 7-72
Switching FDATool to Multirate Filter Design Mode 7-72
Controls on the Multirate Design Panel 7-73
Realizing Filters as Simulink Subsystem Blocks 7-86
About the Realize Model Panel in FDATool 7-86
Getting Help for FDATool 7-90
Context-Sensitive Help-The What's This? Option 7-90
Additional Help for FDATool 7-90
Reference for the Properties of Filter Objects
8
Overview 8-2
Fixed-Point Filter Properties 8-3
Adaptive Filter Properties 8-108
Multirate Filter Properties 8-122
OverflowMode 8-130
Function Reference
9
Functions-Categorical List 9-2
Adaptive Filter Constructors 9-2
Discrete-Time Filter Constructors 9-7
Discrete-Time Filter Design Objects-Response Types 9-8
Filter Design Objects-Methods $9-9$
Multirate Filter Constructors 9-11
Methods For Analyzing Filters 9-13
Fixed-Point Filter Construction and Property Functions 9-16
Quantized Filter Analysis Functions 9-17
Second-Order Sections Conversion Functions 9-18
Filter Design Functions 9-18
Filter Conversion Functions 9-19
Functions Operating on Discrete-Time Filters 9-20
Functions for Designing Discrete-Time Filters 9-23
Functions - Alphabetical List 9-27
Bibliography
10
Advanced Filters A-2
Adaptive Filters A-2
Multirate Filters A-3
Frequency Transformations A-3
Index

Filter Design Toolbox Overview

What Is Filter Design Toolbox? (p. 1-2) Describes the toolbox briefly
Filter Design Functions in the Toolbox Outlines the filter design functions available in the (p. 1-10)
Fixed-Point Filters in the Toolbox (p. 1-14)
Getting Started with the Toolbox (p. 1-17)
Selected Bibliography (p. 1-27)
Outlines the quantization functions available in the toolbox
Provides an introduction to the toolbox by presenting examples that design various filters
Lists some books that offer details about digital filtering and digital signal processing

What Is Filter Design Toolbox?

The Filter Design Toolbox is a collection of tools that provides advanced techniques for designing, simulating, and analyzing digital filters. It extends the capabilities of the Signal Processing Toolbox with filter architectures and design methods for complex real-time DSP applications, including adaptive filtering and multirate filtering, as well as filter transformations.

Used with the Fixed-Point Toolbox, the Filter Design Toolbox provides functions that simplify the design of fixed-point filters and the analysis of quantization effects. When used with the Filter Design HDL Coder, the Filter Design Toolbox lets you generate VHDL and Verilog code for fixed-point filters.

Key Features

- Advanced FIR filter design methods, including minimum-order, minimum-phase, constrained-ripple, halfband, Nyquist, interpolated FIR, and nonlinear phase
- Perfect reconstruction and two-channel FIR filter bank design
- Advanced IIR design methods, including arbitrary magnitude, group-delay equalizers, constrained-pole radius, peaking, notching, and comb filters
- Analysis and implementation of digital filters in single-precision floating-point and fixed-point arithmetic
- Support for IIR filters implemented in second-order sections, including design, scaling, and section reordering
- Round-off noise analysis for filters implemented in single-precision floating point or fixed point
- FIR and IIR filter transformations, including lowpass to lowpass, lowpass to highpass, and lowpass to multiband.
- Adaptive filter design, analysis, and implementation, including LMS-based, RLS-based, lattice-based, frequency-domain, fast transversal, and affine projection
- Multirate filter design, analysis, and implementation, including cascaded integrator-comb (CIC) fixed-point multirate filters
- VHDL and Verilog code generation for fixed-point filters

Advanced FIR and IIR Filter Design

The Filter Design Toolbox lets you design optimal FIR and IIR filters from scratch, import previously designed filters, quantize floating-point filters, and analyze quantization effects. You can access all toolbox functions from the Filter Design and Analysis Tool (FDATool) or from the command line

FIR Filters

The toolbox supports the following FIR filter designs:

- Advanced equiripple FIR designs, including minimum-order, constrained-ripple, minimum-phase, adjacent bands, single-point bands, independent approximation errors, extra-ripple, and maximal-ripple designs
- Least Pth-norm FIR designs, providing optimal nonlinear phase designs that can minimize any norm from 2 (minimum error energy) to infinity (minimax/equiripple error)
- Halfband FIR designs, including equiripple, least-squares, and window methods
- Nyquist (Lth-band) filter designs, providing linear phase and minimum-phase designs, as well as equiripple, sloped-stopband, and window methods
- Interpolated FIR (IFIR) designs, enabling you to:
- Design filters with narrow transition bands using a reduced number of multipliers
- Choose between simple, intermediate, and advanced optimization
- FIR filter design for perfect reconstruction and two-channel filter banks

IIR Filters

The toolbox supports the following IIR filter designs:

- Allpass IIR filter design with arbitrary group delay, enabling you to equalize the group delays of other IIR filters to obtain an approximate linear phase passband response
- Least Pth-norm IIR design, enabling the design of arbitrary magnitude optimal IIR filters in addition to lowpass, highpass, bandpass, and bandstop designs
- Constrained least Pth-norm IIR design, constraining the maximum radius of the filter poles to improve robustness to quantization effects
- Peak, notch, and comb filters, to eliminate single-tone and periodic interference

Analyze and Implement Fixed-Point and Single-Precision Floating-Point Filters

When used with the Fixed-Point Toolbox, the Filter Design Toolbox offers bit-true, fixed-point implementation of digital filters using more than 15 structures, including FIR, IIR (SOS and non-SOS), and lattice-based filters. Word lengths for different quantities, such as coefficients, products, and accumulators, can be set to arbitrary values. Full-precision modes are available to simulate the non-loss of bits. Other automatic modes available include best-precision and avoid overflow.

The Filter Design Toolbox provides a full suite of analysis tools for fixed-point filters, including magnitude response, impulse response, pole/zero plots, and round-off-noise. The toolbox supports the implementation and analysis of single-precision floating-point filters for the same filter structures as for fixed-point arithmetic.

Implement IIR Filters in Second-Order Sections

The toolbox includes functions for the design of IIR filters directly in second-order section (SOS) form. SOS minimizes round-off problems when converting from transfer functions or pole-zero representations. The toolbox provides scaling of SOS filters in any of the four direct forms to maximize the performance of these filters when implemented in fixed point. You can use the scaling to reorder the second-order sections for further optimization. The toolbox also provides enhanced filter analysis methods specific to SOS filters.

Design, Analyze, and Implement Adaptive and Multirate Filters

The Filter Design Toolbox provides full support for the design of advanced filters. The toolbox contains objects that let you develop adaptive and multirate filters to stringent specifications and apply the filter to data, minimizing errors between the filter output and the desired signal.

Adaptive Filters

Adaptive filters are self-learning filters that achieve a particular effect when no a priori signal information is available. The Filter Design Toolbox provides the following techniques for LMS-based adaptive filters:

- RLS-based
- Affine projection
- Fast transversal
- Frequency-domain
- Lattice-based

The toolbox also includes algorithms for analyzing these filters, including tracking of coefficients, learning curves, and convergence.

Multirate Filters

Multirate filtering involves using different sample rates within a system. This approach yields computational efficiencies that are impossible to obtain with a system that operates on a single, fixed-sample rate. The Filter Design Toolbox supports the analysis, design, and implementation of multirate filters. It includes functions for designing:

- Polyphase interpolators
- Polyphase decimators
- Polyphase sample-rate converters
- CIC multirate filters
- Multistage multirate filters

Specialized functions for analyzing polyphase (multirate) filters are available as they are for adaptive filters.
Designers use filtering and its variant, digital filtering, for many tasks:

- To separate signals that have been combined, such as a musical recording and the noise added during the recording process
- To separate signals into their constituent frequencies
- To demodulate signals
- To restore signals that have been degraded by some process, known or unknown

You can use analog filters to accomplish these tasks, but digital filters offer greater flexibility and accuracy than analog filters. In addition, digital signal processing (DSP) depends in large measure on digital filtering to meet the needs of its users.

Analog filters can be cheaper, faster, and have greater dynamic range; digital filters outstrip their analog cousins in flexibility. The ability to create filters that have arbitrary shape frequency response curves, and filters that meet performance constraints, such as bandpass width and transition region width, is well beyond that of analog filters.

Quantization is a natural outgrowth of digital filtering and digital signal processing development. Also, there is a growing need for fixed-point filters that meet power, cost, and size restrictions. When you convert a filter from floating-point to fixed-point, you use quantization to perform the conversion.

As filter designers began to use digital filters in applications where power limitations and size constraints drove the filter design, they moved from double-precision, floating-point filters to fixed-point filters. When you have enough power to run a floating-point digital signal processor, such as on desktop PC or in your car, fixed-point processing and filtering are unnecessary. But, when your filter needs to run in a cellular phone, or you want to run a hearing aid for hours instead of seconds, fixed-point processing can be essential to ensure long battery life and small size.

Filter Design Toolbox provides the functions you need to develop filters that meet the needs of fixed-point algorithms and electronics systems. In addition to offering tools for analyzing the effects of quantization on filter performance and signal processing performance, the toolbox offers filter structures for you to use to develop prototype filter designs. With structures ranging from finite impulse response (FIR) filters to infinite impulse response (IIR) filters, adaptive filters, and multirate filters, you can investigate alternative fixed-point realizations of filters that might meet your goals.

Configuration Information

To determine whether Filter Design Toolbox is installed on your system, type this command at the MATLAB ${ }^{\circledR}$ prompt.
ver
When you enter this command, MATLAB displays information about the version of MATLAB you are running, including a list of all toolboxes installed on your system and their version numbers.

For information about installing the toolbox, refer to the installation documentation for your platform.

Note For up-to-date information about system requirements, visit the system requirements page, available in the products area at the MathWorks Web site (www.mathworks.com).

Using This Guide

All users of the toolbox should read this guide. You should be generally familiar with basic digital signal processing concepts before you use the toolbox and this User's Guide. The quantization portion of this toolbox assumes some familiarity with fixed-point and floating-point arithmetic in the context of digital filtering applications.

New Users of This Toolbox

You can use this toolbox to:

- Design floating-point and fixed-point filters using advanced design methods
- Design adaptive filters
- Design multirate filters
- Transform filters from one frequency response type to another, such as from lowpass to bandstop
- Convert filters to and from coupled-allpass forms
- Convert filters to second-order section form, or design filters in second-order section form

This toolbox relies on object-oriented programming techniques using objects for quantized filtering and analysis. You do not need to be familiar with these techniques to use this toolbox. However, you may want to review the concepts of MATLAB structures and cell arrays, as these are used in the syntax for several toolbox methods. For more information on MATLAB structures and cell arrays, refer to "Programming and Data Types" in your MATLAB documentation.

As a new user of this toolbox, read the entire guide. Of particular interest are:

- Chapter 2, "Designing Advanced Filters" for its background information on the advanced filter design techniques in this toolbox
- Chapter 3, "Working with Fixed-Point Filters" for information on constructing and using quantized filters
- Chapter 7, "Using FDATool with the Filter Design Toolbox" for information about using Filter Design and Analysis Tool to quantize filters and investigate the effects of quantization on filter performance
- "Property Details for Fixed-Point Filters" on page 8-20 for a description of the quantized and fixed-point filter properties
- "Functions-Categorical List" on page 9-2 for a brief description of every function in the toolbox (online only)

Experienced Filter Design Toolbox Users

As an experienced user of this toolbox, you may find the following sections to be useful reference guides for the toolbox:

- "Property Details for Fixed-Point Filters" on page 8-20
- "Functions-Categorical List" on page 9-2 (online only)
- Reference pages for the functions in the toolbox (available online only)

This section contains the following subsections introducing filter design:

- "Filter Design Functions in the Toolbox" on page 1-10
- "Fixed-Point Filters in the Toolbox" on page 1-14
- "Getting Started with the Toolbox" on page 1-17
- "Selected Bibliography" on page 1-27

Filter Design Toolbox Overview

Filter Design Functions in the Toolbox

In a system that has unlimited power and size, any filter structure that met your performance specifications would do. You would design a floating-point filter whose frequency response achieved your aims and implement that filter in your system.

When you need a fixed-point filter to meet your requirements, the filter structure you choose can depend very much on how quantization affects the performance of the filter. Filter Design Toolbox offers both FIR and IIR filter design tools and structures that let you experiment with multiple filter designs to see how each responds to quantization effects.

Discrete-Time Filter Structures

The following tables detail some of the quantized FIR and IIR filter structures and designs available in the toolbox. For lists of all the architectures and design methods available in the toolbox, refer to the section "FunctionsCategorical List" on page 9-2 in this guide.

Table 1-1: Finite Impulse Response Filter Structures

FIR Filter Structures	Description
dfilt.dfasymfir	Asymmetrical FIR filter
dfilt.dffir	Direct-form FIR filter
dfilt.dffirt	Transposed direct-form FIR filter
dfilt.dfsymfir	Symmetric FIR filter

Table 1-2: Infinite Impulse Response Filter Structures

IIR Filter Structures	Description
dfilt.df1	Direct form I
dfilt.df1sos	Direct form I realized using second-order sections
dfilt.df1t	Direct form I transposed

Table 1-2: Infinite Impulse Response Filter Structures

IIR Filter Structures (Continued)	Description
dfilt.df1tsos	Direct form I transposed, realized using second-order sections
dfilt.df2	Direct form II
dfilt.df2sos	Direct form II, realized using second-order sections
dfilt.df2t	Direct form II transposed
dfilt.df2tsos	Direct form II transposed, realized using second-order sections
dfilt.scalar	Scalar form

Table 1-3: Lattice Filter Structures

Lattice Structure	Description
dfilt.latticeallpass	All pass lattice form
dfilt.latticear	Autoregressive (AR) lattice form
dfilt.latticearma	Autoregressive, moving average (ARMA) lattice form
dfilt.latticemamax	Lattice moving average with maximum phase
dfilt.latticemamin	Lattice moving average with minimum phase

Each of the structures supports floating-point or fixed-point realizations, and you use the toolbox functions, dfilt.structure, to create each one. To review schematics of the filter structures available in this toolbox, refer to the reference pages for each filter constructor, such as dfilt.df1 or dfilt.latticearma. Or to review all of the structures available for discrete-time filters, refer to "FilterStructure" on page 8-46.

To run the filter demos

1 Enter demo at the MATLAB command line prompt.
The Help system opens with the MATLAB demos showing for all products.
2 Double-click the entry Toolboxes in the left pane. The list of available toolboxes appears in the left pane.

3 Click Filter Design.
4 Click FIR Filter Design or IIR Filter Design in the right pane. Or choose from the other demonstration categories like adaptive filters.

Adaptive Filters

The following table list a few of the adaptive filter algorithms and filters available in the toolbox. For complete lists of all the adaptive filters available in the toolbox, refer to the section "Adaptive Filter Constructors" on page 9-2 in this guide.

Filter Function	Description
adaptfilt.lms	Use the LMS FIR adaptive filter algorithm
adaptfilt.nlms	Use the normalized LMS FIR adaptive filter algorithm
adaptfilt.rls	Use the recursive-least squares (RLS) adaptation algorithm
adaptfilt.sd	Use the sign-data LMS FIR adaptive filter algorithm

Multirate Filters

The following table details some of the more common multirate filters available in the toolbox. For lists of all the multirate filters available in the toolbox, refer to the section "Multirate Filter Constructors" on page 9-11 in this guide.

Filter Function	Description
mfilt.cicdecim	Construct a cascaded integrator-comb decimation filter object
mfilt.cicinterp	Construct a cascaded integrator-comb interpolation filter object
mfilt.firfracdecim	Construct a direct-form FIR polyphase fractional decimation filter object
mfilt.linearinterp	Construct an FIR linear interpolation filter object that applies linear interpolation between input samples

Filter Design Toolbox Overview

Fixed-Point Filters in the Toolbox

Designing floating-point filters solves only part of the filter design problem. In most cases, floating-point filter realizations are not appropriate for digital signal processing applications. Many real-world DSP systems require that their filters use minimum power, generate minimum heat, and do not induce computational overload in their processors. Meeting these constraints often means using fixed-point filters. Unfortunately, converting a floating-point filter to fixed-point realization (called quantizing) can result in lost filter performance and accuracy. To simulate and determine the effects of quantization, and allow you to investigate how switching from floating-point to fixed-point arithmetic affects the performance of your filter, the toolbox includes quantization functions. You use the toolbox construction and analysis functions for constructing, applying, and analyzing floating-point and fixed-point filters.

Quantized Filters

Quantization, or the effect of word length on filter performance, can lead to erroneous behavior in filter designs. Finite word lengths can change the frequency response of a filter from its desired performance. To help you investigate quantization effects that occur during filtering, the toolbox provides two ways to construct a quantized filter:

- Use the function dfilt.structure to create a default filter with a selected filter structure.
- Use fdesign and specify a filter magnitude response and use it to design a filter.

In both techniques, your filters have the same properties although the implemented structures may be different.

To help you create and analyze quantized filters, Filter Design Toolbox is object-oriented. You encapsulate the parameters needed to specify your quantized filter under one variable name in a quantized filter object. To specify the parameters associated with a quantized filter, you set the property values for its associated named properties. These properties are assigned to the quantized filter object that represents your quantized filter.
You can design a wide range of fixed-point and custom floating-point filters in Filter Design Toolbox. You use the double-precision filters you design in Signal

Processing Toolbox and Filter Design Toolbox as reference filters to create quantized filters in this toolbox. To develop a quantized filter, use either toolbox to create a double-precision filter that meets your requirements, then use the quantization functions in this toolbox to convert the double-precision filter to a quantized filter.
Refer to Table 1-4 for a list of some of the filter design methods in this toolbox.

Table 1-4: Filter Design Methods in the Toolbox-FIR and IIR

Filter Function	Filter Description
firlpnorm	Design minimax solution FIR filters using the least-pth algorithm
firgr	Use the generalized Parks-McClellan exchange algorithm to design optimal solution FIR filters with arbitrary response curves
fircband	Design constrained-band Remez FIR filters
firceqrip	Design constrained, equiripple, finite impulse response (FIR) filters
firequint	Design equiripple FIR interpolation filters
firgr	Design FIR filters using generalized Remez techniques
firhalfband	Design half-band FIR filters
firnyquist	Design equiripple Nyquist FIR filters
firpr2chfb	Design FIR perfect reconstruction two-channel filter banks
ifir	Design interpolated FIR filters iircomb
Design IIR comb notching or peaking discrete-time	
filter	

Table 1-4: Filter Design Methods in the Toolbox-FIR and IIR (Continued)	
Filter Function	Filter Description
iirlpnorm	Design minimax solution IIR filters using the least-pth algorithm
iirlpnormc	Design minimax solution IIR filters using the least-pth algorithm. In addition, restrict the filter poles and zeros to lie within a fixed radius around the origin of the z-plane
iirpeak	Design second-order IIR peaking (or resonator) filters

You can construct these filters as single-precision floating-point, double-precision floating-point or fixed-point filters. For more information about all of the design methods in the toolbox, refer to "Discrete-Time Filter Constructors" on page 9-7.

Getting Started with the Toolbox

This section provides an example to get you started using Filter Design Toolbox. You can run the code in this example from the Help browser (select the code, right-click the selection, and choose Evaluate Selection from the context menu) or you can enter the code on the command line. This exercise also introduces Filter Design and Analysis Tool (FDATool). You use it to design and analyze filters, and to quantize filters.

As you follow the example, you are introduced to some of the basic tasks of designing a filter and using FDATool. You will engage some of the quantization capabilities of the toolbox, and a few of the filter analyses provided as well.

Before you begin this example, start MATLAB and verify that you have installed Signal Processing and Filter Design Toolboxes (type ver at the command prompt). You should see Filter Design Toolbox, version 3.0 and Signal Processing Toolbox, version 6.2, among others, in the list of installed products.

Example-Creating a Fixed-Point IIR Filter

Example Background. To introduce you to designing fixed-point filters in the toolbox, this example starts by using Filter Design and Analysis Tool (FDATool) to design a straightforward IIR filter. In this case, we use the Chebyshev I filter design method to begin.

During the example, you have the chance to export filters to your MATLAB workspace, filter some data with the filter, and use the scaling features in FDATool to improve the filter performance. One of the most salient points in this example is that, while second-order section (SOS) filters are generally good starting points for fixed-point filter design, you might find that without scaling your filter, the SOS implementation may not meet your needs, as this example shows. to

To create a fixed-point filter in FDATool

Filter Design and Analysis Tool (FDATool) is one tool this toolbox provides to help you design and analyze filters. From the various design panels in the tool, such as the design filter panel or the multirate filter design panel, you can design FIR and IIR filters, import or export filters, analyze filters, and more.

As an introduction the using the toolbox, this tutorial takes you through designing, quantizing, and scaling a filter in FDATool.

1 Open Filter Design and Analysis Tool by entering fdatool
at the MATLAB command prompt. FDATool opens to show you the following dialog.

2 Under Design Method in the bottom pane, select Chebyshev Type I from the IIR list and click Design Filter.

FDATool designs a double-precision lowpass filter using the Chebyshev I design method and displays the filter magnitude response in the FDATool analysis area. Your new filter is a double-precision filter that uses seven second-order sections. In the Current Filter Information area in FDATool, reproduced in the next figure, you see your filter described by various filter parameters including the filter order (13) and the structure (direct-form II using second-order sections).

In the figure, next to the current filter information, the curve presents the filter magnitude response. As intended, a lowpass filter with the end of the passband at about 9600 Hz .

Now export this filter to your workspace so you can use it to filter some data.
3 On the FDATool menu bar, select File \rightarrow Export to open the Export dialog.
4 To export the filter to your workspace as a filter object, select Workspace from Export To and select Objects for Export As. The export dialog looks like this after you make your selections.

5 Click OK to export the filter with the variable name shown in the Export dialog. When you return to your workspace in MATLAB, you see the new object. In this case, the new object is named Hd.

6 In MATLAB, create a vector of random data (with values between 0 and 1) and filter the data with Hd .

```
x=rand(1000,1);
y = filter(Hd,x);
```

Now y contains the data filtered by running x through the filter Hd .
7 Back in FDATool, click \square on the side bar to switch FDATool to quantization mode.

8 With the quantization pane displayed in FDATool, switch Filter arithmetic to fixed -point. Now you see the quantization pane in FDATool, as shown in this figure.

In the analysis area, FDATool shows the magnitude responses for two filters-your fixed-point (quantized) filter and the reference filter that accompanies the fixed-point version. Turn on the filter legend (select ViewLegend from the menu bar) to help you identify which response belongs to each filter.

Zooming in on the curves shows that the two filter responses are very similar. Note that your fixed-point filter used the default settings in the
quantization pane-16-bit coefficients and fraction lengths selected to ensure the best precision.

9 Now export the quantized filter to your workspace as an object. Since you are going to use the same variable name Hd for the quantized filter in your workspace, select Overwrite variables in the Export dialog.

10 Back in MATLAB, perform the filter process again, using the quantized filter Hd and the signal x .
$y q=$ filter(Hd,x);
11 This is the important step. Plot y and yq to see how the filtering process compared between the double-precision filter Hd and the fixed-point filter Hd .

```
plot([y,yq]) % The results are not close to matching.
```

A look at the plot reveals that the results of filtering the same data (x) with each filter were very different. Recall that the magnitude responses seemed to be the same. So quantizing the filter affected the filtering performance in a way that the magnitude response curve does not show. The answer is that the arithmetic performed by the filter after quantization is very different from the double-precision filter before quantization.

Again, return to FDATool, which should still be open on your desktop. You are going to fix the discrepancy between y and yq by reordering the sections of the fixed-point filter and scaling the filter to improve the performance after quantization.

1 To access the scaling and SOS filter reordering capability in FDATool, select Edit—Reorder and Scale Second-Order Sections from the menu bar. The Reorder and Scale Second-Order Sections dialog opens, shown below. Note the default settings:

- Automatic reordering is selected.
- The scaling is set to prevent overflow in the filter.
- There is no maximum allowed value for the numerators (Numerator Constraint is None).
- Overflow Mode is Wrap to use wrapping when overflows occur.

2 Review the default settings and if they match the figure shown, click $\mathbf{O K}$ to close the dialog and scale and reorder the filter.

3 One more time, export the now-scaled quantized filter to your workspace as Hd.

4 Filter the data x again, using the latest Hd filter-now reordered and scaled. yqs = filter(Hd, x);

5 Finally, plot y and yqs to see if the filtering performance matches now.

```
plot([y,yqs]) % y and yqs are identical.
```

Here is the plot showing the results. Scaling and reordering the fixed-point filter restored the filtering performance to match the double-precision filter performance. The results demonstrate the power of scaling and reordering SOS filters.

Selected Bibliography

For further information about the algorithms and computer models used to design filters and apply quantization in the toolbox, refer to one or more of the following references.

Digital Filters

[1] Antoniou, Andreas, Digital Filters, Second Edition, McGraw-Hill, Inc., 1993
[2] Mitra, Sanjit K., Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, Inc, 1998
[3] Oppenheim, Alan. V., R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Inc, 1989

Quantization and Signal Processing

[4] Lapsley, Phil, J, Bier, A. Shoham, E.A. Lee, DSP Processor Fundamentals, IEEE Press, 1997
[5] McClellan, James H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W. Schafer, H.W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, Inc., 1998
[6] Roberts, Richard A., C.T. Mullis, Digital Signal Processing, Addison-Wesley Publishing Company, 1987
[7] Van Loan, Charles, Computational Frameworks for the Fast Fourier Transform, SIAM,1992

Designing Advanced Filters

The Optimal Filter Design Problem (p. 2-2)
Advanced FIR Filter Designs (p. 2-7)
Advanced IIR Filter Designs (p. 2-42)
Robust Filter Architectures (p. 2-64)
Selected Bibliography (p. 2-74)
Reviews the theory of optimal filter design.
Discusses and presents examples of advanced FIR filter designs.
Discusses and presents examples of advance IIR filter designs.
Talks about robust filters and provides some examples of robust architectures.
Offers a limited list of books that cover filter design in detail. A more complete list is in the Bibliography.

The Optimal Filter Design Problem

Filter Design Toolbox provides you with the tools to design optimal filters in the finite impulse response (FIR) and infinite impulse response (IIR) domains.

Often, filter design techniques and algorithms result in filters that are easy to apply and put relatively light demands on computational systems. While these filters are acceptable in many instances, they are not optimal solutions to the filtering needs of some digital signal processing implementations. Suboptimal filter designs can meet the performance specifications for the filter, but generally at the expense of increased filter order. This can result in increased arithmetic computational load for each input sample and lower operating speed than may be possible and necessary.

You use the functions firlpnorm, firgr, iirlpnorm, and iirlpnormc to design optimal filters. The following sections review the optimal filter design problem and introduce the filter design functions included in the toolbox:

- "Optimal Filter Design Theory" on page 2-2
- "Optimal Filter Design Solutions" on page 2-5
- "Advanced FIR Filter Designs" on page 2-7
- "Examples—Using firgr and fircband to Design FIR Filters" on page 2-9
- "Advanced IIR Filter Designs" on page 2-42
- "Examples - Using Filter Design Toolbox Functions to Design IIR Filters" on page 2-43

Optimal Filter Design Theory

How do you design a filter that meets your performance needs, such as having the required passbands, stopbands, or transition regions, and is also the optimal solution? (The optimal solution filter minimizes a measure of the error between your desired frequency response and the actual filter response.)

Consider two filter frequency response curves:

- $\mathrm{D}(\omega)$ - the response of your ideal filter, as defined by your signal processing needs and specifications
- $\mathrm{H}(\omega)$ - the frequency response of the filter implementation you select

In the following figure you see the response curves for $\mathrm{D}(\omega)$ and $\mathrm{H}(\omega)$, both lowpass filters.

Figure 2-1: Response Curves for Ideal and Actual Lowpass Filters
Optimal filter design theory seeks to make $H(\omega)$ match $D(\omega)$ as closely as possible by a given measure of closeness.

More precisely, if we define a weighted error

$$
E(\omega)=W(\omega)[H(\omega)-D(\omega)]
$$

where $E(\omega)$ is the error between the ideal and actual filter response values and $W(\omega)$ is the weighting factor, the optimal filter design problem is to determine an $H(\omega)$ that minimizes some measure or norm of $E(\omega)$ given a particular weighting function $W(\omega)$ and a desired response $D(\omega)$.
$W(\omega)$, the weighting function, lets you determine which portions of the actual filter response curve are most important to your filter performance, whether passband response or attenuation in the stopband.

Usually, developers use the L_{p} norm to measure the error. This norm is given by

```
\(\int_{\Omega}[E[\omega]]^{p}\)
```

and this is the quantity we minimize.
In practice, the two most commonly used norms are L_{2} and L_{∞}, meaning that p equals 2 and p equals infinity.

Filter designs that minimize the L_{∞} are attractive because they lead to equiripple solutions. Their equiripple characteristics tend to produce the lowest order filter that satisfies some prescribed specification.
When p goes to infinity, L_{∞} norm simplifies to
$\max |E(\omega)|$
$\omega \varepsilon \Omega$
meaning that when p equals ∞, the optimal design minimizes the maximum magnitude of the weighted error. Hence, it yields a minimax solution.

Notice that the L_{p} norm is computed over a region Ω that uses a subset of the positive Nyquist interval $[0, \pi] . \Omega$ covers the positive Nyquist interval except for certain frequency bands deemed to be "don't care" regions or transition bands that are not included in the optimization.

Optimal Filter Design Solutions

We have stated that the optimal filter design problem is to find the filter whose magnitude response, $|\mathrm{H}(\omega)|$, minimizes
$\int[W(w)(|H(w)|-D(w))]^{p} d w$
ω
for a given $\Omega, p, W(\omega)$ and $D(\omega)$. You can use both FIR and IIR filters to meet this requirement.

For the FIR case, with p equal to ∞, and the additional constraint that the filter must have linear phase, you can use a very efficient design method, based on the Parks-McClellan exchange algorithm to determine the optimal solution.

Function firgr in the toolbox implements this method. Additionally, firgr provides optional calling syntaxes that enable variations and enhancements to the filter design problem.

To design optimal FIR solutions in the general case where p is not necessarily equal to infinity, the toolbox includes the function firlpnorm. You may find this useful in cases where minimax solutions lead to abrupt time-domain responses. firlpnorm does not use the Remez exchange algorithm and generally takes longer to design a filter than firgr and other filter design functions. Moreover, firlpnorm is not constrained to linear phase filters.

Note that Signal Processing Toolbox provides the function firls, an efficient FIR linear phase solution to the optimal filter design problem in the least-squares sense, that is, when pequals 2.

IIR solutions to the optimal filter design problem are more involved than their FIR counterparts. Filter Design Toolbox offers two functions that design IIR filters that are optimal in the least-p norm sense: iirlpnorm and iirlpnormc.
iirplnorm uses a somewhat faster, unconstrained algorithm, while iirplnormc uses a constrained algorithm that designs an optimal filter that meets the specifications while restricting the maximum radius of its poles to a specified value less than one.

Elliptic filters, such as those you use the function ellip (in Signal Processing Toolbox) to design, are optimal IIR filters for the case p equals infinity, when the desired magnitude response is piecewise constant, and the filter numerator and denominator orders are the same.

The Parks-McClellan method, which implements the Remez exchange algorithm, produces a filter design that just meets your design requirements, but does not exceed them. In many instances, when you use the window method to design a filter, the result is a filter that performs too well in the stopband. This wastes performance and taxes computational power by using more filter coefficients than necessary. When you use a rectangular window in the window design method, the resulting filter can be shown to be the optimal, unweighted least squares solution to the filter design problem. In summary, the optimal solution is not always a good solution to the filter design problem.

Filters designed using the Parks-McClellan method have equal ripple in their passbands and stopbands. For this reason, they are often called equiripple filters. They represent the most efficient filter designs for a given specification, meeting your frequency response specification with the lowest order filter.

Advanced FIR Filter Designs

Filter Design Toolbox includes a function, firgr, for designing FIR filters that represent the optimal solutions to filter design requirements. firgr provides a minimax filter design algorithm that you use to design the following real FIR filters:

- Types 1 through 4 linear phase
- Minimum phase
- Maximum phase
- Minimum order, even or odd
- Extra-ripple
- Maximal-ripple
- Constrained-ripple
- Single-point band
- Forced gain
- Arbitrarily shaped frequency response

For examples of filters that use firgr design features, refer to "firgr Examples" on page 2-8.
firgr implements the Shpak-Antoniou algorithm described in "A generalized Remez method for the design of FIR digital filters," D.J. Shpak and A.
Antoniou, published in IEEE Trans. Circuits and Systems, pp. 161-174, Feb. 1990.

FIR filters, when implemented nonrecursively, do not use feedback in their architectures. This limits the filter design so that you include current inputs to the filter, as opposed to including past outputs (feedback) to calculate the current output of the filter. In this toolbox, you use the function firgr to design FIR filters. Among other features, firgr lets you:

- Define filters that have arbitrary shape frequency response curves
- Set a range of performance limits for a filter
- Set the weighting for the error between the desired response and the actual response in each band of interest in a filter
firpm and firgr respond the same way to the same input and output arguments, where the input arguments are valid for both functions. firgr
extends the Remez algorithm to support the new filter designs by adding new input argument options.

Abstract

Note To provide improved FIR filter design optimization, firgr uses a generalized Remez algorithm that is not identical to the Remez algorithm used by firpm. Specifically, firgr uses a higher density frequency grid in filter transition regions, such as at the cutoff points. Thus the frequency grid is not constant, but changes density across the frequency spectrum, letting the algorithm more closely optimize filter performance in those areas.

For more straightforward filter designs, firpm and firgr generate the same filter coefficients and the same design. As the filter gets more complex, such as higher order or more bands or steeper transition regions, the filter designs may diverge. Generally, firgr provides better optimized filter designs in these cases.

Using firgr to design filters places the following restrictions on your designs:

- Design must be FIR.
- You can select the number of filter coefficients.
- The frequency response curve must be divided into a series of passbands and stopbands separated by transition or "don't care" bands.
- Within each passband and stopband, you specify your desired amplitude response as a piecewise constant function.
- You cannot constrain the amplitude response in transition bands.

With these considerations in place, firgr designs equiripple, or minimax, filters to meet your specifications.

firgr Examples

Each of these examples uses one or more features provided in the function firgr. Review each example to get an overview of the capabilities of the function.

Examples - Using firgr and fircband to Design FIR Filters

firgr provides a wide range of new capabilities for FIR filter design. Because of the comprehensive nature of the generalized Remez algorithm, the best way to learn what you can do with the new function is by example. This section presents a series of examples that investigate the filters you can design through firgr. You can view these examples as a demonstration program in MATLAB by opening the MATLAB demos and selecting Filter Design from Toolboxes. Listed there you see a number of demonstration programs. Select Minimax FIR Filter Design to see function firgr used to create many filters, from a lowpass filter to a constrained stopband design to a minimum phase, lowpass filter with a constrained stopband.

To open the FIR filter design demo.

Follow these steps to open the FIR filter design demo in MATLAB.
1 Start MATLAB.
2 At the MATLAB prompt, enter demos.
The MATLAB Demo Window dialog opens.
3 On the left-hand list, double-click Toolboxes to expand the directory tree.
You see a list of the toolbox demonstration programs available in MATLAB.
4 Select Filter Design.
5 Select FIR Filter Design.
6 From the right-hand pane, select Minimax FIR Filter Design.
A few examples include comparisons to other filter designs and some include analysis notes. For details about using function firgr, refer to Chapter 9, "Function Reference." While this set of examples covers some of the options for firgr, many options exist that do not appear in these examples. Examples cover common or interesting firgr options to demonstrate some of the capabilities.

In each of the examples in this section, we use the output argument res to return the structure res that contains information about the filter.

Structure res Element	Contents
res.order	Filter order.
res.fgrid	Vector containing the frequency grid used in the filter design optimization.
res.H	Actual frequency response on the grid in fgrid.
res.error	Error at each point on the frequency grid (desired response- actual response).
res.des	Desired response at each point on fgrid.
res.wt	Weights at each point on fgrid.
res.iextr	Vector of indices into fgrid of extremal frequencies.
res.fextr	Vector of extremal frequencies.
res.iterations	Number of Remez iterations for the optimization.
res.evals	Number of function evaluations for the optimization.
res.edgeCheck	Results of the transition-region anomaly check. Computed when the 'check' option is specified. One element returned per band edge. Returned values can be:
$\bullet 1=$ OK	
$\bullet 0=$ Probable transition-region anomaly	

Example-Designing a Minimax Filter

To use firgr to design an equiripple or minimax filter, we use the following statement.

$$
\text { [b,err,res] = firgr(22,[0 0.4 0.5 1],[11 } 1 \text { 0 0],[1,5]); }
$$

If you use the same statement, replacing firgr with firpm, you get the same filter. You can reproduce any filter that firpm generates by replacing firpm with firgr in the statement. firgr retains full compatibility with firpm.

Here's a plot of the magnitude response of the minimax filter as created by firgr. The following code creates this figure, after adjusting the y-axis limits.

```
fvtool(b);
```


Our filter ends up as a 22nd-order filter with magnitude response that has ripples about 1 in the passband and ripples about 0 in the stopband. Using the weight vector, we chose to emphasize meeting the stopband performance to be five times as important as meeting the passband performance. Hence the
reduced ripple in the stopband relative to the passband. In the next figure, we switch the weighting to emphasize the passband, and see that the passband ripple is much smaller than the stopband ripple.

```
[b,err,res] = firgr(22,\ldots.,[5,1]);
plot(res.fgrid,abs(res.H))
```


Example-Designing a Minimax Filter, Odd-Order, Antisymmetric

In this example, firgr designs a filter that firpm cannot. When you evaluate the following code in MATLAB, the result is a minimax FIR filter, this time having odd-order and antisymmetric structure, known as type 4 . You can see from the figure that the magnitude response now represents a high pass filter. In this example, we specify the filter as type 4 (' 4 ' in the statement) to get the odd-order, antisymmetric design we want.

```
[b,err,res]=firgr(21,[0 0.4 0.5 1], [0 0 1 1],[2 1],'4');
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```


We have weighted the stopband more heavily than the passband ([2 1]) in the function syntax. The 2 and 1 tell firgr that we care about meeting the stopband specification twice as much as the passband specification. Notice that the weighting is relative, not absolute. Our weights say that the stopband is twice as important as the passband. They do not specify the weighting in absolute terms.

Example-Designing a "Least Squares-Like" Filter

firgr lets you design filters that resemble least squares design. In this example, we design a 53 rd-order filter and use the user-supplied file taperedresp.m to specify a frequency response weighting function to perform the error weighting for the design. So you can reproduce this example, the file taperedresp.m is in the matlabroot \toolbox\filterdesign\filtdesdemos folder. taperedresp.m contains the following code to specify the weighting.

```
% Example for a user-supplied frequency-response function
% taperedresp.m
function [des,wt] = taperedresp(order, ff, grid, wtx, aa)
nbands = length(ff)/2;
% Create output vectors of the appropriate size
des=grid;
wt=grid;
for i=1:nbands
    k = find(grid >= ff(2*i-1) & grid <= ff(2*i));
    npoints = length(k); t = 0:npoints-1;
    des(k) = linspace(aa(2*i-1), aa(2*i), npoints);
    if i == 1
        wt(k) = wtx(i) * (1.5 + cos((t)*pi/(npoints-1)));
    elseif i == nbands
        wt(k) = wtx(i) * (1.5 + cos(pi+(t)*pi/(npoints-1)));
    else
        wt(k) = wtx(i) * (1.5 - cos((t)*2*pi/(npoints-1)));
    end
end
```

To generate the least-squares-like filter, use the following code.

```
[b,err,res]=firgr(53, [0 0.3 0.33 0.77 0.8 1],...
{'taperedresp',[0 0 1 1 0 0]}, [2 2 1]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

When you issue these statements at the MATLAB prompt, you get the following plot for the filter magnitude response.

Example-Designing a Constrained Lowpass Filter with fircband

With fircband, you can both apply weighting to the passband and apply a limit or constraint to the error in the stopband, called constraining. Limiting the stopband error can be useful in circumstances where your filter must meet a specified stopband requirement. To create a lowpass filter with a constrained stopband and weighted passband response, we use fircband with the ' w ' optional input argument to weight the passband. The optional input argument ' c ' constrains the filter stopband error not to exceed 0.2. Note that to use the constraining and weighting options, your filter must have at least one unconstrained band. That is, cell array c must contain at least one ' w' entry. In our example, c is $\{$ ' w ' ' c ' \}.

```
b=fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],{'w' 'c'});
fvtool(b);
```

The next figure shows the lowpass filter with the constraints applied.

When you use constraining values in your fircband filter design, check to see that your filter actually touches the constraining value in the stopband. If it does not, increase the error weighting ('w') for your unconstrained bands. This change causes the constrained errors to approach the constraint value more quickly. Notice that the plot shows our filter just touches the desired constraint of 0.2.

Example-Designing a Constrained Bandstop Filter with fircband

Continuing with the concept of using weighting in fircband, we design a bandstop filter whose passband ripple we constrain not to exceed 0.05 and 0.1. In this instance, cell array c is \{'c' 'w' 'c'\} to constrain the passbands and we use the optional input vector $W=\left[\begin{array}{lll}0.05 & 1 & 0.1\end{array}\right]$ to constrain the passband ripple not to exceed 0.05 and 0.1 .
$b=f i r c b a n d\left(22,[00.40 .50 .70 .81],\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array} 1\right.\right.$ 1],[0.0510.1],.. \{'c' 'w' 'c'\});
fvtool(b)
As expected the magnitude response shows different peak ripple values in the passbands - 0.05 for the low frequency band and 0.1 for the high frequency band.

Example-Designing a Single-Point Band Filter

The following statements

```
[b,err,res]=firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],...
[1 1 0 1 1 0 1 1], {'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

generate an interesting filter that you cannot design when you use functions in Signal Processing Toolbox: a multiple stopband filter where the stop bands are defined by single points. In the firgr command in this example, the syntax is $b=f i r g r(N, F, A, S)$. The input vectors F, A, and S, each containing eight values, define the response curve for the filter.

Input Vector	Use
	Defines the points of interest in the frequency response. In this case, you are working with frequencies normalized between 0 and 1 .
$\mathrm{A}=[11011011]$	Set the gain at each frequency point.
S =\{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'\}	Specifies whether the frequency points represent normal or single-point bands. By comparing the frequency and type vector entries, we see that $\mathrm{F}=0.25$ and $\mathrm{F}=0.55$ are single point bands (marked by s), and the gain at those points is 0 . The other bands are normal bands (marked with n) with gain $=1$.

From the next figure, you see that the filter has just the response we defined, with zeros at $\mathrm{F}=0.25$ and $\mathrm{F}=0.55$.

Example-Designing a Filter with a Specified In-band Value

In some filter design tasks, you want a filter whose inband value you determine exactly. For example, you might want a 60 Hz noise rejection filter to have zero gain at $\mathrm{F}=0.06(\mathrm{~F}=60 \mathrm{~Hz}$ in real frequency). For this example, the sampling frequency is 2 KHz , so 60 Hz is $\mathrm{F}=0.06$ when we normalize the frequency. We use the following code example to design such a filter.

```
[b,err,res]=firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

At $F=0.06$, we require the gain of the filter response to be exactly 0.0 . So we force the gain at $F=0.06$ to zero by adding the ' f ' input option to the S vector. As shown in the plot, the filter response is zero at $\mathrm{F}=0.06$, and the resulting filter rejects 60 Hz noise quite effectively.

You might have noticed in the firgr statement that the S vector includes an ' i ' option. Entries in the S vector have any of the following values.

Vector Symbol	Meaning
n	Represents a normal frequency point
s	Represents a single-point band frequency
f	Forces the gain at this frequency to a fixed value, as specified in the weighting vector W
i	Represents an indeterminate frequency point. Usually used when the band should abut the next band

For our noise rejecting filter, the sampling frequency is 2 KHz , so 60 Hz is $\mathrm{f}=0.06$ in normalized frequency.

Example-Designing Extra-Ripple and Maximal-Ripple Filters

Extra-ripple and maximal-ripple filters have some interesting properties:

- They have locally minimum transition region widths
- They tend to converge very quickly
firgr lets you use multiple independent approximation errors to directly design extra- and maximal ripple filters. In this example, we use independent errors to design two filters, then we revisit our 60 Hz noise rejection filter to compare these two different approaches to designing the same filter.

Example of an Extra-Ripple Lowpass Filter

The code to design our extra-ripple filter is

```
[b,err,res]=firgr(12,[0 0.4 0.5 1], [1 1 0 0], [1 1],...
{'e1' 'e2'});
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

The last entries in the command, [11] and \{'e1' 'e2'\}, are the vectors W and E that determine the weights and independent approximation errors for filters with special properties. 'e1' is applied to the passband and 'e2' applied to the stopband. Where the firgr algorithm usually results in equiripple filters, using the approximations lets firgr adjust the ripple in each band separately, as we have done in this design.

Example of an Extra-Ripple Bandstop Filter With Two Independent Approximation Errors

Now we extend the extra-ripple concept by using two independent error approximations. The two passbands share the first approximation error 'e1'. The stopband uses 'e2'. So you can see the effectiveness of this design approach, also create and plot a single approximation error filter for comparison.

```
[b,err,res]=firgr(28,[0 0.4 0.5 0.7 0.8 1], [1 1 0 0 1 1],...
[1 1 2], {'e1' 'e2' 'e1'}); % Extra-rippple filter design
[b2,err2,res2]=firgr(28,[0 0.4 0.5 0.7 0.8 1],...
[1 1 0 0 1 1],[\begin{array}{lll}{1}&{1}&{2}\end{array}]); % Weighted-Chebyshev design
[H,W]=freqz(b,1,1024);[H2,W]=freqz(b2,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot([H H2],W,S);
```

In the figure, the responses are similar for the two designs, but the extra-ripple design shows less ripple in the passbands and slightly more in the stopband. If you evaluate the example code in MATLAB to create the plot, you can select Zoom in from the Tools menu in the figure window to examine the curves more closely.

For this design, we let firgr use the same error approximation for the passbands and a different one in the stopband. The result is a filter that has minimum total error in the passbands, and minimum error in the stopband.

Example-Comparing Two 60 Hz Noise Rejection Filters

With the extra-ripple filter design technique available in firgr, we can use two different design techniques to redo our 60 Hz noise rejection filter. We use three independent error approximations in this design, one for each band, as shown in the following code.

```
[b,err,res]=firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'},[10 1 1],{'e1' 'e2' 'e3'}); % New filter
[b2,err,res]=firgr(82,[0 0.055 0.06 0.1 0.15 1],...
[0 0 0 0 1 1], {'n' 'i' 'f' 'n' 'n' 'n'}); % Original filter
[H,W]=freqz(b,1, 1024);
[H2,W]=freqz(b2,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot([H H2],W,S);
```

We have included the second firgr statement in this example to reproduce the earlier noise rejection filter for comparison. We plot them on the same figure for easy reference. In the stopband, the original design has lower ripple; the new, independent error design has less ripple in the passband. Also, the new filter has slightly steeper transition region performance.

Using independent approximation errors, as we did in this filter when we specified 'e1', 'e2', and 'e3', can result in better filter performance. The strings 'e1', 'e2', and so on direct firgr to consider the associated band alone, or with
other bands that use the same error approximation. By assigning independent errors to each band, we let the generalized Remez algorithm used by firgr minimize the error in each band without considering the error in the other bands. If we do not use independent errors, the algorithm minimizes the total error in all bands at once.

At times, you need to use independent approximation errors to get designs that use forced inband values to converge. Error approximations are needed where the polynomial used to approximate the filter becomes undetermined when you try to force the inband values to converge.

Example-Checking for Transition-Region Anomalies

To allow you to check your filter designs for anomalies, firgr provides an input option called 'check'. With the check option included in the command, firgr reports anomalies in the response curve for the filter. An anomaly in firgr is defined as out-of-the-ordinary response behavior in a transition, or "don't care," region of the filter response.

To demonstrate anomaly checking, we use firgr to design a filter with an anomaly, and include the 'check' optional input argument.

```
[b,err,res]=firgr(44,[0 0.3 0.4 0.6 0.8 1],...
[1 1 1 0 0 1 1],'check');
[H,W]=freqz(b, 1, 1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

With the 'check' option, firgr returns the results vector res.edgeCheck in the structure res. Each zero-valued entry in this vector represents the location of a probable anomaly in the filter response. Entries that are not checked, such as the edges at $\mathrm{f}=1$ and $\mathrm{f}=0$, have -1 entries in res. edgeCheck.

To check for anomalies, the following command returns the vector containing the edge check results.

```
res.edgeCheck
ans =
-1
    1
    1
    0
    0
-1
```

There are anomalies between the $\mathrm{f}=0.6$ and $\mathrm{f}=0.8$ edges, as shown clearly in the figure. This represents a transition region for our filter. Notice that the edges at $\mathrm{f}=0$ and $\mathrm{f}=1$ were not checked.

In our example, the anomalous behavior happened because of the width of the transition region. When we define a narrower transition band, the anomaly disappears. Generally, reducing the transition region width eliminates anomalies in the filter response.

Example-Using Automatic Minimum Filter Order Determination

Rather than entering the filter order N in the firgr command, you can let the generalized Remez algorithm determine the minimum order for your filter. You set the specifications for the filter and the generalized Remez algorithm repeatedly designs the filter until the design just meets your specifications.

You have three options for setting the minimum order option for the filter:

- 'minorder' directs the Remez algorithm to iterate over the filter design until it finds a design that just fulfills your design specifications and is the lowest possible order. Using this option directs firgr to use firpmord to get an initial estimate of the filter order.
- 'mineven' directs the Remez algorithm to iterate over the filter design until it finds a design that just fulfills your design specifications and is the lowest possible even order.
- 'minodd' directs the Remez algorithm to iterate over the filter design until it finds a design that just fulfills your design specifications and is the lowest possible odd order.

Note When you use the minimum order option 'minorder', firgr treats the weights in the W vector as maximum error values for the associated frequencies in the frequency vector F. Also, constraints become absolute limits; firgr designs a filter that does not exceed the constraints.

For this example, we let the Remez algorithm find a minimum order filter that implements a lowpass filter with a transition band between $f=0.4$ and $f=0.5$.

```
[b,err,res]=firgr('minorder',[0 0.4 0.5 1], [1 1 0 0],...
[0.1 0.02]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

Our filter, shown in the figure, demonstrates the desired ripple in the passbands and stopbands, 0.1 and 0.02 ; the transition region meets our specifications; and the filter order (found from res.order) is 22 .

When you use the minimum order feature, you can specify the initial order (your best guess) in the firgr statement. When you estimate the order, firgr does not use firpmord to make an estimate of the filter order. This is important when firpmord does not support your desired filter type, such as differentiators and Hilbert transformers, as well as for filters that use frequency response functions that you supply. For the following filter example, we provide an initial estimate of 18 for the filter order, and we specify that we want our filter to have the minimum even order possible by adding the 'mineven' option.

```
[b,err,res]=firgr({'mineven',18},[0 0.4 0.5 1], [1 1 0 0],...
[0.1 0.02]);
[H,W,S]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'linear';
```

```
freqzplot(H,W,S);
```

Though we provided an initial estimate of 18 for the order, the final order for our filter is again 22. If we had specified 'minodd', the result would be a 23rd-order filter.

Example - Designing an Interpolation Filter

Now let us design an interpolation filter. These are usually used to upsample a band-limited signal by an integer factor, for example after the signal has been decimated by downsampling. Upsampling is often used while designing multirate filters to reduce the computational load required to use a filter. In Signal Processing Toolbox, you can use the function intfilt to design an interpolation filter. While intfilt provides a way to design the filter, it does not provide the control that firgr offers. Input options for firgr let you define the filter response and errors in each passband and stopband, and the weighting of the band responses in the filter design.

```
[b,err,res]=firgr(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
[H,W]=freqz(b,1,1024);
S.plot = 'mag'; S.yunits = 'db';
freqzplot(H,W,S);
```

We specify a 30 th-order filter with edges at $0.1,0.4,0.6$, and 0.9 , and weight them as [1 100 100]. The resulting design has stopbands between $\mathrm{f}=0.4$ and $\mathrm{f}=0.6$, and $\mathrm{f}=0.9$ and $\mathrm{f}=1.0$.

The next figure shows a filter designed by firgr.

Example-Comparing Filters Designed by firgr and intfilt

Now, to see that firgr lets you develop a better interpolation filter than intfilt, we compare filters designed by both functions. We need three sets of code to display the filters for our comparison - the first set generates the detail plot of the first stopband, the second set displays the second stopband in detail, and the third plot focuses on the stopband ripple. To keep the frequency response displays consistent, we use the MATLAB plot function to ensure that the axes and labels are the same for both filters. freqzplot does not provide enough control of the plotting functions.

Code to display the first stopband.

```
    [b,err]=firgr(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
    [1 100 100]);
    b2=intfilt(4, 4, 0.4);
    w=linspace(0.4, 0.6)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
    plot(w/pi,20*log10(abs([h' h2']))); ylabel('Stopband #1 (dB)');
    v=axis; v=[0.4 0.6 -100 v(4)]; axis(v);
```


Code set to display the second stopband.

[b,err]=firgr(30,[0 0.10 .40 .60 .9 1], [4 40000$], \ldots$ [1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0.9, 1)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w); plot(w/pi,20*log10(abs([h' h2']))); ylabel('Stopband \#2 (dB)'); $\mathrm{v}=\mathrm{axis} ; \mathrm{v}=[0.9$ 1-100 $\mathrm{v}(4)] ;$ axis(v);

Code set to display the passband ripple.

```
[b,err]=firgr(30,[0 0.1 0.4 0.6 0.9 1], [4 4 0 0 0 0],...
[1 100 100]);
b2=intfilt(4, 4, 0.4);
w=linspace(0, .1)*pi; h=freqz(b,1,w); h2=freqz(b2,1,w);
plot(w/pi,20*log10(abs([h' h2']))); ylabel('Passband (dB)');
```

In the next figure, showing the first stopband in detail, you see that using the weighting function in firgr improved the minimum stopband attenuation by almost 20 dB over the intfilt design.

If we switch to a plot of the second stopband, shown in the next figure, you see that the equiripple attenuation throughout the band is about 6 dB larger for the firgr-generated filter than the minimum stopband attenuation of the filter designed by intfilt.

Finally, let's look at the passbands of the two filters, shown in the next figure. Here, the ripple in the firgr-designed filter is slightly larger than the passband ripple for the intfilt design. Still, both are very small, less than 0.014 dB peak-to-peak.

Example-Designing a Minimum Phase Lowpass Filter with a Constrained Stopband

With firgr you can determine whether the FIR filter you design is minimum phase, maximum phase, or linear phase. Through this example we show a minimum phase filter and look at the roots of the filter transfer function to see that no roots lie outside the unit circle in the z-plane. First, we create the minimum phase filter by using firgr with the 'minphase' optional input argument.

```
[b,err,res]=firgr(12,[0 0.4 0.5 1], [1 1 0 0],[1 0.1],...
{'w' 'c'},{64},'minphase');
```

firgr generates a lowpass filter with constrained stopband magnitude equal to 0.1 , and the filter is minimum phase as well. We could have specified a maximum phase design by replacing the 'minphase' option with 'maxphase'. In the firgr statement, you might have noticed the cell array \{64\} entry. The cell array entries define the grid density for points across the frequency spectrum.

Now, plot the filter to view the frequency response.

```
[H,W]=freqz(b,1, 1024);
S.plot = 'mag'; S.yunits = 'linear';
freqzplot(H,W,S);
```

We have a lowpass filter with stopband ripple not exceeding 0.1 , as desired.

In the next figure, viewing our filter roots on the z-plane plot shows us that the roots lie in or on the unit circle. The zeros of a minimum phase delay FIR filter lie on or inside the unit circle. Maximum phase delay filters have zeros that lie on or outside the unit circle.

```
[b,err,res]=firgr(12,[0 0.4 0.5 1], [1 1 0 0],[1 0.1],...
{'w' 'c'},{64},'minphase');
[H,W]=freqz(b,1,1024);
zplane(roots(b));
```


Notice that the filter, with eight zeros on the unit circle, could be very sensitive to quantization. You could use FDATool to investigate the effects of quantizing this filter, and to convert the filter to second order sections or make other changes the reduce the sensitivity to quantization.

firlpnorm Examples

Review the following examples for an overview of the capabilities of the function-each example uses one or more features provided by firlpnorm and the least-Pth unconstrained optimization algorithm. Among the filter designs you can create are filters with arbitrarily defined magnitude response or minimum phase.

Example-Design a Lowpass Filter With pmin = 4 and $\operatorname{pmax}=12$

With the filter specifications in this example, the result is a quasi-equiripple response lowpass filter. You can see from the plot that follows the code the shape of the magnitude response.

```
b=firlpnorm(30,[0 0.4 0.45 1],[0 0.4 0.45 1],[[1 1 0 0)],...
[1 1 10 10],[4 12]);
[H,W,S]=freqz(b,1, 1024);
S.plot = 'mag';
fvtool(b);
```


Example-Design a Lowpass Least-Squares Filter With a "Peak" In The Passband

Using the appropriate set of input arguments, you can add a slight peak in the passband of the filter. The following code creates a lowpass filter that demonstrates just such tweaking of its passband to add gain. Notice the set of inputs for a (the specification of the passband response) [$\left.\begin{array}{lllll}1 & 1.2 & 1 & 0\end{array}\right]$ in the calling syntax. The 1.2 raises the passband response at the 0.15 normalized frequency point defined in f.

```
b=firlpnorm(15, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.2 1 0 0],[2 2 2 1 1], [2 2]);
fvtool(b)
```


Example-Create a Low-order Filter With One Band

By using the weighting input arguments and the pmin and pmax options, this example creates a low order, $n=5$, FIR filter with one band. When you define pmin and pmax as 2 and 16, the optimization algorithm starts at pmin $=2$ and continues to optimize in the filter in the pmax sense. By default, pmin and pmax are 2 and 128, achieving the L-infinity or Chebyshev norms.

```
b=firlpnorm(5, [0 .2 . 6 1], [0 1], [0 .4 .2 1], [lllll
[2 16]);
fvtool(b)
```

Reviewing the figure from FVTool shows the single band nature of the filter response.

Example-Return a Minimum Phase Bandstop Filter

To generate a minimum phase filter, firlpnorm uses the 'minphase' optional input argument. For this example of creating a bandstop filter, $p=\left[\begin{array}{ll}2 & 4\end{array}\right]$ and the filter order is set to 21 . Notice that weight vector w emphasizes the error in the stopband region by using [$\left.\begin{array}{llllll}1 & 1 & 5 & 5 & 1 & 1\end{array}\right]$. Combined with the a vector of $\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 1 & 1\end{array}\right]$, the result is a bandstop filter, as shown in the figure that follows the code for designing the filter.

```
b=firlpnorm(21, [0 .25 . 35 .7 . 8 1], [0 . 25 . 35 .7 . 8 1],...
[1 1 0 0 1 1], [1 1 5 5 1 1], [2 4], 'minphase');
fvtool(b)
```

Plotting the zeros on the unit circle shows the minimum phase nature of the filter.

Advanced IIR Filter Designs

Many digital filters use both input values and previous output values from the filter to calculate the current output value. FIR filters can be implemented with feedback, although this is unusual. Cascaded integrated comb filters are one example.

For IIR filters, the transfer function is a ratio of polynomials:

- The numerator of the transfer function. When this expression falls to zero, the value of the transfer function is zero as well. Called a zero of the function.
- The denominator of the transfer function. When this expression goes to zero (division by zero), the value of the transfer function tends to infinity; called a pole of the function or filter.

Filter Design Toolbox introduces three functions: iirlpnorm, iirlpnormc, and iirgrpdelay for designing IIR filters that design optimal solutions to your filter requirements. With these new filter functions, you can design filters to meet your specifications that you could not design using the IIR filter design functions in Signal Processing Toolbox.

Function iirlpnorm uses a least-pth norm unconstrained optimization algorithm to design IIR filters that have arbitrary shape magnitude response curves. iirlpnormc uses a least-pth norm optimization algorithm as well, only this version is constrained to let you restrict the radius of the poles of the IIR filter.

To let you design allpass IIR filters that meet a prescribed group delay specification, iirgrpdelay uses a least-pth constrained optimization algorithm. For basic information about the least-pth algorithms used in the IIR filter design functions, refer to Digital Filters by Antoniou [1].

This section uses examples to introduce the IIR filter design functions in the toolbox. As you review these examples, you may notice that the IIR design functions use the same syntax, input, and output arguments. Because the design functions use very similar algorithms, common input and output arguments apply. Arguments are used in the same way, and carry the same defaults and restrictions. That said, if an example of one IIR function uses a syntax that does not appear under another IIR design function, chances are you can use the first syntax in the other design function as well.

Examples - Using Filter Design Toolbox Functions to Design IIR Filters

Filter Design Toolbox provides new capabilities for IIR filter design. Because of the comprehensive nature of the new IIR design functions, learning by example is the best way to discover what you can do with them. This section presents a series of examples that investigate the filters you can implement through IIR filter design in Filter Design Toolbox. You can view these examples as a demonstration program in MATLAB by opening the MATLAB demos and selecting Filter Design from Toolboxes. Listed there you see a number of demonstration programs. Select one of the following demos to see the IIR filter design functions being used to design a variety of filters:

- Least P-norm Optimal IIR Filter Design demonstrates IIR filter design function iirlpnorm. Examples include:
- "Example - Using iirlpnorm to Design a Lowpass Filter" on page 2-45
- "Example - Using iirlpnorm to Design a Low Order Filter" on page 2-46
- "Example - Using iirlpnorm to Design a Bandstop Filter" on page 2-47
- "Example - Using iirlpnorm to Design a Noise-Shaping Filter" on page 2-49
- Constrained Least P-norm IIR Filter Design demonstrates IIR filter design function iirlpnormc. This set of examples includes:
- "Example - Using iirlpnormc to Design a Lowpass Filter" on page 2-50
- "Example - Using iirlpnormc to Design a Bandstop Filter with a Constrained Pole Radius" on page 2-52
- "Example - Using iirlpnormc to Design a High-Order Notch Filter" on page 2-53
- "Example - Using iirlpnormc to Change an Elliptic Filter to a Constrained Lowpass Filter" on page 2-54
- IIR Filter Design Given a Prescribed Group Delay demonstrates IIR filter design function iirgrpdelay. These examples include:
- "Example - Using iirgrpdelay to Design a Filter with a User-Specified Group Delay Contour" on page 2-57
- "Example - Using iirgrpdelay to Design a Lowpass Elliptic Filter with Equalized Group Delay" on page 2-59

To Open the IIR Filter Design Demos

Follow these steps to open the IIR filter design demos:
1 Start MATLAB.
2 At the MATLAB prompt, enter demos.
The MATLAB Demo Window dialog opens.
3 On the list on the left, double-click Toolboxes to expand the directory tree.
You see a list of the toolbox demonstration programs available in MATLAB.
4 Select Filter Design.
5 From the list on the right, select one of the following demonstration programs:

- Least P-norm Optimal IIR Filter Design
- Constrained Least P-norm IIR Filter Design
- IIR Filter Design Given a Prescribed Group Delay

A few examples include comparisons to other filter design functions and analysis notes. For details about using the IIR design functions iirlpnorm, iirlpnormc, and iirgrpdelay, refer to the online reference documentation. While this set of examples covers many of the options for the functions, more options exist that do not appear in these examples. Examples cover common or interesting IIR design options to highlight some of the capabilities of the design functions.

In these examples, you can see that iirlpnorm, iirlpnormc, and iirgrpdelay use many of the input arguments used by firgr, plus others such as the denominator order. At the most basic level, each IIR filter design function uses the input arguments N, D, F, Edges, and A - the filter order for the numerator and denominator (so you can specify different order numerators and denominators), the vector containing the filter cutoff frequencies, the band edge frequencies, and the filter response at each frequency point. F and A must have matching numbers of elements; they can exceed the number of elements in Edges. You use this feature to specify a gain contour within a band defined by the entries in Edges. Every frequency that appears in Edges must also be an element of F . Also, the first band edge must equal the first frequency and the last band edge must equal the last frequency in F.

iirlpnorm Examples

Each of these examples uses one or more feature provided in the function iirlpnorm. The examples build on one another, although they can be run separately. Review each example to get an overview of the capabilities of the function.

Example - Using iirlpnorm to Design a Lowpass Filter

To design a lowpass filter with maximum gain of 1.6 in the passband, we use the syntax iirlpnorm(n, d, f, edges, $a, w)$. To duplicate the filter in the figure, use this code.

```
[b,a]=iirlpnorm(3, 11, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.6 1 0 0], [1 1 1 1 100 100]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 0.15 0.4 0.5 1], [\begin{array}{llll}{1}&{1.6}&{1}&{0}\end{array}]
```

When you look at the magnitude response curve, notice the response reaches 1.6 in the passband.

Example - Using iirlpnorm to Design a Low Order Filter

The curves in the next figure show the results of using iirlpnorm to design a low-order filter with a single band. For this design, we introduce a new two-element vector $\mathrm{P}=[\mathrm{Pmin}, \mathrm{Pmax}$] that defines the minimum and maximum values of P in the least-pth norm algorithm. If you do not specify P, the default values are [2 128], resulting in the L_{∞} or Chebyshev norm. Specify Pmin and Pmax to be even numbers. To view the placement of the poles and zeros for your filter before the optimization takes place, replace [Pmin Pmax] with the string 'inspect'. With the option 'inspect ' in use, the algorithm does not optimize the filter design.

We specified a lowpass filter with third-order numerator and denominator, and used the P vector to limit the optimization range, by using the function syntax iirlpnorm(n, d, f, edges, a,w, p).

```
[b,a]=iirlpnorm(3, 3, [0 .2 .6 . 8 1], [0 1], [0 .4 .2 0 1],...
[1 1 1 1 1 1], [2 64]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .2 .6 .8 1], [0 .4 .2 0 1], 'r'); hold off;
```

Setting $W=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$ is the same as not setting weight values.

Example - Using iirlpnorm to Design a Bandstop Filter

Designing IIR bandstop filters is straightforward. Enter the frequency, magnitude, edges, and weight vectors using the syntax iirlpnorm(n, d, f, edges, $a, w)$ as shown here. To ensure that the stopband
rejects undesired frequencies aggressively, we weight the magnitude response in the stopband more heavily by entering the weight vector [$\left.\begin{array}{llllll}1 & 1 & 5 & 5 & 1 & 1\end{array}\right]$, telling the optimization algorithm that meeting the inband response specification is five times as important as meeting the out-of-band response.

```
[b,a]=iirlpnorm(10, 7, [0 . 25 . 35 .7 . 8 1],...
[0 .25 .35 .7 . . 1], [11 1 0 0 1 1], [1 1 5 5 1 1]);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .25 . 35 .7 . 8 1], [1 1 0 0 1 1], 'r'); hold off;
```

As you can see from the following figure, the filter meets our design needs quite closely.

Example - Using iirlpnorm to Design a Noise-Shaping Filter

In this example, we create a lowpass filter with a rising magnitude in the passband. Communications designers use the filter when they simulate the effects of motion between a transmitter and receiver, such as you find in cellular telephone networks. Here, we use iirlpnorm to design the same filter. Because of the complex shape of the passband, we define the vectors f, a, w, and edges in the workspace, then use the vector names in the iirlpnorm statement.

```
f = 0:0.01:0.4;
a = 1.0 ./ (1 - (f./0.42).^2).^0.25;
f = [f 0.45 1];
a = [a 0 0];
edges = [0 0.4 0.45 1];
w = ones(1, length(a));
[b,a]=iirlpnorm(4, 6, f, edges, a, w);
[h,w,s]=freqz(b,a, 1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot(F,A, 'r'); hold off;
```

When you compare the figure below to the filter design in "Getting Started with the Toolbox" on page 1-17, you see they match very well.

iirlpnormc Examples

Each of these examples uses one or more feature provided in the function iirlpnormc. Review each example to get an overview of the capabilities of the function.

Example - Using iirlpnormc to Design a Lowpass Filter

Just as you use iirlpnorm to design lowpass filters, you can use iirlpnormc to design them as well. iirlpnormc lets you limit the radius of the filter poles when you specify the filter in the function. By restricting the poles to be less than a certain distance from the origin of the unit circle in the z-plane, the filter remains stable, while possibly improving the robustness of the filter to quantization effects. In this lowpass filter example, we restrict the pole radius not to exceed 0.95 , using the function syntax iirlpnormc(n, d, f, edges, $a, w, r a d i u s)$.

```
[b,a]=iirlpnormc(3, 11, [0 0.15 0.4 0.5 1], [0 0.4 0.5 1],...
[1 1.6 1 0 0], [[1 1 1 100 100], 0.95);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 0.15 0.4 0.5 1], [1 1.6 1 0 0], 'r'); hold off;
```

radius takes values between 0 and 1 .

Compared to the unconstrained iirlpnorm lowpass filter example (refer to "iirlpnorm Examples" on page 2-45), you see that the filter performance is about the same, although the ripple in the passband is slightly greater, and the transition somewhat sharper. The difference between these two designs is the constraint applied to the poles when you use iirlpnormc with a radius value. Both filters demonstrate peaks in their passband.

Example - Using iirlpnormc to Design a Bandstop Filter with a Constrained Pole Radius

Here we use iirlpnormc to design a bandstop filter. Notice that we specify different orders for the numerator ($\mathrm{n}=10$) and denominator ($\mathrm{d}=7$) and the frequency and edges vectors are the same. With radius=.91, none of the 11 filter poles lies farther than 0.91 away from the origin, as you can see in the zero-pole plot.

```
f = [0 .25 . 35 .7 . 8 1];
[b,a]=iirlpnormc(10, 7, f, f, [1 1 0 0 1 1], [1 1 5 5 1 1], .91);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on; plot([0 .25 . 35 .7 . 8 1], [1 1 0 0 1 1], 'r'); hold off;
```

To generate the zero-pole plot, use zplane (b, a) at the MATLAB prompt.
When we plot the magnitude response curve, the emphasis we placed on reducing the error in the stopband is clear - note the close match between the desired and calculated responses. (We weighted the magnitude response $\mathrm{w}=\left[\begin{array}{lllll}1 & 1 & 5 & 5 & 1\end{array}\right]$ to minimize the error in the vicinity of the stopband frequency points.)

Example - Using iirlpnormc to Design a High-Order Notch Filter

To create an optimized design for an IIR high-order notch filter, use iirlpnormc to design the filter. The following code results in the optimal solution to creating a filter with different numerator and denominator orders, and with a maximum pole radius of 0.92 .

```
f = [lllllll
[b,a]=iirlpnormc(2, 17, f, f, [1 1 0 0 1 1], [1 1 2 2 1 1], 0.92);
[h,w,s]=freqz(b,a,1024);
s.plot = 'mag'; s.yunits = 'linear';
freqzplot(h,w,s);
hold on;
plot([0 0.37 0.399 0.401 0.43 1], [1 1 0 0 1 1], 'r'); hold off;
```

Note the frequency vector entries $0.37,0.399,0.401$, and 0.43 . These represent the cutoff points for the filter stopband, a fairly narrow filter. Looking at the filter response plot, you see it is similar to the single-point filter
example we designed with the firgr function (refer to "Example-Designing a Single-Point Band Filter" on page 2-18). This filter has two pairs of constrained poles.

Example - Using iirlpnormc to Change an Elliptic Filter to a Constrained Lowpass Filter

Using an elliptic filter design as the initial conditions, with a maximum pole radius of 0.96 , we reduce the pole radius to 0.95 when we use iirlpnormc to create an optimal filter solution. The result is a filter with the same band edge frequencies, and a gain in the passband greater than one. The following code uses the function ellip from Signal Processing Toolbox to create an elliptical filter. Then we use the function iirlpnormc with the syntax iirlpnormc(n,d,f,edges,a,w,radius, p, dens,initnum,initden). initnum and initden are the initial estimates of the filter numerator and denominator coefficients. We use be and ae from our elliptic filter as the vectors Initnum and initden.

A few points to think about when you use iirlpnormc. These hints can help you converge on a good filter design:

- iirlpnormc implements a weighted, least-pth optimization algorithm.
- Check the location and radii of the designed filter poles and zeros.
- If the zeros are on the unit circle and the poles are well inside the circle, try increasing the numerator order N , or reducing the error weighting (W) in the stopband.
- If several poles have large radii, and the zeros are well inside the unit circle, try increasing D, the denominator order, or reducing the error weighting in the passband.
- As you reduce the pole radius, you may need to increase the denominator order.

iirgrpdelay Examples

Filter Design Toolbox provides a new filter design function iirgrpdelay for designing allpass IIR filters that have group delay characteristics that meet your needs. When you cascade these allpass filters with other IIR filters, they act as compensating elements. They produce equalized or specified group delay across the combined filter frequency response while maintaining the IIR filter pass and stop bands. For more information about group delay in filters, refer to "Signal Processing Basics" in Signal Processing Toolbox User's Guide.

Note iirgrpdelay creates allpass filters you use to compensate for the phase changes caused by other filters. You cannot use iirgrpdelay to create filters that both filter input signals and compensate for phase changes in output signals.

In this section, we introduce the function iirgrpdelay through a series of examples. Each of these examples uses one or more feature provided in the function. The examples build on one another, although they can be run separately. By reviewing each example you get an overview of the capabilities of the design function.

In much the same way that you use other IIR filter design functions to create filters with arbitrary magnitude response curves, you use iirgrpdelay to create filters that have arbitrary group delay curves in the filter passband and stopband. (In most cases, specifying the group delay in the stopband is not useful; the filter rejects those frequencies by design. Nonetheless, you can specify the group delay for frequencies that fall within filter stopbands.)

To specify a filter that approximates a given relative group delay, use iirgrpdelay with the following input argument syntax
iirgrpdelay (N, F, Edges, Gd)
where N is the filter order, F is a vector containing frequencies between 0 and 1 , Gd is a vector whose elements are the desired group delay at the frequencies specified in F, and Edges specifies the band edges. Filter order N must be an even number, and the vectors F and Gd must have the same number of elements. To let you specify the shape of the group delay within a band or bands, vectors F and Gd can contain more elements than Edges.

Considering the following ideas can help you design your group delay compensator:

- After you use iirgrpdelay to design a filter, use freqz, grpdelay, and zplane to check your design for undesirable features.
- Remember that allpass filters have positive group delay. You cannot develop allpass filters that have negative group delay characteristics.
- For some difficult filter optimization problems, use the iirgrpdelay syntax iirgrpdelay(n, d, edgees, a , w, radius, p, dens, initden)
where initden is a vector containing your estimates of the transfer function coefficients for the denominator. You can use the Pole-Zero editor in Signal Processing Toolbox to generate values for initden.
- If the poles and zeros of your filter design cluster together, you may need to increase the filter order or relax the pole radius restriction (if you used one).

Example - Using iirgrpdelay to Design a Filter with a User-Specified Group Delay Contour

To show the ability to create an arbitrary shape group delay contour in the passband of an IIR filter, we use iirgrpdelay and specify the group delay we desire. Notice that we also specify the maximum pole radius of 0.99 . We plot the ideal group delay contour on the figure as well to compare the desired result to the designed filter.

```
[b,a,tau] = iirgrpdelay(8, [0 0.1 1], [0 1], [2 3 1],...
[1 1 1], 0.99);
[G,F] = grpdelay(b,a, 0:0.001:1, 2);
plot(F,G); hold on; plot([0 0.1 1], [2 3 1]+tau, 'r'); hold off;
```


The straight lines represent the desired group delay contour, the wavy line the designed contour. The desired group delay, $\left.\begin{array}{ll}2 & 3 \\ 1\end{array}\right]$, is relative. Note that the actual group delay approximates [897]. If we increase the filter order, to 10 for example, the approximation improves, but the absolute group delay increases.

One of the output arguments for iirgrpdelay is tau, the resulting group delay offset. In all cases, filters created by iirgrpdelay have a group delay that approximates ($\mathrm{gd}+\mathrm{tau}$) where gd is the specified relative group delay of the filter.

When you look at the zero-pole plot for our filter (use the function zplane), you can see that the poles stay well within the radius constraint. Optimizing the filter may not result in poles that are near the constraint. Pole constraints come into play only when needed to limit the optimization. In this example, our design did not require the constraint to stay within the bounds of the unit circle.

You can verify that this is an allpass filter by plotting the magnitude response curve for the design. Use freqz (b, a) to plot the curve.

In general, you determine the contour to use for the group delay equalization of an IIR filter by subtracting the filter group delay from the filter maximum group delay. In the next example, we use this process to create our lowpass filter.

Example - Using iirgrpdelay to Design a Lowpass Elliptic Filter with Equalized Group Delay

The following code designs a pair of filters that together create a lowpass filter with equalized group delay.

```
[be,ae] = ellip(4,1,40,0.2); % Lowpass filter
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2);
g1 = max(g)-g;
[b,a,tau] = iirgrpdelay(8, f, [0 0.2], g1); % Phase compensator
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;
```

Cascading the filters is the same as adding the group delay for each filter frequency-point by frequency-point ($\mathrm{g}+\mathrm{gd}$ in the plot function input arguments). In the figure, the lower curve is the group delay for the elliptic filter. The compensated, or equalized, group delay is the upper curve - an essentially flat group delay across the passband from 0 to 0.2 . Since this example used the lowpass elliptic filter from our earlier iirlpnorm examples, you can see that combining these filters results in a lowpass filter with equalized group delay. Note that the group delay of the combination is twice the maximum group delay of the reference filter. When you use an allpass filter to equalize the group delay of a reference filter, the final group delay is the sum of the group delays of the reference and allpass filters.

To determine the group delay contour necessary to compensate for the phase effects of our elliptic filter, we use the elliptic filter group delay as a reference.

In the example, we used grpdelay to return vector g containing the group delay value at many frequencies across the elliptic filter passband. After determining the maximum group delay in the elliptic filter passband (returned by max (g) in the example code), we subtract each individual group delay from the maximum group delay $(\mathrm{g} 1=\max (\mathrm{g})-\mathrm{g})$. The result is vector g 1 containing values that define a curve that is the mirror image of the group delay contour of our elliptic filter. Then we use g1 as the input group delay values to iirgrpdelay, and the resulting allpass filter has a group delay contour that equalizes the group delay of our lowpass elliptic filter, as shown in the figure.

Example - Demonstrating Passband Equalization for a Bandpass Chebyshev Filter

You can use iirgrpdelay to create filters that compensate for the group delay of many kinds of filters. In this example, we create an allpass filter that
equalizes the group delay of a bandpass filter. In the figure, the lower curve is the group delay of the bandpass filter and the upper curve is the equalized group delay for the combination of the bandpass filter and the allpass filter. Group delay variation across the passband is less than 0.2 .


```
[bc,ac] = cheby1(2,1,[0.3 0.4]); % Bandpass filter design
f = 0.3:0.001:0.4;
g = grpdelay(bc,ac,f,2);
g1 = max(g)-g;
wt = ones(1, length(f));
[b,a,tau] = iirgrpdelay(8, f, [0.3 0.4], g1, wt, 0.95);
f = 0:0.001:1;
g = grpdelay(bc,ac,f,2);
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;
```


Example - Demonstrating Passband Equalization for a Bandstop Chebyshev Filter

Our final example shows how to equalize the group delay in the passband of a bandstop filter. Since this filter has two passbands, we equalize the group delay in each band according to the needs of each band. Vectors g1 and g2 in the example code contain the group delays within each passband of the bandpass filter. We ignore the stopband group delay for this case. To determine the group delay contour across both passbands, we concatenate g1 and g2 (using the command $g=[g 1 ; g 2]$), then use the vector g as the basis for the group delay input argument gx to iirgrpdelay.

```
[bc,ac] = cheby2(3,1,[0.3 0.8], 'stop'); % Bandstop filter
f1 = 0.0:0.001:0.3;
g1 = grpdelay(bc,ac,f1,2);
f2 = 0.8:0.001:1;
g2 = grpdelay(bc,ac,f2,2);
f = [f1 f2]; g = [g1; g2]; % Concatenate the passband group delays
gx = max(g)-g;
wt = ones(1, length(f));
[b,a,tau] = iirgrpdelay(14, f, [0 0.3 0.8 1], gx, wt, 0.95);
f = 0:0.001:1;
g = grpdelay(bc,ac,f,2);
gd = grpdelay(b,a,f,2);
plot(f, g); hold on; plot(f, g+gd, 'r'); hold off;
```

The figure shows that our approach works. You see that the group delay in the passbands is well-equalized (illustrated by the upper curve; the lower curve presents the nonequalized group delay). The stop band is unaffected, and the overall equalized group delay variation in the passbands is close to a constant.

Robust Filter Architectures

We have been considering FIR and IIR filters whose transfer function is represented by constant coefficients and where the input signals and coefficients can be any double-precision value from $-\infty$ to $+\infty$. These systems are in the discrete time domain, with infinite precision values for the dependent variable, often magnitude.

When you represent filters in software, or in general purpose or special purpose computing hardware, the inputs to the filters and the filter coefficients can be represented only by discrete values. The process of converting the infinite precision variables to discrete values is called quantization and represents a source of error when you implement digital filters.

Converting to the discrete domain produces three sources of errors:

- Error caused by the discrete representation of infinitely precise information, such as filter transfer function coefficients or signal amplitude values. Real systems create error when they quantize amplitude values.
- Analog-to-digital conversion error in the input signal.
- Arithmetic round off errors caused by the limited word length available to represent the data in the arithmetic process.

Transfer Function Coefficient Quantization Error

To illustrate the effects of converting from continuous to discrete representations, and to show error sources resulting from quantization, consider the following first-order IIR filter.

The constant coefficient difference equation that defines this filter is

$$
y[n]=\alpha y[n-1]+x[n]
$$

where $y[n]$ and $x[n]$ are the output and input signal variables. In transfer function form, the following equation describes our IIR filter.

$$
H(z)=\frac{1}{1-\alpha z^{-1}}=\frac{z}{z-\alpha}
$$

When you implement this filter form in hardware, the filter coefficient α assumes discrete values that approximate the design value. Therefore, the actual transfer function that you implement is

$$
\hat{H}(z)=\frac{z}{z-\hat{\alpha}}
$$

where \hat{H} and $\hat{\alpha}$ are the close approximations to original H and α in the filter design. Notice that this transfer function differs from the theoretical function $H(z)$. As a result, the actual filter response can differ substantially from the ideal response.

The main effect of transfer function coefficient quantization is to move the poles and zeros to different locations in the z-plane, away from their desired, or designed locations (the locations for the ideal, nonquantized coefficient filter). Moving the poles or zeros can have two effects:

- Changing the frequency response of the quantized filter so it is not the same as the ideal or designed filter.
- Moving poles from inside to outside the unit circle, causing the quantized IIR filter to be unstable. Applies only to IIR filters.

Input Sampling Error (A/D Error)

Given the difference equation for our IIR filter, from earlier

$$
y[n]=\alpha y[n-1]+x[n]
$$

where $x[n]$ is the sampled output from an analog to digital converter. Sampling the continuous signal $x_{a}(t)$ results in $x[n]$. Then the sampled input to the filter from the A/D convertor, $\hat{x}[n]$, is

$$
\ddot{x}[n]=x[n]+e[n]
$$

and $e[n]$ is the error in the A / D conversion process. Our discrete input to the filter no longer matches the continuous signal $x_{a}(t)$. Discrete-time input $x_{a}(t)$ does not match $x[n]$ because analog-to-digital conversion made the input
discrete in time. Similarly, quantized input $\hat{x}[n]$ does not match $x[n]$ because it has been convert to discrete data in amplitude.

Arithmetic Quantization Error

Quantization in arithmetic operations causes another error. For our first-order filter example, the output from our multiplier $v[n]$ is generated by multiplying the signal, $y[n-1]$ with the transfer function coefficients, α

$$
v[n]=\alpha y[n-1]
$$

and storing the result. When we quantize the result to fit it into a storage register, we generate a quantized value $\hat{v}[n]$ that we write as

$$
v[n]=v[n]+e_{\alpha}[n]
$$

where $e_{\alpha}[n]$ is the error sequence resulting from the product quantization process.

Limitcycles and Arithmetic Quantization

There is another source of errors in digital filter implementation, caused by the nonlinearity of quantized arithmetic operations. These errors are apparent in an effect called limit cycling that occurs at the filter output. Limit cycles usually appear when there is no input to the filter, or the input to the filter is constant or sinusoidal.

Low Sensitivity Filter Architectures

Quantizing filter coefficients can have serious effects on the performance of digital filters. As a result of coefficient quantization, the frequency response of the filter with quantized coefficients can be significantly different from the desired filter without quantized coefficients. In some cases, the performance of the quantized filter can make it unsuitable for your application.
Low sensitivity filter architectures, or robust architectures as they are sometimes called, are interesting because they can reduce the effects of coefficient quantization. By being inherently less sensitive to coefficient quantization, these filter architectures withstand the quantization process and result in filters that retain the performance of the original filter.

Approaches to Designing Low Sensitivity Filters

Consider either of two approaches to designing low sensitivity filters:

- Convert low sensitivity analog filters composed of inductors, capacitors, and resistors to digital architectures by replacing the analog components and connections with their digital equivalents so the digital filter approximates the analog version.
- Develop digital filter implementations that respond directly to the conditions that create low coefficient sensitivity in a digital filter designs.

Filter Design Toolbox uses the latter approach to provide low sensitivity filter architectures.

Generally, filter architecture sensitivity ranges from high for direct forms to very low for coupled allpass forms. For reference, the following list ranks the filter forms in the toolbox by their sensitivity to coefficient quantization, from high sensitivity to low:

1 Direct forms-often very sensitive to quantization
2 Lattice forms-moderately sensitive to quantization
3 Allpass forms-quite robust under quantization
Quantization sensitivity is also a function of the locations of the poles and zeros for a filter, so use this list for guidance only.
Within the forms

- FIR filters tend to be less sensitive than IIR filters
- For the direct forms, second-order section implementations are often less sensitive to coefficient quantization

Filter Design Example That Includes Quantization

To demonstrate the effects of coefficient quantization on the performance of a filter, this example creates a 5th-order, lowpass elliptic IIR filter. We choose a cutoff frequency of 0.4π radians (normalized frequency from 0 to 1), passband ripple less than 0.5 dB , and stopband attenuation of at least 40 dB . In the figure you see the filter response.

We used the Filter Design and Analysis tool (FDATool) to design the filter. Notice that we used the default filter structure df2tsos, or Direct form 2 transposed using second-order sections. When we want to compare the
quantized version of the filter to the floating-point filter, FDATool lets us quantize the filter and display the filter response curves together.

We could have used the function ellip from Signal Processing Toolbox to create the filter, and then converted the filter to second-order section form to match the FDATool design.

$$
[b, a]=\operatorname{ellip}(5,0.5,40,0.4) ;
$$

The results are identical because FDATool uses the same function to design the lowpass filter.

We quantize the filter by selecting Set quantization parameters, and then selecting fixed-point for the filter arithmetic. FDATool quantizes our elliptic filter and displays the magnitude response for both the original (or reference) filter and the quantized filter.

For this quantization process we use the default coefficient format settings in FDATool. Later in this example we change the coefficient format to illustrate the effects of changing the word length used to represent the filter coefficients.

Quantizing the coefficients has not damaged our filter magnitude response, primarily because FDATool implements the filter in second-order section form-resistant to the effects of quantization.

If we convert to single-section representation for demonstration purposes (adjusting the coefficient formats as needed), the single-section quantized filter filter transition band starts much earlier and is much shallower, and the stopband attenuation has been reduced-the filter performance is clearly affected. Here is what you see in FDATool after you convert to a single-section representation for the filter and use 16 bits for the coefficient word lengths and 15 bits for the numerator and denominator fraction lengths.

When we look at the zero-pole plot for the unquantized and quantized versions of our filter, we see that quantization has moved the poles from their designed locations. Coefficient overflow, rather than sensitivity to quantization, caused the terrible quantized response in this filter. Coefficient quantization changes filter coefficients by at most one quantization level. Overflow can change the coefficients by an arbitrarily large amount. In this case, quantization changed the largest magnitude coefficient from 2.49 to saturation at 0.999 . You see this from the coefficient view by selecting Analysis -> Filter Coefficients. Thus we see how sensitive this direct form IIR filter is to coefficient quantization.

To continue this example, we look at the effects of changing the coefficient format from fixed-point, 16 -bits to fixed-point, 8 -bits. After we make the desired change, we see the response curves shown in this figure.

When you inspect the entries in the Set Quantization Parameters dialog, you see that we changed the coefficient format to [87], meaning we are using eight-bit wordlength and seven-bit fraction length to represent each filter coefficient. Changing the coefficient format to 8 -bit, fixed point representation causes the effects shown in the figure - the passband rolls off early, the transition is less sharp, and the cutoff frequency lies beyond our 0.4 specification.
In FDATool, select Analysis->Pole/Zero Plot to view the poles and zeros for the 8-bit filter plotted on the unit circle. Or you might select Analysis->Filter Coefficients to see the coefficient numerical values for the filter.

One more experiment in this example. We try changing the Direct form II transposed (df2t) filter structure back to using second-order sections (where we started), which tend to be resistant to quantization effects. As we see in the figure, the elliptic filter that uses second-order sections, even with the 8-bit coefficient format, performs identically to our reference filter. One more
change-we set the scale values fraction length to 7 bits. This restores the gain for the quantized filter to match our original. As you see here, the filter magnitude responses appear the same.

We changed the scale values by resetting the Scale Value frac. length option to 7 as shown. Without making that change, the quantized filter magnitude response has the same shape, but insufficient gain to match the original.

Selected Bibliography

[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc., 1993, 330-360.
[2] Mitra, S. K., Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, Inc., 1998, 573-584.

Working with Fixed-Point Filters

Getting Started with Fixed-Point Filters (p. 3-3)
Constructing Fixed-Point Filters (p. 3-10)

Data Type Handling in Discrete-Time Filters (p. 3-17)

Introduction to Fixed-Point Arithmetic (p. 3-27)

Working with Fixed-Point Direct-Form FIR Filters (p. 3-33)

Introduces fixed-point filters to get you started using your own filters

Describes how you construct quantized filters in the toolbox

Provides details about how discrete-time filters handle various data types as input, coefficients, and states

Introduces the concepts underlying fixed-point arithmetic that relate to fixed-point filters

Uses the direct-form FIR filter to develop some of the analytical approaches of the toolbox and fixed-point filters

In the Filter Design Toolbox you can implement and analyze single-input single-output filters either as fixed-point filters, or as single-precision or double-precision floating-point filters. Both the single-precision floating-point and fixed-point filters are referred to as quantized filters.

You can create a quantized filter from a reference filter, that is, a filter whose coefficients and arithmetic operations you want to quantize in some fashion.

When you apply a quantized filter to data, not only are the filter coefficients quantized to your specification, but so are:

- The data that you filter, both input and output
- The results of any arithmetic operations that occur during filtering

Refer to "Bibliography" for a list of relevant references on quantized filtering.
This chapter covers what you need to know to construct and use quantized filters:

- Getting Started with Fixed-Point Filters
- Constructing quantized and fixed-point filters
- Fixed-point filter properties
- Filtering data with fixed-point filters
- Transformation functions for fixed-point filter coefficients
- Working with Fixed-Point Direct-Form FIR Filters

The filters you create in this toolbox are objects with properties. You can find most of the basic information you need to know about setting and retrieving property values in your MATLAB documentation and by reading about the set and get functions.

Getting Started with Fixed-Point Filters

As filter designers begin to use digital filters in applications where power limitations and size constraints drive the filter design, they move from double-precision, floating-point filters to fixed-point filters. This tutorial shows you how to analyze the quantization effects introduced by such a conversion using discrete-time filter objects (dfilt objects).

Through the course of this exercise, we cover the following processes:

- "Designing Double Precision Floating-Point Filter Coefficients" on page 3-3
- "Converting the Filter to Fixed-Point" on page 3-3
- "Quantizing Filter Coefficients with Automatic Scaling" on page 3-5
- "Scaling Filter Coefficients Manually" on page 3-6
- "Specifying Arithmetic Rules" on page 3-8

Because each section builds on the contents and filters from preceding sections, progressing through the tutorial from the start is most effective. Otherwise, code examples that depend on earlier tutorial sections may not work properly.

Designing Double Precision Floating-Point Filter Coefficients

To begin this tutorial, you design a lowpass FIR filter using the window method.

```
b = fir1(101, .45, 'low', kaiser(102, 7.8573));
```


Converting the Filter to Fixed-Point

The toolbox adds an Arithmetic property to dfilt objects that provides a way to analyze the filter not only in double-precision floating-point arithmetic but also in single-precision floating-point and fixed-point arithmetic.

```
hd = dfilt.dffir(b)
hd =
    FilterStructure: 'Direct-Form FIR'
        Arithmetic: 'double'
        Numerator: [1x102 double]
```

When you install the Filter Design Toolbox, it adds an additional property value for the Arithmetic property of dfilt objects-single, indicating a filter that performs single-precision floating-point arithmetic. With the Fixed-Point Toolbox installed as well, you can set the Arithmetic property of the filter to fixed to turn quantization on and construct filters that perform fixed-point arithmetic.

Additional filter properties are added dynamically to the dfilt object when you set the Arithmetic property. This next display of the filter object enhances the readability of the list of properties by grouping them together in a logical manner.

Notice that only writable properties show in the listing. Also, some filter properties, such as CoeffAutoScale, control the display of other properties. For example, CoeffAutoScale controls the display of NumFracLength and whether you can write (change) the property value for NumFracLength.

```
hd
hd =
    FilterStructure: 'Direct-Form FIR'
            Arithmetic: 'fixed'
            Numerator: [1x102 double]
PersistentMemory: false
    CoeffWordLength: 16
        CoeffAutoScale: true
            Signed: true
        InputWordLength: 16
        InputFracLength: 15
    FilterInternals: 'FullPrecision'
```

In contrast to the property display that the filter handle hd generates, the get function always returns the complete collection of properties and property values for the filter, whether or not you can change the property.

```
get(hd)
PersistentMemory: 0
```

NumSamplesProcessed: 0FilterStructure: 'Direct-Form FIR'
States: [101x1 embedded.fi]
Numerator: [1x102 double]
Arithmetic: 'fixed'
CoeffWordLength: 16
CoeffAutoScale: 1
Signed: 1
RoundMode: 'convergent'
OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15
NumFracLength: 16
FilterInternals: 'FullPrecision'
OutputWordLength: 39
OutputFracLength: 31
ProductWordLength: 32
ProductFracLength: 31
AccumWordLength: 39
AccumFracLength: 31

Quantizing Filter Coefficients with Automatic

 ScalingTo determine the number of bits the filter is using to represent the filter coefficients, you look at the value of the CoeffWordlength property.

```
hd.CoeffWordLength
ans =
```

 16
 To determine how the coefficients are being scaled, look at the NumFracLength property.
hd. NumFracLength
ans =

16

This tells you that the filter coefficients are 16 bits long (the word length), and the least-significant bit (LSB) is weighed by 2^{-16} (the fraction length). The section "Notes About Fraction Length, Word Length, and Precision" on page 3-28 provides more information about interpreting the fraction length in the data format.

16 bits is just the default number the filters use for coefficients word length. To understand the scaling, you can look at the CoeffAutoScale setting.

```
hd.CoeffAutoScale % Returns a logical true = 1
```

ans =

1
When the CoeffAutoScale property is true, the filter adjusts the fraction length of the coefficients to avoid overflow each time you change the coefficient word length. Verify this automatic scaling by changing the number of bits used to quantize the coefficients from 16 bits to 24 bits.

```
hd.CoeffWordLength = 24;
hd.NumFracLength
ans =
    24
```

The 2^{-24} weight has been computed automatically to represent the coefficients with the best precision possible while using the round-to-nearest setting (property value round) for the filter property RoundMode. "RoundMode" on page 8-89 provides further information about RoundMode.

Scaling Filter Coefficients Manually

Setting the CoeffAutoScale property to false turns the NumFracLength property writable and visible in the display.

```
h1 = copy(hd); % Keep a copy of the original object for...
    % latter comparison
h1.CoeffAutoScale = false
h1 =
```

 FilterStructure: 'Direct-Form FIR'
    ```
    Arithmetic: 'fixed
    Numerator: [1x102 double]
PersistentMemory: false
            States: [1x1 embedded.fi]
NumSamplesProcessed: 0
    CoeffWordLength: 24
    CoeffAutoScale: false
        NumFracLength: 24
            Signed: true
    InputWordLength: 16
    InputFracLength: 15
OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
AccumWordLength: 40
    CastBeforeSum: true
            RoundMode: 'convergent'
        OverflowMode: 'wrap'
```

The quantized coefficients are always rounded to the nearest value and saturated when overflow occurs. Because the scaling process chose the fraction length to avoid overflow, increasing the fraction length saturates the quantized coefficients, introducing severe distortion in the magnitude response of the filter. Try increasing the numerator fraction length to 25 bits.

```
h1.NumFracLength = 25;
```

This is more clear when you plot the magnitude response to show the effect of saturating the coefficients. Here is the code to show the response.

```
href = reffilter(hd); % Get the reference double-precision...
    % floating-point filter.
hfvt = fvtool(href,hd,h1);
set(hfvt,'ShowReference','off'); % Reference already displayed
```

```
legend(hfvt, 'Reference filter', '24 bits - no saturation',...
'24 bits - saturation')
set(hfvt, 'Color', [llll
```


Saturating the coefficients compromises the filter cutoff performance considerably.

Specifying Arithmetic Rules

Once you quantize the coefficients, you need to pay attention to the filter internal settings that govern how arithmetic is done inside the filter. For the remainder of this tutorial, you use a classic 16-bit word length filter.

```
hd.CoeffWordLength = 16;
```

Two properties—ProductMode and AccumMode—help you simulate different filter arithmetic scenarios in the multipliers and adders. Setting these properties to specify full precision (set the property values to FullPrecision) allows you to determine the minimum resources required to avoid losing any precision during filtering.

```
hd.ProductMode = 'FullPrecision'; % (default)
[hd.ProductWordLength hd.ProductFracLength]
ans =
    32 31
hd.AccumMode = 'FullPrecision';
[hd.AccumWordLength hd.AccumFracLength]
ans =
39 31
```

Given an input format of [16 15] and coefficients format of [16 16]-the current settings for hd-these responses tell you that you need a product register twice the size of the coefficients (or twice the size of the input) and an accumulator register with seven guard bits to allow for bit growth during the accumulation process. They also tell you the position of the binary point in those registersthe AccumFraclength and ProductFracLength property values.

Starting from this ideal scenario that allows your filter to perform most accurately, you can introduce constraints on the product or the accumulator register or both. The KeepMSB option for the fraction length properties sets the fraction lengths automatically to avoid overflows while the KeepLSB option sets the fraction lengths automatically to avoid underflows. Finally, the SpecifyPrecision option allows full control of the settings. You need to run your filter to see the effect of these settings on the output.

For further discussion about product and accumulator settings, refer to the tutorial "Working with Fixed-Point Direct-Form FIR Filters" on page 3-33.

Constructing Fixed-Point Filters

You construct filters in the Filter Design Toolbox by either:

- Using the appropriate filter constructor function dfilt.structure, where structure is the filter topology to implement
- Using an fdesign.response object combined with a filter design method such as butter
- Using FDATool design features
- Copying an existing filter

All filter characteristics are stored as properties that you can set or retrieve. These filter characteristics include:

- Filter structure.
- Reference filter coefficients.
- Filter topology (single section or cascaded second-order sections).
- Fixed-point filter data format parameters such as:
- Quantization parameters (word lengths, fraction lengths, and precisions).
- Data type (signed or unsigned fixed-point; double-precision or single-precision floating-point; and signed or unsigned integers).
- Rounding method used in quantization.
- Overflow method used in quantization.
- Scaling factors for each section of a second-order section filter.

You can specify quantized filter properties by creating a quantized filter with default property values, and then changing some or all of these property values later

Defining Quantized and Fixed-Point Filters

With the dfilt objects in this toolbox you can create quantized and fixed-point filter objects that you use to filter signals or data. We distinguish between fixed-point and quantized filters only very rarely-mostly we use the term interchangeably. There is a difference between them that is worth noting and recalling as you work with the filter objects in this toolbox.

We use quantized to mean using limited precision arithmetic, either fixed-point or floating-point. Underlying all the filters in this toolbox, including the floating-point filters, is quantized arithmetic. With this in mind, we approximate ideal arithmetic (arithmetic with infinite precision) using double-precision, floating-point arithmetic and we refer to floating-point filters as nonquantized, or reference, filters.

Roughly explained, quantizing is the act of reducing the precision with which you represent numeric quantities.

Fixed-point arithmetic is a subset of quantized arithmetic, and fixed-point filters are thus a subset of quantized filters. In fixed-point arithmetic, the word length and fraction length you use limit the precision of your results, and arithmetic operations occur without moving the binary, or radix, point. Hence the name fixed-point or fixed binary-point arithmetic.

In summary, quantized filters use limited precision arithmetic and data representations, and fixed-point filters use limited precision representations and fixed-point arithmetic where the binary point location does not change.

Constructors for Fixed-Point Filters

The most direct way to create a fixed-point arithmetic filter (dfilt object) is to create one with the default properties. Fixed-point filter object construction requires two steps:

- Create a default double-precision filter hd by entering hd = dfilt.structure
- Change the Arithmetic property value for your filter object hd from double to fixed.

```
set(hd,'arithmetic','fixed')
```

MATLAB displays a listing of all of the properties of the filter hd you just created, along with the associated property values. All property values are set to defaults when you construct a fixed-point filter this way.

Constructing a Quantized Filter from a Design Object

In general you construct quantized filters by constructing default filters or filters with specified filter coefficients. You begin with a set of unquantized filter coefficients to implement in a quantized filter. For this example you start with a design object that defines the type of filter to design.

```
d = fdesign.lowpass('n,fp,fst,ap',3,0.5,0.6,3);
```

To implement d as a quantized filter, use one of the design methods in the toolbox:

```
hd=ellip(d)
hd =
    FilterStructure: 'Direct-Form II, Second-Order Sections'
                Arithmetic: 'double'
                sosMatrix: [2x6 double]
            ScaleValues: [3\times1 double]
            PersistentMemory: false
            States: [2x2 double]
                NumSamplesProcessed: 0
set(hd,'arithmetic','fixed'); % Convert to quantized filter.
```

Since filters designed with a second-order section topology are more robust against quantization errors than those composed of higher order transfer functions, ellip constructs the dfilt object as an SOS filter.

Constructing a Fixed-Point Filter in Second-Order Sections

By default, many of the filter design functions in the toolbox return filters that use second-order sections. In most cases, this is a desirable feature when you are using fixed-point arithmetic because SOS filters tend to resist errors from quantization.

```
hs = fdesign.bandpass(.3, .4, .6, .7, 80, .5, 60);
designmethods(hs)
Design Methods for class fdesign.bandpass:
```

```
butter
cheby1
cheby2
ellip
hd=butter(hs)
hd =
    FilterStructure: 'Direct-Form II, Second-Order Sections'
                    Arithmetic: 'double'
                        sosMatrix: [13x6 double]
            ScaleValues: [14x1 double]
        PersistentMemory: false
            States: [2x13 double]
        NumSamplesProcessed: 0
```


Copying Filters to Inherit Properties

If you already have a quantized filter hd with the property values set the way you want them, you can create a new quantized filter hd2 with the same property values as hd by entering

```
hd2 = copy(hd)
```

This function is convenient to use when you are changing a small number of properties on a set of filters.

For example, create a 16 -bit precision filter hd from an FIR reference filter with

```
b = fir1(80,0.5,kaiser(81,8)); % Reference filter
hd = dfilt.dffir(b)
hd2 = hd;
```

hd2 inherits the property values for hd, but is an independent entity that you can change in any way you choose without affecting hd.

Fixed-Point Filter Structures

When you construct filter objects, the FilterStructure property value is returned containing one of the strings shown in the following table. Property

FilterStructure indicates the filter architecture and comes from the constructor you use to create the filter.

After you create a filter object you cannot change the FilterStructure property value. To make filters that use different structures you construct new filters using the appropriate object constructors. In some instances, function convert allows you to change the structure of an existing filter object.

You specify the filter structure by selecting the appropriate dfilt.structure method to construct your filter. For information about setting properties for fixed-point filter objects, refer to the reference information for dfilt in your Signal Processing Toolbox documentation and in this user's guide, and get and set in your MATLAB documentation.

The figures included in the reference page for each filter structure, such as dfilt.dfasymfir, act as aids to help you determine how to enter your filter coefficients for each filter structure and how the filter performs quantizations in the filter signal flow. Each reference page also contains an example for constructing a filter of the given structure.

| Filter Constructor Name | FilterStructure Property String and Filter Type |
| :--- | :--- |
| dfilt.dfasymfir | Antisymmetric finite impulse response (FIR). |
| dfilt.df1 | Direct form I. |
| dfilt.df1sos | Direct form I filter implemented using
 second-order sections. |
| dfilt.df1t | Direct form I transposed. |
| dfilt.df2 | Direct form II. |
| dfilt.df2sos | Direct form II filter implemented using second
 order sections. |
| dfilt.df2t | Direct form II transposed. |
| dfilt.dffir | Direct form FIR. |
| dfilt.dffirt | Direct form FIR transposed. |
| dfilt.latticear | Lattice autoregressive (AR). |

| Filter Constructor Name | FilterStructure Property String and Filter Type |
| :--- | :--- |
| dfilt.latticemamin | Lattice moving average (MA) minimum phase. |
| dfilt.latticemamax | Lattice moving average (MA) maximum phase. |
| dfilt.latticearma | Lattice ARMA. |
| dfilt.dfsymfir | Symmetric FIR. Even and odd forms. |
| dfilt.scalar | Scalar |

Fixed-Point Arithmetic Filter Structure Diagrams

To help you understand where quantizations occur in filter structures like those provided in the toolbox, Figure 3-1 presents the structure for a direct form 2 filter, including the quantizations that the quantized filter incorporates. You see that one or more quantizations accompany each filter element, such as a delay, coefficient, or summation element. The input to or output from each element reflects the result of applying the associated quantization.

Wherever a particular filter element appears in a filter structure, recall the quantization that accompanies the element as it appears in this figure. For example, a product quantization, either numerator or denominator, follows every coefficient element and a sum quantization, also either numerator or denominator, follows each sum element. In this figure, we show the structure for a direct-form II IIR filter, with the arithmetic property value set to 'fixed'.

Figure 3-1: df2 IIR filter structure including the formatting quantizers, with Arithmetic property value 'fixed'

To set the Arithmetic property of a filter to fixed to create a fixed-point filter, your filter must have the leading denominator coefficient a(1) equal to zero.

Fixed-Point Arithmetic Filter Structures

You choose among several filter structures when you create quantized filters. You can also specify filters with single or multiple cascaded sections of the same type. Because quantization is a nonlinear process, different quantized filter structures produce different results.

About the Filter Structure Diagrams

In the diagrams that appear on each filter structure reference page, you see the active operators that define the filter, such as sums and gains, and the quantizers that control the processing in the filter. Notice also that the coefficients are labeled in the figure. This tells you the order in which the filter processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the quantizers that form part of the filter, is less clear. Each figure includes text in the form labelformat that represents the existence of a quantization operation at that point in the structure. The format stands for word length and fraction length applied at that point in the filter flow, and the label specifies the data that the quantization process affects.

For example, in the dfilt. df2 filter shown in Figure 3-1, the labels InputFormat and OutputFormat are the quantizations applied to the filter input and output data at the labeled location in the filter. InputFormat refers to the InputWordLength and InputFracLength filter properties and OutputFormat refers to the OutputWordLength and OutputFracLength filter properties. Property names like CoeffWordLength and DenFracLength define the properties that control filter operations with coefficients or denominator coefficients at that point in the structure and are properties of the filter.

Data Type Handling in Discrete-Time Filters

In this section you learn how discrete-time filters (dfilt objects) handle different data types in significant filtering areas:

- Different data types as input data to your filter
- Different data types to represent your filter coefficients
- Different data types used to represent the states of your filter
- Filter reference coefficients

How these varied filter areas respond is driven primarily by the value you select for the Arithmetic property of the filter object. The next sections cover each of the areas noted above and how each responds when you set the value for the Arithmetic property.

Property Arithmetic accepts one of three valid entries:

- Double
- Single
- Fixed

Each option affects how the filter handles the states, coefficients, input and output data, and filter arithmetic. And what you use as input to the filter object.

Filter Input Signals, Coefficients, and States

Filter object properties and their values directly affect how and in what form your filter works with input data, the filter coefficients, and the states of the filter.
fixed-point filters use fixed-point objects in many cases to handle fixed-point values such as coefficients, input, or filter states. The Fixed-Point Toolbox documentation provides details about the fixed-point, or fi, object that dfilt objects use.

Arithmetic Property Setting and Filter Input Data Types

The rules governing the input data that work with your filter object depend mostly on the setting of the Arithmetic property.

The arithmetic property setting controls the quantization of input to the filter, but all arithmetic property settings-double, single, fixed-support the same input data types:

- double-precision floating-point
- single-precision floating-point
- int*
- uint*
- fi objects

Each possible Arithmetic property value refines how the filter accepts input data. When you specify one of the following values for Arithmetic, here is what happens.

- Arithmetic set to double

Setting the property value to double means the filter casts the input data to double-precision format. Also, the filter states and output are double data type as well. This is the default value for the filter Arithmetic property and the setting used when you create your filter. The resulting filter is considered double-precision, floating-point.

- Arithmetic set to single

Selecting single means the filter casts the input data to single-precision format. Both the states and the output from the filter are in single data type. This is a quantized filter that uses single-precision floating-point data formats.

- Arithmetic set to fixed

Setting Arithmetic to fixed means the filter casts the input data to fixed-point (fi) objects to use fixed-point formats defined by the filter properties [InputWordLength InputFracLength]; adds properties to the filter object for configuring the filter; and switches the filter to using fixed-point arithmetic. The added properties let you determine the data formats (the word length and fraction length) the filter uses for all filter operations and data.

Arithmetic Property Setting and Filter Coefficients Data Types

Changing the arithmetic mode controls the format the filter uses to represent coefficients. Discrete-time filters accepts coefficients in any of the following formats:

- double-precision floating-point
- single-precision floating-point
- int*
- uint*
- fi objects

Based on the setting you give for Arithmetic, whether double, single, or fixed, the filter handles the coefficients in the following manner:

- Arithmetic = double-the filter casts the coefficients to double data type. Reference coefficients for the filter are stored in the data type you provided them. In this case, the quantized and reference coefficients for the filter are identical.
- Arithmetic = single-the filter casts the coefficients to singles. Single data type coefficients are unchanged. Reference coefficients for the filter are stored in the data type that you use to provide them.
- Arithmetic = fixed—the filter casts the coefficients to fixed-point (fi) objects, using the [InputWordLength InputFracLength] filter properties to format the coefficients. The fixed-point filter stores the reference coefficients in the data type that you supplied. When you use reffilter, you get back a reference filter whose coefficients are double-precision approximations to the actual reference coefficients.

Reference Coefficients for Fixed-Point Filters

Quantized or fixed-point filters in the toolbox have both quantized coefficients (or fixed-point coefficients) that result from changing the Arithmetic property to fixed or single, and reference coefficients. You can access both sets from the command line.

How the toolbox stores the reference coefficients for a filter depends on the data type you use to specify the coefficients-reference coefficients are stored in the data type in which they were specified. Retaining the specified data type
prevents the memory necessary for storing the coefficients from growing unnecessarily.

When you view the fixed-point filter coefficients, what you see are the double-precision approximations to the actual fixed-point or quantized coefficients used for filtering. In many cases, the approximation is exact, including when your filter uses single or double arithmetic.

If the Arithmetic property value is fixed, the approximation is exact whenever we can store the fixed-point values exactly as a double data type value. Otherwise, you see the double data type approximation of the value. We return the double-precision approximations so we can represent the leading denominator coefficient of an IIR filter exactly as a one, even if you are working in a fractional mode, such as Q15.

You use the function reffilter to return a filter that has the reference coefficients that accompany any fixed-point filter. For example, when you create a fixed-point direct form filter hd with

```
b=fir1(5,0.45);
hd = dfilt.dffir(b);
hd.arithmetic='fixed';
```

which has fixed point coefficients

```
hd.numerator
ans =
    -0.0044 0.0808 0.4235 0.4235 0.0808 -0.0044
```

Now change the word length the filter uses to represent the numerator coefficients.

```
hd.coeffautoScale=false
hd =
    FilterStructure: 'Direct-Form FIR'
            Arithmetic: 'fixed'
            Numerator: [-0.0044 0.0808 0.4235 0.4235 0.0808 -0.0044]
PersistentMemory: false
            States: [1x1 embedded.fi]
    NumSamplesProcessed: 0
```

```
    CoeffWordLength: 16
    CoeffAutoScale: false
        NumFracLength: 16
                        Signed: true
    InputWordLength: 16
    InputFracLength: 15
        OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
            AccumWordLength: 40
            CastBeforeSum: true
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
set(hd,'coeffWordLength',14');
hd.numerator
ans =
    -0.0044 0.0808 0.1250 0.1250 0.0808 -0.0044
```

Using reffilter returns a filter object with reference coefficients, as follows:
hdref=reffilter(hd)
hdref =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: $\left[\begin{array}{llllll}-0.0044 & 0.0808 & 0.4235 & 0.4235 & 0.0808 & -0.0044]\end{array}\right.$
PersistentMemory: false
States: [5x1 double]
NumSamplesProcessed: 0
hdref has the original filter coefficients and is a double-precision filter. The reference filter coefficients match the original set of fixed-point coefficients for hd, but not the coefficients as represented with 14 bits.

Arithmetic Property Setting and Filter States Data Types

How the filter stores and operates on filter states depends on the setting of the Arithmetic property. You can provide the states in any of the following formats:

- double-precision floating-point
- single-precision floating-point
- int*
- uint*
- fixed-point (fi) objects

When you set the arithmetic setting you change how the filter responds to the state values.

- Arithmetic = double-the filter casts the states to double-precision data type.
- Arithmetic = single-the filter casts the filter states to single-precision data type format.
- Arithmetic $=$ fixed-the filter casts the states to fixed-point objects, using the [InputWordLength InputFracLength] filter properties to format the states
- fixed-point objects
- double

Other data types return an error in MATLAB.
Note that when you set PersistentMemory to true for your filter, the word length and fraction length settings for the filter states must be the same as the filter input word length and fraction length. If these settings do not match, you receive an error.

Note also that the filter does not store reference values for the states.
Disabling the autoscaling filter properties such as CoeffAutoScale and InputAutoScale, and OutputAutoScale results in making all of the additional fraction length properties available in the filter. To make turning off all of the automatic scaling for a filter easier, use specifyall. When you use

```
specifyall(hd)
```

all of the automatic control properties of hd are set to SpecifyPrecision:

- AccumMode
- ProductMode
- OutputMode

Also, specifyall disables the automatic scaling provided by

- CoeffAutoScale
- All other *AutoScale properties for the filter, since this varies from structure to structure

Now you have access to the fraction length properties for coefficients, the accumulator, products, and output values, which lets you set the precision yourself.
specifyall also helps you return your filter to the default automatic modes.
Use the syntax

```
specifyall(hd,false)
```

to reset filter hd to the default automatic mode settings.
You might want more information about filter states after you read this review. Refer to filtstates in your Signal Processing Toolbox documentation for detail about filter states and the filtstates object the filters use.

Fixed-Point Filters and Second-Order Sections

Listed within the dfilt methods for creating quantized filters you find methods that return second-order section (SOS) versions of the direct form IIR filters-df1sos, $\mathrm{df} 1 \mathrm{tsos}, \mathrm{df} 2 \mathrm{sos}$, and df2tsos. The following figure shows how the second-order sections go together to form a filter, in this case a direct form II SOS filter. This diagram (or a similar one) appears with each SOS filter structure as well.

Figure 3-2: Cascaded structure of second-order sections for fixed-point filters. Note the location of the formatting information in the structure.

Combining this figure with the structures and signal flows for each SOS filter lets you work out the details about quantization in the SOS filter. This is not the same as cascading the filters, as the dfilt.cascade or dfilt. parallel methods in the Signal Processing Toolbox allow you to do with any dfilt objects.

The CastBeforeSum Property

Setting the CastBeforeSum property determines how the filter handles the input values to sum operations in the filter. After you set your filter Arithmetic property value to fixed, you have the option of using CastBeforeSum to control the data type of some inputs (addends) to summations in your filter. To determine which addends reflect the CastBeforeSum property setting, refer to the reference page for the signal flow diagram for the filter structure.

CastBeforeSum specifies whether to cast selected addends to summations in the filter to the output format from the addition operation before performing the addition. When you specify true for the property value, the results of the affected sum operations match most closely the results found on most digital signal processors. Performing the cast operation before the summation adds one or two additional quantization operations that can add error sources to your filter results.

Specifying CastBeforeSum to be false prevents the addends from being cast to the output format before the addition operation. Choose this setting to get the most accurate results from summations without considering the hardware your filter might use.

Notice that the output format for every sum operation reflects the value of the output property specified in the filter structure diagram. Which input property is referenced by CastBeforeSum depends on the structure.

| Property Value | Description |
| :--- | :--- |
| false | Configures filter summation operations to retain
 the addends in the format carried from the
 previous operation. |
| true | Configures filter summation operations to convert
 the input format of the addends to match the
 summation output format before performing the
 summation operation. Usually this generates
 results from the summation that more closely
 match those found from digital signal processors |

Diagrams of CastBeforeSum Settings

When CastBeforeSum is false, sum elements in filter signal flow diagrams look like this:

showing that the input data to the sum operations (the addends) retain their format word length and fraction length from previous operations. The addition process uses the existing input formats and then casts the output to the format defined by AccumFormat. Thus the output data has the word length and fraction length defined by AccumWordLength and AccumFracLength or AccumMode and AccumWordLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look like this:

showing that the input data gets recast to the accumulator format word length and fraction length (AccumFormat) before the sum operation occurs. The data output by the addition operation has the word length and fraction length defined by AccumWordLength and AccumFracLength and AccumMode.

Introduction to Fixed-Point Arithmetic

You can specify how numbers are quantized using fixed-point arithmetic in this toolbox with two quantities:

- Word length in bits
- Fraction length in bits

This toolbox does bit-true fixed-point arithmetic for all word lengths. It properly handles overflows and the results are bit-true results when the numbers are scaled properly. For example, (small numbers + small numbers) work correctly and (large numbers + large numbers) are right as well.

Fraction lengths used to represent numeric values can be any positive or negative integer, including larger than the associated word length for the value.

A general representation for a signed two's-complement binary fixed-point number is

where:

- b_{i} are the binary digits (bits, zeros or ones).
- The word length in bits is given by w.
- The most significant bit (MSB) is the leftmost bit. It is represented by the location of b_{w-1}. In Filter Design Toolbox, this number represents the sign bit; a 1 indicates the number is negative, and a 0 indicates it is nonnegative.
- The least significant bit (LSB) is the rightmost bit, represented by the location of b_{0}.
- The binary point is shown four places to the left of the LSB for this example.
- The fraction length f is the distance from the LSB to the binary point.

Binary Point Interpretation

Where you place the binary point determines how fixed-point numbers are interpreted in two's complement arithmetic. For example, the five bit binary number:

- 10110 represents the integer $-2^{4}+2^{2}+2=-10$.
- 10.110 represents $-2+2^{-1}+2^{-2}=-1.25$.
- 1.0110 represents $-2^{-0}+2^{-2}+2^{-3}=-0.625$.

Notes About Fraction Length, Word Length, and Precision

Word length and fraction length combine to make the format for a fixed-point number, where word length is the number of bits used to represent the value and fraction length specifies, in bits, the location of the binary point in the fixed-point representation. Therein lies a problem-fraction length, which you specify in bits, can be larger than the word length, or a negative number of bits. This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to be used in this User's Guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the binary point) is true only when the fraction length is positive and less than or equal to the word length. In MATLAB format notation we use [word length fraction length]. For example, for the format [16 16], the second 16 (the fraction length) is the number of fractional bits or bits to the right of the binary point. In this example, all 16 bits are to the right of the binary point.

But it is also possible to have fixed-point formats of [16 18] or [16-45]. In these cases the fraction length can no longer be the number of bits to the right of the binary point since the format says the word length is 16 -there cannot be 18 fraction length bits on the right. And how can there be a negative number of bits for the fraction length, such as [16-45]?

A better way to think about fixed-point format [word length fraction length] and what it means is that the representation of a fixed-point number is a
weighted sum of powers of two driven by the fraction length, or the two's complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive, negative, 0 , greater than B (the word length) or less than B. (B and L are always integers and B is always positive.)

Given a binary string $b(1) b(2) b(3) \ldots b(B)$, to determine the two's-complement value of the string in the format described by [B L], use the value of the individual bits in the binary string in the following formula, where $b(1)$ is the first binary bit (and most significant bit, MSB), $\mathrm{b}(2)$ is the second, and on up to $\mathrm{b}(\mathrm{B})$.

The decimal numeric value that those bits represent is given by

```
value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b (B)*2^(-L)
```

L , the fraction length, represents the negative of the weight of the last, or least significant bit (LSB). L is also the step size or the precision provided by a given fraction length.

Precision

Here is how precision works.
When all of the bits of a binary string are zero except for the LSB (which is therefore equal to one), the value represented by the bit string is given by $2^{(-L)}$. If L is negative, for example $L=-16$, the value is 2^{16}. The smallest step between numbers that can be represented in a format where $L=-16$ is given by 1×2^{16} (the rightmost term in the formula above), which is 65536 . Note the precision does not depend on the word length.

Take a look at another example. When the word length set to 8 bits, the decimal value 12 is represented in binary by 00001100 . That 12 is the decimal equivalent of 00001100 tells us we are using [8 0] data format representationthe word length is 8 bits and fraction length 0 bits, and the step size or precision (the smallest difference between two adjacent values in the format [8,0$]$, is $2^{0}=1$.

Suppose you plan to keep only the upper 5 bits and discard the other three. The resulting precision after removing the right-most three bits comes from the weight of the lowest remaining bit, the fifth bit from the left, which is $2^{3}=8$, so the format would be [5,-3].

Note that in this format the step size is 8, I cannot represent numbers that are between multiples of 8 .

In MATLAB, with the Fixed-Point Toolbox installed:

```
x=8;
q=quantizer([8,0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq
binxq =
0 0 0 0 1 0 0 0
binxq1
binxq1 =
0 0 0 0 1
```

But notice that in [5,-3] format, 00001 is the two's complement representation for 8 , not for $1 ; q=q u a n t i z e r([80])$ and q1 $=$ quantizer ([5-3]) are not the same. They cover the about the same range-range $(q)>$ range (q1) -but their quantization step is different-eps $(q)=8$, and eps $(q 1)=1$.
Look at one more example. When you construct a quantizer q

```
q = quantizer([a,b])
```

the first element in [a, b] is a, the word length used for quantization. The second element in the expression, b, is related to the quantization step-the numerical difference between the two closest values that the quantizer can represent. This is also related to the weight given to the LSB. Note that $2^{\wedge}(-b)=e p s(q)$.

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let q2 use the format [16, -16].

```
q1 = quantizer([32,0])
```

```
q2 = quantizer([16,-16])
```

Quantizers q1 and q2 cover the same range, but q2 has less precision. It covers the range in steps of 2^{16}, while q covers the range in steps of 1 .

This lost precision is due to (or can be used to model) throwing out 16 least-significant bits.

An important point to understand is that in dfilt objects and filtering you control which bits are carried from the sum and product operations in the filter to the filter output by setting the format for the output from the sum or product operation.

For instance, if you use [16 0] as the output format for a 32-bit result from a sum operation when the original format is [32 0], you take the lower 16 bits from the result. If you use [$16-16$], you take the higher 16 bits of the original 32 bits. You could even take 16 bits somewhere in between the 32 bits by choosing something like [16-8], but you probably do not want to do that.

Dynamic Range and Precision

A fixed-point quantization scheme determines the dynamic range of the numbers that can be applied to it. Numbers outside of this range are always mapped to fixed-point numbers within the range when you quantize them. The precision is the distance between successive numbers occurring within the dynamic range in a fixed-point representation. The dynamic range and precision depend on the word length and the fraction length.

For a signed fixed-point number with word length w and fraction length f, the range is from -2^{w-f-1} to $2^{w-f-1}-2^{-f}$.

For an unsigned fixed-point number with word length w and fraction length f, the range is from 0 to $2^{w-f}-2^{-f}$.
In either case the precision is 2^{-f}.

Overflows and Scaling

When you quantize a number that is outside of the dynamic range for your specified precision, overflows occur. Overflows occur more frequently with fixed-point quantization than with floating-point, because the dynamic range of fixed-point numbers is much less than that of floating-point numbers with equivalent word lengths.

Overflows can occur when you create a fixed-point quantized filter from an arbitrary floating-point design. You can normalize your fixed-point filter coefficients and introduce a corresponding scaling factor for filtering to avoid overflows in the coefficients.

In this toolbox you can specify how you want overflows to be handled:

- Saturate on the overflow
- Wrap on the overflow

Working with Fixed-Point Direct-Form FIR Filters

This chapter ends with a tutorial that illustrates various aspects of working with direct-form FIR filters using fixed-point arithmetic.

As you follow this example, you learn about these topics while working with fixed-point filters:

- "Obtaining the Filter Coefficients" on page 3-33
- "Creating the Direct-Form FIR Fixed-Point Filter" on page 3-34
- "Comparing Quantized Coefficients to Nonquantized Coefficients" on page 3-35
- "Determining the Number of Bits being Used" on page 3-36
- "Determining the Proper Coefficient Word Length" on page 3-36
- "Fixed-Point Filtering" on page 3-38
- "Generating a Baseline Output to Compare Against" on page 3-39
- "Computing the Fixed-Point Filter Output" on page 3-40
- "Improving the Filtering Results" on page 3-41
- "Changing the Filter Output Settings" on page 3-42
- "Further Reducing Filter Output Quantization" on page 3-43
- "The Advantages of Guard Bits" on page 3-44
- "Avoiding Overflow Without Guard Bits" on page 3-47

Since each section builds on the contents and filters from preceding sections, progressing through the tutorial from the start is most effective. Otherwise, code examples that depend on earlier tutorial sections may not work properly.

Obtaining the Filter Coefficients

For this tutorial, the FIR filter you use is not critical. Given the importance of direct-form FIR filters, you use the direct-form structure here-it does not even need to have linear phase. This demonstration uses a least-squares design method to obtain the filter coefficients. To display the filter, pass the filter coefficients to the Filter Visualization Tool (FVTool).

```
b = firls(80,[0 0.11 0.19 1],[1 1 0 0],[1 100]);
hfvt = fvtool(b);
```

Here is the magnitude response for b as shown by FVTool.

Creating the Direct-Form FIR Fixed-Point Filter

To create the fixed-point direct-form FIR filter using the coefficients you have requires two steps-choose a dfilt filter construction function and change the arithmetic setting for the filter to fixed-point arithmetic.

```
hd = dfilt.dffir(b); % Create the direct-form FIR filter.
set(hd,'Arithmetic','fixed');
```


Comparing Quantized Coefficients to Nonquantized Coefficients

There are several parameters for a fixed-point direct-form FIR filter. To start with, it is best to concentrate on the coefficient word length and fraction length (scaling). Use the Filter Visualization Tool to compare the quantized coefficients filter to the nonquantized (reference) coefficient filter.

```
set(hfvt, 'Filters', hd, 'legend','on');
```

FVTool returns the plot of the magnitude responses for both filters-the quantized filter and the corresponding reference filter. This is automaticwhen you use FVTool to display a fixed-point filter, it plots both the quantized filter and the reference filter associated with the quantized version.

Determining the Number of Bits being Used

To determine the number of bits being used in the fixed-point filter hd, look at the CoeffWordlength property value. Check the CoeffAutoScale setting to determine how the filter is scaling the coefficients.

```
get(hd,'CoeffWordLength')
get(hd,'NumFracLength')
ans =
    1 6
ans =
    1 7
```

These values tells us that hd uses 16 bits to represent the coefficients, and the least-significant bit (LSB) is weighted by $2^{-17} .16$ bits is the default coefficient word length the filter uses for coefficients, but the 2^{-17} weight has been computed automatically to represent the coefficients with the best possible precision, given the CoeffWordLength value. You control this scaling through the CoefffiutoScale property. Set CoeffAutoScale to false to give yourself manual control of the coefficient scaling. The next command verifies that autoscaling is enabled in filter hd.

```
get(hd,'CoeffAutoScale') % Returns a logical true
ans =
```


Determining the Proper Coefficient Word Length

Now make several copies of the filter to try different word lengths. Allow the coefficient autoscaling process to determine the best precision in each case. In the figure that follows the code presented here, you see the magnitude responses for the various version of hd (h1, h2, and the reference filter) so you can compare the effects of changing the coefficient word length.

```
h1 = copy(hd);
set(h1,'CoeffWordLength',12); % Use 12 bits.
```

```
h2 = copy(hd);
set(h2,'CoeffWordLength',24); % Use 24 bits.
href = reffilter(hd);
set(hfvt, 'Filters', [href, h1, hd, h2]);
set(hfvt,'ShowReference','off'); % Reference already displayed
                                    % once.
legend(hfvt,'Reference filter','12 bits','16 bits (original...
CoeffWordLength','24 bits');
```


12 bits are clearly not enough to accurately represent this filter. 16 bits may be enough for many applications.

For the remaining sections of this tutorial, you to use 16 bits to represent the filter coefficients.

As a rule-of-thumb, you should expect an attainable attenuation in the stop band of about 5 dB per bit-so 16 bits provides about 80 dB attenuation.

Fixed-Point Filtering

The main purpose of this tutorial is to evaluate the accuracy of the fixed-point filter when compared to a double-precision floating-point version of the same filter. Through the tutorial sections to come, you see that representing the filter coefficients such that the magnitude response of the fixed-point filter is about the same as the double-precision filter is not enough to ensure the performance of the fixed-point filter during filtering.

Generating Random Test Input Data

To evaluate the accuracy of the fixed-point filter, you use some random data to filter and compare against. You create a quantizer, with a range of $[-1,1)$ to generate random, uniformly distributed white-noise data using 16 bits of word length.

```
rand('state',0); % Make results reproducible by initializing the
    % random generator.
q = quantizer([16,15],'RoundMode','round');
xq = randquant (q,1000,1); % 1000 Data points in the range [-1,1).
xin = fi(xq,true,16,15);
```

Now xin is an array of integers with 1000 members, represented as a fixed-point object (a fi object).

```
get(xin)
DataTypeMode: 'Fixed-point: binary point scaling'
    DataType: 'Fixed'
    Scaling: 'BinaryPoint'
                        Signed: 1
            WordLength: 16
        FractionLength: 15
        FixedExponent: -15
        Slope: 3.0518e-005
        SlopeAdjustmentFactor: 1
            Bias: 0
            RoundMode: 'round'
        OverflowMode: 'saturate'
```

```
            ProductMode: 'FullPrecision'
        ProductWordLength: 32
    MaxProductWordLength: 128
ProductFractionLength: 30
            SumMode: 'FullPrecision'
            SumWordLength: 32
    MaxSumWordLength: 128
SumFractionLength: 30
    CastBeforeSum: 1
```

Your Fixed-Point Toolbox documentation can provide more information about fi objects.

Generating a Baseline Output to Compare Against

When you evaluate the accuracy of fixed-point filtering, consider three quantities for the comparison between filtering with the quantized filter and filtering with the reference filter:

1 The ideal output-this quantity is what we would like to achieve. You compute it using the reference coefficients and double-precision floating-point arithmetic.

2 The best-you-can-hope-for output-this is the best you can hope to achieve. This value you compute using the quantized coefficients and double-precision floating-point arithmetic.

3 The output you can actually attain with the quantized filter-this is the output you compute using the quantized coefficients and fixed-point arithmetic.

Clearly you want to compare what you can actually attain (number 3) to the best you can hope for (number 2). To compute this last quantity (the best you can hope for), cast the fixed-point filter to double-precision and filter with double-precision floating-point arithmetic.

```
xdouble = double(xin);
hdouble = double(hd);
ydouble = filter(hdouble,xdouble);
```

Notice that you had to cast the input data xin to double format to use it with the double-precision filter hdouble. Double-precision filters require double-precision input values.

For completeness, here is how you compute the ideal output. Then you see how much quantizing only the filter coefficients affects the output of the filter.

```
yideal = filter(href,xdouble); % Reference filter, double data.
norm(yideal-ydouble) % Total error.
ans =
    3.4886e-004
norm(yideal-ydouble,inf) % Maximum deviation.
ans =
    3.7219e-005
```


Computing the Fixed-Point Filter Output

Next you perform the actual fixed-point filtering. Again, the best you can hope to achieve is to have an output identical to ydouble.

```
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    0.0178
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
```

 9.7186e-004

Improving the Filtering Results

Initially, the fixed-point filter output seems reasonably close to the best you can hope for performance. Plotting y and ydouble, the next figure, shows there is hardly any visible difference between them. (it is necessary to zoom in to reveal any differences.) After the figure you see the code to generate the plot.


```
plot([ydouble,double(y)])
xlabel('Samples'); ylabel('Amplitude')
legend('ydouble','y')
```

The question is whether you can improve the output accuracy. To address this you first examine the output to determine the range necessary to represent y.

```
norm(double(y),inf) % Maximum absolute value of y.
```


Changing the Filter Output Settings

Next, examine the properties that control the output from the filter.

```
get(hd,'OutputWordLength')
get(hd,'OutputFracLength')
ans =
    1 6
ans =
9
```

OutputWordLength tells you that 16 bits are being used to represent the output and OutputFracLength tells you that the LSB is weighted by 2^{-9}. These settings, or this format [16 9] can represent the numerical range [-64, 64), which is much too large for the maximum absolute value of the output. The price you pay for this range is reduced precision within the range. Precision has to do with the output mode for the filter:

```
get(hd,'OutputMode')
ans =
AvoidOverflow
```

The AvoidOverflow property setting for OutputMode is a very conservative, essentially worst-case scenario, setting. It is there to avoid overflows regardless of the input signal and regardless of the actual value of the filter coefficients. A more accurate and efficient value is BestPrecision. This adjusts the output fraction length to accommodate each input signal, setting the fraction length for the output to provide the best precision possible on a case-by-case basis.

```
set(hd,'OutputMode', 'BestPrecision');
```

```
y = filter(hd,xin);
get(hd,'OutputFracLength')
ans =
    1 5
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
    2.7623e-004
ans =
    1.5251e-005
```

With these settings, your total and maximum errors have diminished significantly. You are still using 16 bits to represent the output, but the scaling has been improved to obtain better precision. Now the representable range at the filter output is -1 to 1 .

Further Reducing Filter Output Quantization

To isolate any other quantization errors that are being introduced in the filter, you can eliminate quantization error at the output completely by setting the output format to have the same specifications as the accumulator. Think of this as being able to look inside the accumulator:

```
set(hd,'OutputMode','SpecifyPrecision');
set(hd,'OutputWordLength',get(hd,'AccumWordLength'));
set(hd,'OutputFracLength',get(hd,'AccumFracLength'));
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    0
norm(double(y)-ydouble,inf) % Maximum deviation.
```

The errors are exactly zero, indicating that the accumulator is not adding further quantization to the output. The arithmetic products (multiplies) are set by default to use full precision, so you know that no errors are occurring in multiplication operations.

Usually it is not possible to have a full 40-bit output of the filter, so you must expect some difference between y and ydouble. Nevertheless, you have verified that in this filtering case, the difference between the ideal filter and the quantized filter is due to output quantization. This is not always the case-in some cases bits get lost in the accumulator. In fact overflow may occur in the accumulator.

The Advantages of Guard Bits

If you compare the arithmetic product word length and fraction length with the accumulator word and fraction lengths by looking at the associated filter properties

```
get(hd,'ProductWordLength')
get(hd,'ProductFracLength')
ans =
    3 2
ans =
    32
get(hd,'AccumWordLength')
get(hd,'AccumFracLength')
ans =
    4 0
```

you see that the accumulator has 8 extra bits available (AccumWordLength is 40 bits). This is typical of most fixed-point DSP processors. The extra bits are usually referred to as guard bits. They provide a safety valve for intermediate overflows.

The easiest way of appreciating their value is to remove them and see what happens (adjust the output setting accordingly),

```
set(hd,'AccumMode', 'SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));
set(hd,'OutputWordLength',get(hd,'AccumWordLength'));
hd
hd =
```

```
        FilterStructure: 'Direct-Form FIR'
```

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Arithmetic: 'fixed'
 Numerator: [1x81 double]
 Numerator: [1x81 double]
 PersistentMemory: false
 PersistentMemory: false
 States: [1x1 embedded.fi]
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 1000
 NumSamplesProcessed: 1000
 CoeffWordLength: 16
 CoeffWordLength: 16
 CoeffAutoScale: true
 CoeffAutoScale: true
 Signed: true
 Signed: true
 InputWordLength: 16
 InputWordLength: 16
 InputFracLength: 15
 InputFracLength: 15
 OutputWordLength: 32
 OutputWordLength: 32
 OutputMode: 'SpecifyPrecision'
 OutputMode: 'SpecifyPrecision'
 OutputFracLength: 32
 OutputFracLength: 32
 ProductMode: 'FullPrecision'
 ProductMode: 'FullPrecision'
 AccumMode: 'SpecifyPrecision'
    ```
                AccumMode: 'SpecifyPrecision'
```


AccumWordLength:
 32

AccumFracLength: 32
CastBeforeSum: true
RoundMode: 'convergentOverflowMode: 'wrap'

Now the accumulator word length matches the product word length of 32 bits, and the output word length matches the accumulator word length, also 32 bits. Now use hd to filter some data, and plot the results.

```
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    3.4641
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
    1
plot([ydouble,double(y)])
xlabel('Samples'); ylabel('Amplitude')
legend('ydouble','y')
```


The total error is large now because overflow occurred during filtering. The representable range for the accumulator and output formats [32 32] is -0.5 to 0.5 . When you look at the plot, one of the amplitudes around sample 800 is larger than 0.5 , indicating an overflow. Recall that you have the output settings equal to the accumulator settings. So the overflow is occurring in the accumulator itself-you removed the guard bits by setting the accumulator word length to 32 bits.

Avoiding Overflow Without Guard Bits

It is possible not to have overflow even when guard bits are not available in the accumulator. The easiest way to do this is to use the KeepMSB property (keep the MSB) value for the AccumMode property for your filter.

```
set(hd,'AccumMode','KeepMSB');
```

```
set(hd,'OutputFracLength',get(hd,'AccumFracLength'));
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
    2.4442e-006
ans =
    2.5332e-007
```

KeepMSB is a very conservative accumulator mode for any input data. The error values seem small because there is no output quantization error in this case. the output format is [32 32].

If we use 16 bits for the output word length and set the output mode to maintain the best precision for this word length, the resulting error is much larger-almost two orders of magnitude.

```
set(hd,'OutputWordLength',16);
set(hd,'OutputMode','BestPrecision');
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    2.7627e-004
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
```

 \(1.5400 \mathrm{e}-005\)
 From the earlier plots of y and ydouble, you might have realized that one extra bit was all that would have been required to avoid overflow in those examples. You can improve the results slightly with this one bit change, but remember that this is specific to the filter coefficients and input signal you are using in this tutorial.

Reducing the accumulator fraction length from 32 bits to 31 bits provides one more bit in the integer part of the accumulator word and reduces the filtering error.

```
set(hd,'AccumMode','SpecifyPrecision');
set(hd,'AccumFracLength',31);
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
    2.7623e-004
ans =
    1.5251e-005
```

The errors are the same as when you used 40 bits for the accumulator and 2^{-32} to scale the least-significant bit. This indicates that the errors in the filtering are due to quantization effects between the accumulator and the output.

Designing Adaptive Filters

Overview of Adaptive Filters and Applications (p. 4-4)

Adaptive Filters in the Filter Design Toolbox (p. 4-11)

Examples of Adaptive Filters That Use LMS Algorithms (p. 4-17)

Example of Adaptive Filter That Uses RLS Algorithm (p. 4-37)

Adaptive Filter Properties Reference (p. 4-42)

Selected Bibliography (p. 4-48)

Read a short section about adaptive filters and their uses

Learn about the adaptive filter objects provided in the toolbox

Presents examples of adaptive filters that use LMS algorithms to determine filter coefficients

Presents examples of adaptive filters that use RLS algorithms to determine filter coefficients

Lists the properties of adaptfilt objects in alphabetical order and describes each property briefly

Lists a few books that cover adaptive filters in both detail and with broad scope

Over the past three decades, digital signal processors have made great advances in increasing speed and complexity, and reducing power consumption. As a direct result, real-time adaptive filtering is quickly becoming an enabling technology for the future of communications, both wired and wireless. In the following sections, this guide presents an overview of adaptive filtering; discussions of some of the common applications for adaptive filters; and details about the adaptive filters available in the toolbox.

Listed below are the sections that cover adaptive filters in this guide. Within each section, examples and a short discussion of the theory of the filters introduces the adaptive filter concepts.

- "Overview of Adaptive Filters and Applications" on page 4-4-presents a general discussion of adaptive filters and their applications.
- "System Identification" on page 4-7-talks using adaptive filters to identify the response of an unknown system such as a communications channel or a telephone line.
- "Inverse System Identification" on page 4-8-talks about using adaptive filters to develop a filter which has a response that is the inverse of an unknown system. You can overcome echoes in modem connections and local telephone lines by inserting an inverse adaptive filter and using it to compensate for the induced noise on the lines.
- "Noise Cancellation (or Interference Cancellation)" on page 4-9-useful for performing active noise cancellation where the filter adapts in real-time to keep the error small. Compare this to system identification where the filter adapts once and stays fixed thereafter.
- "Prediction" on page 4-9-describes using adaptive filters to predict a signals future values.
- "Adaptive Filters in the Filter Design Toolbox" on page 4-11 lists the adaptive filters included in the toolbox.
- "Examples of Adaptive Filters That Use LMS Algorithms" on page 4-17 presents a discussion of using LMS techniques to perform the filter adaptation process.
- "Example of Adaptive Filter That Uses RLS Algorithm" on page 4-37 discusses adaptive filters based on the RMS techniques for minimizing the total error between the known and unknown systems.

For more detailed information about adaptive filters and adaptive filter theory, refer to the books listed in "Selected Bibliography" on page 4-48.

Overview of Adaptive Filters and Applications

Adaptive filters self learn. As the signal into the filter continues, the adaptive filter coefficients adjust themselves to achieve the desired result, such as identifying an unknown filter or cancelling noise in the input signal. In Figure $4-1$, the shaded box represents the adaptive filter, comprising the adaptive filter and the adaptive RLS algorithm. For the general adaptive algorithm block diagram, look at Figure 4-2.

Figure 4-1: Block Diagram That Defines the Inputs and Output of a Generic RLS Adaptive Filter

Figure 4-2: Block Diagram Defining General Adaptive Filter Algorithm Inputs and Outputs

An adaptive FIR or IIR filter designs itself based on the characteristics of the input signal to the filter and a signal which represent the desired behavior of the filter on its input. Designing the filter does not require any other frequency response information or specification. To define the self learning process the filter uses, you select the adaptive algorithm used to reduce the error between the output signal $y(k)$ and the desired signal $d(k)$. When the LMS performance criteria for $e(k)$ has achieved its minimum value through the iterations of the adapting algorithm, the adaptive filter is finished and its coefficients have converged to a solution. Now the output from the adaptive filter matches closely the desired signal $d(k)$. When you change the input data characteristics, sometimes called the filter environment, the filter adapts to the new environment by generating a new set of coefficients for the new data. Notice that when $e(k)$ goes to zero and remains there you achieve perfect adaptation; the ideal result but not likely in the real world.

The adaptive filter functions in this toolbox implement the shaded portion of Figure 4-1, replacing the adaptive algorithm with an appropriate technique. Therefore, to use one of the functions you provide the input signal or signals and the initial values for the filter. A later section in this User's Guide, "Adaptive Filters in the Filter Design Toolbox" offers details about the algorithms available and the inputs required to use them in MATLAB.

Choosing an Adaptive Filter

With many adaptive filters to choose from, selecting the one that best meets your needs requires careful consideration. An exhaustive discussion of the criteria for selecting your approach is beyond the scope of this User's Guide. However, a few guidelines can help you make your choice.

Two main considerations frame the decision-the filter job to do and the filter algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the primary concern is whether using an adaptive filter is a cost-competitive approach to solving your filtering needs. Generally many areas determine the suitability of adaptive filters (these areas are common to most filtering and signal processing applications). Four such areas are:

- Filter consistency-does your filter performance degrade when the filter coefficients change slightly as a result of quantization, or you switch to fixed-point arithmetic? Will excessive noise in the signal hurt the performance of your filter?
- Filter performance-does your adaptive filter provide sufficient identification accuracy or fidelity, or does the filter provide sufficient signal discrimination or noise cancellation to meet your requirements?
- Tools-do tools exist that make your filter development process easier? Better tools can make it practical to use more complex adaptive algorithms.
- DSP requirements-can your filter perform its job within the constraints of your application. Does your processor have sufficient memory, throughput, and time to use your proposed adaptive filtering approach? Can you trade memory for throughput: use more memory to reduce the throughput requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or robustness may be the most difficult.

Using the simulations in the Filter Design Toolbox offers a good first step in developing and studying these issues. Often, beginning your study using one of the least mean squares (LMS) algorithm filters provides both a relatively straightforward filter to implement and a sufficiently powerful tool for evaluating whether adaptive filtering can be useful for your problem.

Additionally, starting with an LMS approach can form a solid baseline against which you can study and compare the more complex adaptive filters available in the toolbox. Finally, your development process should, at some time, test your algorithm and adaptive filter with real data. For truly testing the value of your work there is no substitute for actual data.

With these considerations in mind, here are some applications that commonly use adaptive filters.

System Identification

One common application is to use adaptive filters to identify an unknown system, such as the response of an unknown communications channel or the frequency response of an auditorium, to pick fairly divergent applications. Other applications include echo cancellation and channel identification.

In the figure, the unknown system is placed in parallel with the adaptive filter.

Figure 4-3: Using an Adaptive Filter to Identify an Unknown System
Clearly, when $e(k)$ is very small, the adaptive filter response is close to the response of the unknown system. In this case the same input feeds both the adaptive filter and the unknown. When the unknown system is a modem, the input often represents white noise, and is the sound you hear from your modem when you log in to your Internet service provider.

Inverse System Identification

By placing the unknown system in series with your adaptive filter, your filter becomes the inverse of the unknown system when $e(k)$ gets very small. As shown in the figure the process requires a delay inserted in the desired signal $d(k)$ path to keep the data at the summation synchronized. Adding the delay keeps the system causal.

Figure 4-4: Determining an Inverse Response to an Unknown System
Without the delay element, the adaptive filter algorithm tries to match the output from the adaptive filter $(y(k))$ to input data $(x(k))$ that has not yet reached the adaptive elements because it is passing through the unknown system. In essence, the filter ends up trying to look ahead in time. As hard as it tries, the filter can never adapt: $e(k)$ never reaches a very small value and your adaptive filter never compensates for the unknown system response. And it never provides a true inverse response to the unknown system. Including a delay equal to the delay caused by the unknown system prevents this condition.

Plain old telephone systems (POTS) commonly use inverse system identification to compensate for the copper transmission medium. When you send data or voice over telephone lines, the copper wires behave like a filter, having a response that rolls off at higher frequencies (or data rates) and possibly having other anomalies as well. Adding an adaptive filter which has a response that is the inverse of the wire response, adapting in real time, removes the rolloff and the anomalies, increasing the available frequency range and data rate for the telephone system.

Noise Cancellation (or Interference Cancellation)

In noise cancellation, adaptive filters let you remove noise from a signal in real time. Here, the desired signal, the one to clean up, combines noise and desired information. To remove the noise, feed a signal, $n^{\prime}(k)$ to the adaptive filter that represents noise that is correlated to the noise to remove from our desired signal.

Figure 4-5: Using an Adaptive Filter to Remove Noise from an Unknown System

So long as the input noise to the filter remains correlated to the unwanted noise accompanying the desired signal, the adaptive filter adjusts its coefficients to reduce the value of the difference between $y(k)$ and $d(k)$, removing the noise and resulting in a clean signal in $e(k)$. Notice that in this application, the error signal actually converges to the input data signal, rather than converging to zero.

Prediction

Predicting signals may seem to be an impossible task, without some limiting assumptions. Assume that the signal is either steady or slowly varying over time, and periodic over time as well.

Figure 4-6: Predicting Future Values of a Periodic Signal
Accepting these assumptions, the adaptive filter must predict the future values of the desired signal based on past values. When $s(k)$ is periodic and the filter is long enough to remember previous values, this structure with the delay in the input signal, can perform the prediction. You might use this structure to remove a periodic signal from stochastic noise signals.

Finally, notice that most systems of interest contain elements of more than one of the four adaptive filter structures. Carefully reviewing the real structure may be required to determine what the adaptive filter is adapting to. Also, for clarity in the figures, the analog-to-digital (A/D) and digital-to-analog (D/A) components do not appear. Since the adaptive filters are assumed to be digital in nature, and many of the problems produce analog data, converting the input signals to and from the analog domain is probably necessary.

Adaptive Filters in the Filter Design Toolbox

Filter Design Toolbox contains many objects for constructing and applying adaptive filters to data. As you see in the tables in the next section, the objects use various algorithms to determine the weights for the filter coefficients of the adapting filter. While the algorithms differ in their detail implementations, the LMS and RLS share a common operational approach-minimizing the error between the filter output and the desired signal.

Algorithms

For adaptive filter (adaptfilt) objects, the algorithm string determines which adaptive filter algorithm your adaptfilt object implements. Each available algorithm entry appears in one of the tables along with a brief description of the algorithm. Click on the algorithm in the first column to get more information about the associated adaptive filter technique.

- LMS based adaptive filters
- RLS based adaptive filters
- Affine projection adaptive filters
- Adaptive filters in the frequency domain
- Lattice based adaptive filters

Least Mean Squares (LMS) Based FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.adjlms	Use the Adjoint LMS FIR adaptive filter algorithm
adaptfilt.blms	Use the Block LMS FIR adaptive filter algorithm
adaptfilt.blmsfft	Use the FFT-based Block LMS FIR adaptive filter algorithm
adaptfilt.dlms	Use the delayed LMS FIR adaptive filter algorithm
adaptfilt.filtxlms	Use the filtered-x LMS FIR adaptive filter algorithm
adaptfilt.lms	Use the LMS FIR adaptive filter algorithm
adaptfilt.nlms	Use the normalized LMS FIR adaptive filter algorithm
adaptfilt.sd	Use the sign-data LMS FIR adaptive filter algorithm
adaptfilt.se	Use the sign-error LMS FIR adaptive filter algorithm
adaptfilt.ss	Use the sign-sign LMS FIR adaptive filter algorithm

For further information about an adapting algorithm, refer to the reference page for the algorithm.

Recursive Least Squares (RLS) Based FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.ftf	Use the fast transversal least-squares adaptation algorithm
adaptfilt.qrdrls	Use the QR-decomposition RLS adaptation algorithm
adaptfilt.hrls	Use the householder RLS adaptation algorithm
adaptfilt.hswrls	Use the householder SWRLS adaptation algorithm
adaptfilt.rls	Use the recursive-least squares (RLS) adaptation algorithm
adaptfilt.swrls	Use the sliding window (SW) RLS adaptation algorithm
adaptfilt.swftf	Use the sliding window ftf adaptation algorithm

For more complete information about an adapting algorithm, refer to the reference page for the algorithm.

Affine Projection (AP) FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.ap	Use the affine projection algorithm that uses direct matrix inversion
adaptfilt.apru	Use the affine projection algorithm that uses recursive matrix updating
adaptfilt.bap	Use the block affine projection adaptation algorithm

To find more information about an adapting algorithm, refer to the reference page for the algorithm.

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.fdaf	Use the frequency domain adaptation algorithm
adaptfilt.pbfdaf	Use the partition block version of the fdaf algorithm
adaptfilt.pbufdaf	Use the partition block unconstrained version of the fdaf algorithm
adaptfilt.tdafdct	Use the transform domain adaptation algorithm using DCT
adaptfilt.tdafdft	Use the transform domain adaptation algorithm using DFT
adaptfilt.ufdaf	Use the unconstrained fdaf algorithm for adaptation

For more information about an adapting algorithm, refer to the reference page for the algorithm.

Lattice Based (L) FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.gal	Use the gradient adaptive lattice filter adaptation algorithm
adaptfilt.lsl	Use the least squares lattice adaptation algorithm
adaptfilt.qrdlsl	Use the QR decomposition RLS adaptation algorithm

For more information about an adapting algorithm, refer to the reference page for the algorithm.

Presenting a detailed derivation of the Wiener-Hopf equation and determining solutions to it is beyond the scope of this User's Guide. Full descriptions of the theory appear in the adaptive filter references provided in the "Selected Bibliography" on page 4-48.

Using Adaptive Filter Objects

After you construct and adaptive filter object, how do you apply it to your data or system? Like quantizer objects, adaptive filter objects have a filter method that you use to apply the adaptfilt object to data. In the following sections, various examples of using LMS and RLS adaptive filters show you how filter works with the objects to apply them to data.

- "Examples of Adaptive Filters That Use LMS Algorithms" on page 4-17
- "Example of Adaptive Filter That Uses RLS Algorithm" on page 4-37

Examples of Adaptive Filters That Use LMS Algorithms

This section provides introductory examples using some of the least mean squares (LMS) adaptive filter functions in the toolbox.

The Filter Design Toolbox provides many adaptive filter design functions that use the LMS algorithms to search for the optimal solution to the adaptive filter, including:

- adaptfilt.lms-implement the LMS algorithm to solve the Weiner-Hopf equation and find the filter coefficients for an adaptive filter.
- adaptfilt.nlms-implement the normalized variation of the LMS algorithm to solve the Weiner-Hopf equation and determine the filter coefficients of an adaptive filter.
- adaptfilt.sd-implement the sign-data variation of the LMS algorithm to solve the Weiner-Hopf equation and determine the filter coefficients of an adaptive filter. The correction to the filter weights at each iteration depends on the sign of the input $x(k)$.
- adaptfilt.se-implement the sign-error variation of the LMS algorithm to solve the Weiner-Hopf equation and determine the filter coefficients of an adaptive filter. The correction applied to the current filter weights for each successive iteration depends on the sign of the error, $e(k)$.
- adaptfilt.ss-implement the sign-sign variation of the LMS algorithm to solve the Weiner-Hopf equation and determine the filter coefficients of an adaptive filter. The correction applied to the current filter weights for each successive iteration depends on both the sign of $x(k)$ and the sign of $e(k)$.

To demonstrate the differences and similarities between the various LMS algorithms supplied in the toolbox, the LMS and NLMS adaptive filter examples use the same filter for the unknown system. In this case, the unknown filter is one of the filters used in the examples from "firgr Examples" on page 2-8-the constrained lowpass filter.

```
[b,err,res]=firgr(12,[0 0.4 0.5 1], [11 1 0 0], [1 0.2],...
{'w' 'c'});
```

From the figure you see that the filter is indeed lowpass and constrained to 0.2 ripple in the stopband. With this as the baseline, the adaptive LMS filter examples use the adaptive LMS algorithms and their initialization functions, to identify this filter in a system identification role. To review the general
model for system ID mode, look at "System Identification" on page 4-7 for the layout.

For the sign variations of the LMS algorithm, the examples use noise cancellation as the demonstration application, as opposed to the system identification application used in the LMS examples.

adaptfilt.Ims Example-System Identification

To use the adaptive filter functions in the toolbox you need to provide three things:

- An unknown system or process to adapt to. In this example, the filter designed by firgr is the unknown system.
- Appropriate input data to exercise the adaptation process. In terms of the generic LMS model, these are the desired signal $d(k)$ and the input signal $x(k)$.
- The adaptive LMS function to use

Start by defining an input signal x.

$$
x=0.1 * \text { randn }(1,250) ;
$$

The input is broadband noise. For the unknown system filter, use firgr to create a twelfth-order lowpass filter:

```
[b,err,res] = firgr(12,[0 0.4 0.5 1], [\begin{array}{llll}{1}&{1}&{0}&{0}\end{array}],[\begin{array}{ll}{1}&{0.2],...}\end{array}]
{'w' 'c'});
```

Although you do not need them here, include the err and res output arguments.

Now filter the signal through the unknown system to get the desired signal.

```
d = filter(b,1,x);
```

With the unknown filter designed and the desired signal in place you construct and apply the adaptive LMS filter object to identify the unknown.

Preparing the adaptive filter object requires that you provide starting values for estimates of the filter coefficients and the LMS step size. You could start with estimated coefficients of some set of nonzero values; this example uses zeros for the 12 initial filter weights. For the step size, 0.8 is a reasonable value-a good compromise between being large enough to converge well within the 250 iterations (250 input sample points) and small enough to create an accurate estimate of the unknown filter.

```
mu = 0.8;
ha = adaptfilt.lms(13,mu,wO)
```

Finally, using the adaptfilt object ha, desired signal, d, and the input to the filter, x, we run the adaptive filter to determine the unknown system and plot the results, comparing the actual coefficients from firgr to the coefficients found by adaptlms.

```
[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])
```


In the stem plot the actual and estimated filter weights are the same. As an experiment, try changing the step size to 0.2 . Repeating the example with $\mathrm{mu}=0.2$ results in the following stem plot. The estimated weights fail to approximate the actual weights closely.

Since this may be because we did not iterate over the LMS algorithm enough times, try using 1000 samples. With 1000 samples, the stem plot, shown in the next figure, looks much better, albeit at the expense of much more computation. Clearly you should take care to select the step size with both the computation required and the fidelity of the estimated filter in mind.

adaptfilt.nlms Example-System Identification

To improve the convergence performance of the LMS algorithm, the normalized variant uses an adaptive step size based on the signal power. As the input signal power changes, the algorithm calculates the input power and adjusts the step size to maintain an appropriate value. Thus the step size changes with time. As a result, the normalized algorithm converges more quickly with fewer samples in many cases. For input signals that change slowly over time, the normalized LMS can represent a more efficient LMS approach.

In the adaptlms example, we used firgr to create the filter that we would identify. So you can compare the results, we use the same filter, and replace adaptlms with adaptnlms, to use the normalized LMS algorithm variation. You should see better convergence with similar fidelity.

First, generate the input signal and the unknown filter.

```
x = 0.1*randn(1,500);
[b,err,res] = fircband(12,[0 0.4 0.5 1], [11 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);
```

Again d represents the desired signal $d(x)$ as we defined it in Figure 4-1 and b contains the filter coefficients for our unknown filter.

```
mu = 0.8;
ha = adaptfilt.nlms(13,mu);
```

We use the preceding code to initialize the normalized LMS algorithm. For more information about the optional input arguments, refer to adaptfilt.nlms in the reference section of this User's Guide.

Running the system identification process is a matter of using adaptfilt.nlms with the desired signal, the input signal, and the initial filter coefficients and conditions specified in s as input arguments. Then plot the results to compare the adapted filter to the actual filter.

```
[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])
```

As shown in the following stem plot (a convenient way to compare the estimated and actual filter coefficients), the two are nearly identical.

System Identification by Normalized LMS Algorithm

If we compare the convergence performance of the regular LMS algorithm to the normalized LMS variant, you see the normalized version adapts in far fewer iterations to a result almost as good as the nonnormalized version.

adaptfilt.sd Example-Noise Cancellation

When the amount of computation required to derive an adaptive filter drives your development process, the sign-data variant of the LMS (SDLMS) algorithm may be a very good choice. Fortunately, the current state of digital signal processor (DSP) design has relaxed the need to minimize the operations count by making DSPs whose multiply and shift operations are as fast as add operations. Thus some of the impetus for the sign-data algorithm (and the sign-error and sign-sign variations) has been lost to DSP technology improvements.

In the standard and normalized variations of the LMS adaptive filter, coefficients for the adapting filter arise from the mean square error between the desired signal and the output signal from the unknown system. Using the sign-data algorithm changes the mean square error calculation by using the
sign of the input data to change the filter coefficients. When the error is positive, the new coefficients are the previous coefficients plus the error multiplied by the step size μ. If the error is negative, the new coefficients are again the previous coefficients minus the error multiplied by μ-note the sign change. When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-data LMS algorithm is

$$
\mathbf{w}(k+1)=\mathbf{w}(k)+\mu e(k) \operatorname{sgn}[\mathbf{x}(k)], \operatorname{sgn}[\mathbf{x}(k)]=\left\{\begin{array}{r}
1, \mathbf{x}(k)>0 \\
0, \mathbf{x}(k)=0 \\
-1, \\
\mathbf{x}(k)<0
\end{array}\right.
$$

with vector \mathbf{w} containing the weights applied to the filter coefficients and vector \mathbf{x} containing the input data. $e(k)$ (equal to desired signal - filtered signal) is the error at time k and is the quantity the SDLMS algorithm seeks to minimize. $\mu(\mathrm{mu})$ is the step size. As you specify mu smaller, the correction to the filter weights gets smaller for each sample and the SDLMS error falls more slowly. Larger mu changes the weights more for each step so the error falls more rapidly, but the resulting error does not approach the ideal solution as closely. To ensure good convergence rate and stability, select mu within the following practical bounds

$$
0<\mu<\frac{1}{N\{\text { InputSignalPower }\}}
$$

where N is the number of samples in the signal. Also, define mu as a power of two for efficient computing.

Note How you set the initial conditions of the sign-data algorithm profoundly influences the effectiveness of the adaptation. Because the algorithm essentially quantizes the input signal, the algorithm can become unstable easily. A series of large input values, coupled with the quantization process may result in the error growing beyond all bounds. You restrain the tendency of the sign-data algorithm to get out of control by choosing a small step size ($\mu \ll 1$) and setting the initial conditions for the algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptfilt.sd requires two input data sets:

- Data containing a signal corrupted by noise. In Figure 4-5, this is $d(k)$, the desired signal. The noise cancellation process removes the noise, leaving the signal.
- Data containing random noise $(x(k)$ in Figure $4-5)$ that is correlated with the noise that corrupts the signal data. Without the correlation between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

```
signal = sin(2*pi*0.055*[0:1000-1]');
```

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise through a lowpass FIR filter, then add the filtered noise to the signal.

```
noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;
```

fnoise is the correlated noise and d is now the desired input to the sign-data algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs and mu for the object. As noted earlier in this section, the values you set for coeffs and mu determine whether the adaptive filter can remove the noise from the signal path. In "adaptfilt.lms Example-System Identification" on page 4-18, you constructed a default filter that sets the filter coefficients to zeros. Except in rare cases, that approach does not work for the sign-data algorithm. The closer you set your initial filter coefficients to the expected values, the more likely it is that the algorithm remains well behaved and converges to a filter solution that removes the noise effectively. For this example, we start with the coefficients in the filter we used to filter the noise (nfilt), and modify them slightly so the algorithm has to adapt.

```
coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.
```

With the required input arguments for adaptfilt.sd prepared, construct the adaptfilt object, run the adaptation, and view the results.

```
ha = adaptfilt.sd(13,mu)
set(ha,'coefficients',coeffs);
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));
```

When adaptfilt.sd runs, it uses far fewer multiply operations than either of the LMS algorithms. Also, performing the sign-data adaptation requires only bit shifting multiplys when the step size is a power of two. Although the performance of the sign-data algorithm as shown in the next figure is quite good, the sign-data algorithm is much less stable than the standard LMS variations. In this noise cancellation example, the signal after processing is a very good match to the input signal, but the algorithm could very easily grow without bound rather than achieve good performance. Changing coeffs, mu, or even the lowpass filter you used to create the correlated noise can cause noise cancellation to fail and the algorithm to become useless.

adaptfilt.se Example-Noise Cancellation

In some cases, the sign-error variant of the LMS algorithm may be a very good choice for an adaptive filter application. In the standard and normalized variations of the LMS adaptive filter, the coefficients for the adapting filter arise from calculating the mean square error between the desired signal and the output signal from the unknown system, and applying the result to the current filter coefficients. Using the sign-error algorithm replaces the mean square error calculation by using the sign of the error to modify the filter coefficients. When the error is positive, the new coefficients are the previous coefficients plus the error multiplied by the step size μ. If the error is negative, the new coefficients are again the previous coefficients minus the error multiplied by μ-note the sign change. When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-error LMS algorithm is

$$
\mathbf{w}(k+1)=\mathbf{w}(k)+\mu \operatorname{sgn}[e(k)][\mathbf{x}(k)], \operatorname{sgn}[e(k)]=\left\{\begin{array}{r}
1, e(k)>0 \\
0, e(k)=0 \\
-1, e(k)<0
\end{array}\right.
$$

with vector \mathbf{w} containing the weights applied to the filter coefficients and vector \mathbf{x} containing the input data. $e(k)$ (equal to desired signal - filtered signal) is the error at time k and is the quantity the SELMS algorithm seeks to minimize. μ (mu) is the step size. As you specify mu smaller, the correction to the filter weights gets smaller for each sample and the SELMS error falls more slowly. Larger mu changes the weights more for each step so the error falls more rapidly, but the resulting error does not approach the ideal solution as closely. To ensure good convergence rate and stability, select mu within the following practical bounds

$$
0<\mu<\frac{1}{N\{\text { InputSignalPower }\}}
$$

where N is the number of samples in the signal. Also, define mu as a power of two for efficient computation.

Abstract

Note How you set the initial conditions of the sign-data algorithm profoundly influences the effectiveness of the adaptation. Because the algorithm essentially quantizes the error signal, the algorithm can become unstable easily. A series of large error values, coupled with the quantization process may result in the error growing beyond all bounds. You restrain the tendency of the sign-error algorithm to get out of control by choosing a small step size ($\mu \ll 1$) and setting the initial conditions for the algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptfilt.se requires two input data sets:

- Data containing a signal corrupted by noise. In Figure 4-5, this is $d(k)$, the desired signal. The noise cancellation process removes the noise, leaving the signal.
- Data containing random noise $(x(k)$ in Figure 4-5) that is correlated with the noise that corrupts the signal data. Without the correlation between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

```
signal = sin(2*pi*0.055*[0:1000-1]');
```

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise through a lowpass FIR filter, then add the filtered noise to the signal.

```
noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;
```

fnoise is the correlated noise and d is now the desired input to the sign-data algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs and mu for the object. As noted earlier in this section, the values you set for coeffs and mu determine whether the adaptive filter can remove the noise from the signal path. In "adaptfilt.lms Example-System Identification" on page 4-18, you constructed a default filter that sets the filter coefficients to
zeros. Except in rare cases, that approach does not work for the sign-error algorithm. The closer you set your initial filter coefficients to the expected values, the more likely it is that the algorithm remains well behaved and converges to a filter solution that removes the noise effectively. For this example, we start with the coefficients in the filter we used to filter the noise (nfilt), and modify them slightly so the algorithm has to adapt.

```
coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm update.
```

With the required input arguments for adaptfilt.se prepared, run the adaptation and view the results.

```
ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));
```

Notice that you have to set the property PersistentMemory to true when you manually change the settings of object ha. If PersistentMemory is left to false, the default, when you try to apply ha with the method filter, the filtering process starts by resetting the object properties to their initial conditions at construction. To preserve the customized coefficients in this example, we set PersistentMemory to true so the coefficients do not get reset automatically back to zero.

When adaptfilt.se runs, it uses far fewer multiply operations than either of the LMS algorithms. Also, performing the sign-error adaptation requires only bit shifting multiplys when the step size is a power of two. Although the performance of the sign-data algorithm as shown in the next figure is quite good, the sign-data algorithm is much less stable than the standard LMS variations. In this noise cancellation example, the signal after processing is a very good match to the input signal, but the algorithm could very easily become unstable rather than achieve good performance. Changing coeffs, mu, or even the lowpass filter you used to create the correlated noise can cause noise cancellation to fail and the algorithm to become useless.

adaptfilt.ss Example-Noise Cancellation

One more example of a variation of the LMS algorithm in the toolbox is the sign-sign variant (SSLMS). The rationale for this version matches those for the sign-data and sign-error algorithms presented in preceding sections. For more details, refer to "adaptfilt.sd Example-Noise Cancellation" on page 4-25.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation to using the sign of the input data to change the filter coefficients. When the error is positive, the new coefficients are the previous coefficients plus the error multiplied by the step size μ. If the error is negative, the new coefficients are again the previous coefficients minus the error multiplied by μ-note the sign change. When the input is zero, the new coefficients are the same as the previous set. In essence, the algorithm quantizes both the error and the input by applying the sign operator to them.

In vector form, the sign-sign LMS algorithm is

$$
\mathbf{w}(k+1)=\mathbf{w}(k)+\mu \operatorname{sgn}[e(k)] \operatorname{sgn}[\mathbf{x}(k)], \operatorname{sgn}[z(k)]=\left\{\begin{array}{r}
1, z(k)>0 \\
0, z(k)=0 \\
-1, z(k)<0
\end{array}\right.
$$

where

$$
z(k)=[e(k)] \operatorname{sgn}[\mathbf{x}(k)]
$$

Vector \mathbf{w} contains the weights applied to the filter coefficients and vector \mathbf{x} contains the input data. $e(k)$ (= desired signal - filtered signal) is the error at time k and is the quantity the SSLMS algorithm seeks to minimize. μ (mu) is the step size. As you specify mu smaller, the correction to the filter weights gets smaller for each sample and the SSLMS error falls more slowly. Larger mu changes the weights more for each step so the error falls more rapidly, but the resulting error does not approach the ideal solution as closely. To ensure good convergence rate and stability, select mu within the following practical bounds

$$
0<\mu<\frac{1}{N\{\text { InputSignalPower }\}}
$$

where N is the number of samples in the signal. Also, define mu as a power of two for efficient computation.

Note How you set the initial conditions of the sign-sign algorithm profoundly influences the effectiveness of the adaptation. Because the algorithm essentially quantizes the input signal and the error signal, the algorithm can become unstable easily. A series of large error values, coupled with the quantization process may result in the error growing beyond all bounds. You restrain the tendency of the sign-sign algorithm to get out of control by choosing a small step size $(\mu \ll 1)$ and setting the initial conditions for the algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptfilt.ss requires two input data sets:

- Data containing a signal corrupted by noise. In Figure $4-5$, this is $d(k)$, the desired signal. The noise cancellation process removes the noise, leaving the cleaned signal as the content of the error signal.
- Data containing random noise $(x(k)$ in Figure $4-5)$ that is correlated with the noise that corrupts the signal data, called. Without the correlation between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.

```
signal = sin(2*pi*0.055*[0:1000-1]');
```

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise through a lowpass FIR filter, then add the filtered noise to the signal.

```
noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;
```

fnoise is the correlated noise and d is now the desired input to the sign-data algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs and mu for the object. As noted earlier in this section, the values you set for coeffs and mu determine whether the adaptive filter can remove the noise from the signal path. In "adaptfilt.lms Example-System Identification" on page 4-18, you constructed a default filter that sets the filter coefficients to zeros. Except in rare cases, that approach does not work for the sign-sign algorithm. The closer you set your initial filter coefficients to the expected values, the more likely it is that the algorithm remains well behaved and converges to a filter solution that removes the noise effectively. For this example, we start with the coefficients in the filter we used to filter the noise (nfilt), and modify them slightly so the algorithm has to adapt.

```
coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.
```

With the required input arguments for adaptfilt.ss prepared, run the adaptation and view the results.

```
ha = adaptfilt.ss(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));
```

Notice that you have to set the property PersistentMemory to true when you manually change the settings of object ha. If PersistentMemory is left to false, the default, when you try to apply ha with the method filter, the filtering process starts by resetting the object properties to their initial conditions at construction. To preserve the customized coefficients in this example, we set PersistentMemory to true so the coefficients do not get reset automatically back to zero.

When adaptfilt.ss runs, it uses far fewer multiply operations than either of the LMS algorithms. Also, performing the sign-sign adaptation requires only bit shifting multiplys when the step size is a power of two. Although the performance of the sign-sign algorithm as shown in the next figure is quite good, the sign-sign algorithm is much less stable than the standard LMS variations. In this noise cancellation example, the signal after processing is a very good match to the input signal, but the algorithm could very easily become unstable rather than achieve good performance. Changing coeffs, mu, or even the lowpass filter you used to create the correlated noise can cause noise cancellation to fail and the algorithm to become useless.

As an aside, the sign-sign LMS algorithm is part of the international CCITT standard for $32 \mathrm{~Kb} / \mathrm{s}$ ADPCM telephony.

Example of Adaptive Filter That Uses RLS Algorithm

This section provides an introductory example that uses the RLS adaptive filter function adaptfilt.rls.

If LMS algorithms represent the simplest and most easily applied adaptive algorithms, the recursive least squares (RLS) algorithms represents increased complexity, computational cost, and fidelity. In performance, RLS approaches the Kalman filter in adaptive filtering applications, at somewhat reduced required throughput in the signal processor. Compared to the LMS algorithm, the RLS approach offers faster convergence and smaller error with respect to the unknown system, at the expense of requiring more computations.

In contrast to the least mean squares algorithm, from which it can be derived, the RLS adaptive algorithm minimizes the total squared error between the desired signal and the output from the unknown system. Referring to Figure 4-2, you see the signal flow graph (or model) for the RLS adaptive filter system. Note that the signal paths and identifications are the same whether the filter uses RLS or LMS. The difference lies in the adapting portion. Within limits, you can use any of the adaptive filter algorithms to solve an adaptive filter problem by replacing the adaptive portion of the application with a new algorithm. Examples of the sign variants of the LMS algorithms demonstrated this feature to demonstrate the differences between the sign-data, sign-error, and sign-sign variations of the LMS algorithm.

One interesting input option that applies to RLS algorithms is not present in the LMS processes-a forgetting factor, λ, that determines how the algorithm treats past data input to the algorithm. When the LMS algorithm looks at the error to minimize, it considers only the current error value. In the RLS method, the error considered is the total error from the beginning to the current data point. Said another way, the RLS algorithm has infinite memory-all error data is given the same consideration in the total error. In cases where the error value might come from a spurious input data point or points, the forgetting factor lets the RLS algorithm reduce the value of older error data by multiplying the old data by the forgetting factor. Since $0 \leq \lambda<1$, applying the factor is equivalent to weighting the older error. When $\lambda=1$, all previous error is considered of equal weight in the total error. As λ approaches zero, the past errors play a smaller role in the total. For example, when $\lambda=0.9$, the RLS algorithm multiplies an error value from 50 samples in the past by an attenuation factor of $0.9^{50}=5.15 \times 10^{-3}$, considerably deemphasizing the influence of the past error on the current total error.

adaptfilt.rls Example - Inverse System Identification

Rather than use a system identification application, or a noise cancellation model, this example use the inverse system identification model shown in Figure 4-4. Cascading the adaptive filter with the unknown filter causes the adaptive filter to converge to a solution that is the inverse of the unknown system. If the transfer function of the unknown is $\mathrm{H}(\mathrm{z})$ and the adaptive filter transfer function is $\mathrm{G}(\mathrm{z})$, the error measured between the desired signal and the signal from the cascaded system reaches its minimum when the product of $\mathrm{H}(\mathrm{z})$ and $\mathrm{G}(\mathrm{z})$ is $1, \mathrm{G}(\mathrm{z}) * \mathrm{H}(\mathrm{z})=1$. For this relation to be true, $\mathrm{G}(\mathrm{z})$ must equal $-\mathrm{H}(\mathrm{z})$, the inverse of the transfer function of the unknown system.

To demonstrate that this is true, create a signal to input to the cascaded filter pair.

$$
x=\operatorname{randn}(1,3000) ;
$$

In the cascaded filters case, like this one, the unknown filter results in a delay in the signal arriving at the summation point after both filters. To prevent the adaptive filter from trying to adapt to a signal it has not yet seen (equivalent to predicting the future), delay the desired signal by 32 samples, the order of the unknown system. Generally, you do not know the order of the system you are trying to identify. In that case, delay the desired signal by about the number of samples that is equal to half the order of the adaptive filter. Delaying the input requires prepending 12 zero-values samples to x .

```
delay = zeros(1,12);
d = [delay x(1:2988)]; % Concatenate the delay and the signal.
```

You have to keep the desired signal vector d the same length as x, hence adjust the signal element count to allow for the delay samples. Although not generally true, for this example you know the order of the unknown filter, so you add a delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

```
ufilt = fir1(12,0.55,'low');
```

Filtering x provides the input data signal for the adaptive algorithm function.

```
xdata = filter(ufilt,1,x);
```

To set the input argument values for the adaptfilt.rls object, use the constructor adaptfilt.rls, providing the needed arguments l, lambda, and
invcov. For more information about the input conditions to prepare the RLS algorithm object, refer to adaptfilt.rls in the reference section of this User's Guide.

```
p0 = 2*eye(13);
lambda = 0.99;
ha = adaptfilt.rls(13,lambda,p0);
```

Most of the process to this point is the same as the preceding examples. However, since this example is looking to develop an inverse solution, you need to be careful about which signal carries the data and which is the desired signal. Earlier examples of adaptive filters use the filtered noise as the desired signal. In this case, the filtered noise (xdata) carries the unknown system information. With Gaussian distribution and variance of 1 , the unfiltered noise d is the desired signal. The code to run this adaptive filter example is

$$
[y, e]=\text { filter(ha, xdata, d); }
$$

where y returns the coefficients of the adapted filter and e contains the error signal as the filter adapts to find the inverse of the unknown system. You can review the returned elements of the adapted filter in the properties of ha.

Figure 4-7 presents the results of the adaptation. In the figure, we present the magnitude response curves for the unknown and adapted filters. As a reminder, the unknown filter was a lowpass filter with cutoff at 0.55 , on the normalized frequency scale from 0 to 1 .

Figure 4-7: Comparing the Results of the RLS Inverse System Identification
Viewed alone in Figure 4-8, the inverse system looks like a fair compensator for the unknown lowpass filter-a high pass filter with linear phase.

Figure 4-8: After Adapting, the RLS Algorithm Produces a Highpass Filter

Adaptive Filter Properties Reference

Like dfilts, adaptfilts are objects and have properties that govern their behavior and store some of the results of filtering operations. This section lists, in alphabetical order, the name of every property associated with adaptfilt objects. Note that not all adaptfilt objects have all of these properties. To view the properties of a particular adaptive filter, such as an adaptfilt.bap filter, use get with the object handle, like this:

```
ha = adaptfilt.bap(32,0.5,4,1.0);
get(ha)
    PersistentMemory: false
    NumSamplesProcessed: 0
            Algorithm: 'Block Affine Projection FIR Adaptive Filter'
            FilterLength: 32
            Coefficients: [1x32 double]
                    States: [35x1 double]
                    StepSize: 0.5000
ProjectionOrder: 4
            OffsetCov: [4x4 double]
```

get shows you the properties for ha and the values for the properties.

Adaptive Filter Properties

Algorithm

Reports the algorithm the object uses for adaptation. When you construct your adaptive filter object, this property is set automatically by the constructor, such as adaptfilt.nlms creating an adaptive filter that uses the normalized LMS algorithm as shown in the code example here. You cannot change the value-it is read only.

```
ha=adaptfilt.nlms(32, 1, 1,50)
ha =
    Algorithm: 'Direct-Form FIR Normalized LMS Adaptive Filter'
            FilterLength: 32
            Coefficients: [1x32 double]
            States: [31x1 double]
            StepSize: 1
            Leakage: 1
                Offset: 50
            PersistentMemory: false
```

```
    NumSamplesProcessed: 0
ha.algorithm='lms' % Try to change the algorithm.
??? Changing the 'Algorithm' property of adaptfilt.baseclass is
not allowed.
```


AvgFactor

Averaging factor used to compute the exponentially-windowed estimates of the powers in the transformed signal bins for the coefficient updates. AvgFactor should lie between zero and one. For default filter objects, AvgFactor equals (1-step). lambda is the input argument that represent AvgFactor

BkwdPredErrorPower

BkwdPrediction

Blocklength

Block length for the coefficient updates. This must be a positive integer such that (l/blocklen) is also an integer. For faster execution, blocklen should be a power of two. blocklen defaults to two.

Coefficients

Vector containing the initial filter coefficients. It must be a length 1 vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input.

ConversionFactor

Conversion factor defaults to the matrix [1-1] that specifies soft-constrained initialization. This is the gamma input argument for some of the fast transversal algorithms.

Delay

Update delay given in time samples. This scalar should be a positive integernegative delays do not work. delay defaults to 1 for most algorithms.

DesiredSignalStates

Desired signal states of the adaptive filter. dstates defaults to a zero vector with length equal to (blocklen-1) or (swblocklen-1) depending on the algorithm.

EpsilonStates

Vector of the epsilon values of the adaptive filter. EpsilonStates defaults to a vector of zeros with (projectord-1) elements.

ErrorStates

Vector of the adaptive filter error states. ErrorStates defaults to a zero vector with length equal to (projectord - 1).

FFTCoefficients

Stores the discrete Fourier transform of the filter coefficients in coeffs.

FFTStates

Stores the states of the FFT of the filter coefficients during adaptation.

FilteredInputStates

Vector of filtered input states with length equal to l-1.

FilterLength

Contains the length of the filter. Note that this is not the filter order. Filter length is 1 greater than filter order. Thus a filter with length equal to 10 has filter order equal to 9 .

ForgettingFactor

Determines how the RLS adaptive filter uses past data in each iteration. You use the forgetting factor to specify whether old data carries the same weight in the algorithm as more recent data.
This is a scalar and should lie in the range (0,1]. It defaults to 1 . Setting forgetting factor $=1$ denotes infinite memory while adapting to find the new filter. Note that this is the lambda input argument.

FwdPredErrorPower

Returns the minimum mean-squared prediction error in the forward direction. Refer to [12] in the bibliography for details about linear prediction.

FwdPrediction

Contains the predicted values for samples during adaptation. Compare these to the actual samples to get the error and power.

InitFactor

Soft-constrained initialization factor. This scalar should be positive and sufficiently large to prevent an excessive number of Kalman gain rescues. Called delta as an input argument, this defaults to one.

InvCov

Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix.
Dimensions are l-by-l, where 1 is the filter length.

KalmanGain

Empty when you construct the object, this gets populated after you run the filter.

KalmanGainStates

Contains the states of the Kalman gain updates during adaptation.

Leakage

Contains the setting for leakage in the adaptive filter algorithm. Using a leakage factor that is not 1 forces the weights to adapt even when they have found the minimum error solution. Forcing the adaptation can improve the numerical performance of the LMS algorithm.

NumSamplesProcessed

Reports the number of input samples processed by your adaptfilt object when you filter a data set. When you set the PersistentMemory property to false, NumSamplesProcessed reports the number of processed input samples for your most recent filtering operation with the object.

With PersistentMemory set to true, NumSamplesProcessed accumulates the total number of samples processed for all preceding filtering operations.

OffsetCov

Contains the offset covariance matrix.

Offset

Specifies an optional offset for the denominator of the step size normalization term. You must specify offset to be a scalar greater than or equal to zero. Nonzero offsets can help avoid a divide-by-near-zero condition that causes errors.

Use this to avoid dividing by zero or by very small numbers when input signal amplitude becomes very small, or dividing by very small numbers when any of the FFT input signal powers become very small. offset defaults to one.

Power

A vector of 2*1 elements, each initialized with the value delta from the input arguments. As you filter data, Power gets updated by the filter process.

ProjectionOrder

Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two.

ReflectionCoeffs

Stores the reflection coefficients for adaptive filters, where applicable.

ReflectionCoeffsStep

Stores the step size used to determine the reflection coefficients during adaptation.

PersistentMemory

Determine whether the filter states and coefficients get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter.

PersistentMemory returns to zero any property value that the filter changes during processing. Property values that the filter does not change are not affected. Defaults to false.

SecondaryPathCoeffs

A vector that contains the coefficient values of your secondary path from the output actuator to the error sensor.

SecondaryPathEstimate

An estimate of the secondary path filter model.

SecondaryPathStates

The states of the secondary path filter, the unknown system.

SqrtCov

Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix.

SqrilnvCov

Square root of the inverse of the sliding window input signal covariance matrix. This square matrix should be full-ranked.

States

Vector of the adaptive filter states. states defaults to a vector of zeros whose length depends on the chosen algorithm. Usually the length is a function of the filter length 1 and another input argument to the filter object, such as projectord.

StepSize

Reports the size of the step taken between iterations of the adaptive filter process. Each adaptfilt object has a default value that best meets the needs of the algorithm.

SwBlockLength

Block length of the sliding window. This integer must be at least as large as the filter length. swblocklen defaults to 16 .

Selected Bibliography

[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley \& Sons, 1996, 493-552.
[2] Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, Inc., 1996

Designing Multirate Filters

Introducing Multirate Filters (p. 5-2)

Getting Started-Designing Multirate Filters (p. 5-4)

FIR Decimation-Filtering with FIR Decimators (p. 5-18)

CIC Filter Example-Using CIC
Decimation Filters (p. 5-24)
Analyzing Multirate and Multistage Filters (p. 5-36)

Audio Example—Audio Sample Rate Conversion (p. 5-47)

Introduces multirate filters and discusses uses, specifications, and definitions

Provides a tutorial to show you how to design multirate filters

Designs an FIR decimator and uses it to filter a signal

Develops, explains, and uses cascaded integrator-comb decimators

Provides information about using the toolbox analytical capabilities to analyze multirate filters

Demonstrates sample rate decimations of a 48 kHz signal to 32 kHz (broadcast audio rate) and 44.1 kHz (CD audio rate)

Introducing Multirate Filters

Over the last few years, developments in multirate filter design and implementation have brought rapid growth in applying multirate filtering to signals in digital signal processing. Improved processors and development tools allow system designers to use multirate filters in a broad range of application areas, such as:

- POTS audio encryption-encrypts voice sent over plain old telephone systems (POTS).
- Digital audio-sound handled in digital rather than analog form. Enncompasses various signal compression schemes, analog-to-digital conversion techniques, and the opposite conversions, signal reproduction, and audio improvements.
- Subband speech and image coding-uses the techniques of separating a signal or image into subbands that each containing only a portion of the original signal. Then processing the subbands through filters before reconstructing the original signal from the processed subbands.
Polyphase filters-filters that separate an input signal into constituent bands that are easier to process, and can then be either recombined or used after processing-represent one way to accomplish signal separation. Filter performance depends on the phase differences between the input signals.
- Transmultiplexer design—uses filters to convert time division multiplexing (TDM) signals to frequency division multiplexing (FDM) format, and the reverse. FDM combines numerous signals for transmission on a single communications line or channel. Each signal is assigned a different frequency (subchannel) within the main channel. TDM puts multiple data streams in a single signal by separating the signal into many segments, each having a very short duration. Based on the timing of the signals, each individual data stream is reassembled at the receiving end.

These represent a few of the growing number of areas in which systems designers use multirate filters.

Listed below are the examples in this chapter that introduce multirate filters. Each example includes a tutorial that uses toolbox features to demonstrate how you work with multirate filters:

[^0]- "Audio Example-Audio Sample Rate Conversion" on page 5-47
- "CIC Filter Example—Using CIC Decimation Filters" on page 5-24
- "Audio Example-Audio Sample Rate Conversion" on page 5-47

Getting Started-Designing Multirate Filters

This section demonstrates how to use the multirate filter (mfilt) objects available in the toolbox. By following these procedures you get introduced to multirate filter development. This tutorial covers the following tasks:

- "Creating Multirate Filters" on page 5-4
- "Getting and Setting Filter Coefficients" on page 5-6
- "Analyzing Multirate and Multistage Filters" on page 5-8
- "Specifying Initial Conditions to the Filter" on page 5-10
- "Streaming Data to the Filter" on page 5-12
- "Filtering Multichannel Signals" on page 5-12
- "Generating Simulink Blocks" on page 5-14
- "Getting Help About Multirate Filters" on page 5-15

Creating Multirate Filters

To develop a multirate filter (mfilt) object, you select the filter structure to be used by selecting the constructor function, such as mfilt.firdecim or mfilt.firinterp. Most multirate filter constructors take the coefficients of the filter as an optional final right-hand input argument. If you do not specify the coefficients, the toolbox functions design a default filter according to the interpolation or decimation factor(s) you provide as input for L or M in the calling syntax, or both in the case of fractional rate changer filters.
Here is an example that creates an interpolating filter with order of three interpolation and a decimating filter that decimates by two.

```
l = 3; % Interpolation factor
m = 2; % Decimation factor
hm1 = mfilt.firinterp(l);
hm2 = mfilt.firtdecim(m);
```

Both filter constructors return direct form FIR polyphase Nyquist filters by default.
hm1

```
hm1 =
```

FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
Numerator: [1x72 double]

```
    InterpolationFactor: 3
    PersistentMemory: false
                            States: [23x1 double]
    NumSamplesProcessed: 0
hm2
hm2 =
        FilterStructure: 'Direct-Form Transposed FIR Polyphase Decimator'
            Numerator: [1x48 double]
        DecimationFactor: 2
    PersistentMemory: false
        States: [23x1 double]
NumSamplesProcessed: 0
```

Filter hm1 is a direct-form FIR polyphase interpolator filter with the cutoff frequency of $\pi / 1$ and gain of 1. hm2 is a direct-form transposed FIR polyphase decimator with a cutoff frequency of π / m and a gain of 1 .

For confirmation, here is the frequency response displayed by the Filter Visualization Tool (FVTool).

hm 1 and hm 2 are filters and mfilt objects. As objects, they work with a range of functions (methods) such as filter, freqz, and tf, or display.

Getting and Setting Filter Coefficients

To access and manipulate the coefficients of a filter as a regular MATLAB vector, you use the common object functions set and get or dot notation. You can always get the coefficients from the mfilt object (filter). To modify the coefficients of an existing mfilt object, you set new ones. Direct-form FIR structures like those of hm1 and hm2 have numerator coefficients only-also known as the filter weights.

Here are the filter coefficients for hm2.

```
b = get(hm2,'numerator') % Could use hm2.numerator as well. Assign the coefficients
    % to vector b.
b =
    Columns 1 through 8
    0
    Columns 9 through 16
            0
    Columns 17 through 24
                        0
    Columns 25 through 32
\begin{tabular}{llllllll}
0.5000 & 0.3163 & 0 & -0.1002 & 0 & 0.0542 & 0 & -0.0331
\end{tabular}
    Columns 33 through 40
```



```
    Columns 41 through 48
```

After you get the coefficients, create a new Nyquist FIR filter bmod and set the coefficients of hm2 to the coefficients from bmod.

```
bmod = firnyquist(8,m,kaiser(9,0.1102*(80-8.71)));
set(hm2,'Numerator',bmod); % Set the modified coefficients.
hm2.numerator
ans =
\begin{tabular}{llllllll}
0 & -0.0092 & 0 & 0.2522 & 0.5000 & 0.2522 & 0 & -0.0092
\end{tabular}
```

You do not have to use a Nyquist filter to get new filter coefficients; other FIR filter design techniques in the toolbox work as well.

Analyzing Multirate and Multistage Filters

Analyzing multirate or multistage filter objects is similar to analyzing discrete-time filter (dfilt) objects. Many if not all of the analysis functions for dfilt objects apply to mfilt objects equally. In particular, the Filter Visualization Tool (FVTool) provides most of the filter analysis tools you need.

```
h = fvtool(hm1,hm2);
```


But one difference is very important. In analyzing multirate and multistage filters, the filter sample rates become important. The toolbox and tools let you specify sample rates for all of your analyses.

Additionally, polyphase for mfilt objects provides a tool for analyzing the polyphase components of mfilt objects. Calling the polyphase method without
output arguments (as shown here using filter hm1) starts an FVTool session with the polyphase subfilters ready for you to analyze.

```
polyphase(hm1)
```


Filtering with Multirate Filters

By default, multirate filters begin with zero-valued filter states. Furthermore the PersistentMemory property is set to false, meaning that the filter object properties, such as the filter states, are reset before each filter run. This built-in reset process allows you to filter the same sequence input data sequence twice and produce the same output. For example:

```
x = 1:6;
y1 = filter(hm2,x) % First run
```

```
y1 =
```

$$
\begin{array}{lll}
0 & -0.0184 & 0.9676
\end{array}
$$

At this point, you can verify that the filter hm2 holds nonzero final conditions in the filter states.

```
zf1 = hm2.States
zf1 =
    3.0133
    3.4904
    -0.0369
```

Run the filter again using the same input data x.

```
y2 = filter(hm2,x) % Second run
y2 =
    0 -0.0184 0.9676
zf2 = hm2.States
zf2 =
    3.0133
    3.4904
    -0.0369
```

After the second run, the states of the filter are the same as they were after the first run. With PersistentMemory property set to false, the filter states were reinitialized to zeros before the second run.

Specifying Initial Conditions to the Filter

You make it possible to specify the initial conditions for your filter by seting both of the following:

- The PersistentMemory property to true
- The States property to your initial conditions (ICs)

Setting the PersistentMemory property to true is essential in the process of specifying initial conditions. If you set your filter ICs to specific values, but you do not enable the filter memory, when you use the filter with input data, the ICs get reset to zeros before the filter runs. As a result you lose your desired ICs and the results of filtering are not correct.

When you set the ICs, if you provide a scalar, that value is expanded to the correct number of states. If you specify a vector of values, its length must be equal to the number of states for the filter.

For example, using hm2 as the filter, experiment with setting the filter states before filtering an input data set.

```
hm2.persistentmemory='true'
hm2.states=zf1
hm2 =
            FilterStructure: 'Direct-Form Transposed FIR Polyphase Decimator'
                    Numerator: [0 -0.0092 0 0.2522 0.5000 0.2522 0 -0.0092]
            DecimationFactor: 2
            PersistentMemory: true
                States: [3x1 double]
    NumSamplesProcessed: 6
y3=filter(hm2,x)
y3 =
    2.9580 4.9853 2.4440
zf3=hm2.states
zf3 =
    2.9580
    3.4904
    -0.0369
```

As you might have anticipated, the filter output and the filter states are different now than they were after the first run.

Streaming Data to the Filter

Setting the filter property PersistentMemory to true is a valuable feature when you are filtering streaming data. Since breaking a signal into sections and filtering the sections in a loop is equivalent to filtering the entire signal at once, this example simulates filtering streaming data by using the filter hm2 in a loop.

```
reset(hm2); % Clear history of the filter by resetting all states.
xsec = reshape(x(:),2,3); % Break the input signal into
    % three sections.
yloop = zeros(1,3); % Preallocate memory for storing
    % intermediate results.
for i=1:3,
    yloop(i)=filter(hm2,xsec(:,i));
end
yloop
yloop =
    0 -0.0184 0.9676
y1
y1 =
    0 -0.0184 0.9676
```

You have verified that yloop (the signal filtered by three sections) is equal to y1 (entire signal filtered at once). Without changing the property value for PersistentMemory, this test does not work.

Filtering Multichannel Signals

Up to this point you have only done single channel filtering, entering a vector of data x for the filter. When the input signal x is a matrix, the filter interprets each column of x as an independent input channel. Thus an 11-by- 4 matrix provides 4 channels of input data where each channel contains 11 samples.

Before you can continue this tutorial and experiment with multichannel filtering, you must either reset your filter to the initial states, or set the PersistentMemory property to false. The toolbox does not let you switch
between single channel and multichannel filtering unless PersistentMemory is false or you reset the filter manually. If you forget to do this step, MATLAB returns an error message to tell you to reset your filter.

This example begins by resetting hm 2 and defining some data to filter.

```
reset(hm2);
x = randn(10,3); % Three channel signal; each channel providing
    % ten samples.
y = filter(hm2,x)
y =
\begin{tabular}{rrr}
0 & 0 & 0 \\
-0.0094 & 0.0095 & -0.0022 \\
0.0794 & 0.3678 & 0.5956 \\
0.0440 & -0.2253 & 1.1980 \\
0.6913 & 0.3884 & 0.3812
\end{tabular}
zf = hm2.States
zf =
\begin{tabular}{rrr}
0.9268 & -0.0027 & 0.4663 \\
-0.5359 & -0.6960 & 0.3092 \\
0.0066 & 0.0123 & -0.0029
\end{tabular}
```

Notice that the filter object stores the final conditions for each channel separately. Each column of the States property corresponds to one input channel or column in the input matrix x.

Filtering Multichannel Data in Loops

When x is a matrix, the filter treats each matrix column as an independent channel. When you are filtering multichannel data, dim lets you specify which dimension of the input matrix to filter along-whether a row represents a channel or a column represents a channel. To filter multichannel data in a loop environment, you must use the dim input argument to set the processing dimension.

You specify the initial conditions for each channel individually, when needed, by setting hm . states to a matrix of nstates (hm) rows (each individual row containing the states for one channel of input data) and size ($x, 2$) columns (one column containing the filter states for each channel).

Here is an example that uses the dim input argument to filter the multichannel input data matrix x.

```
Fs = 44.1e3; %Original sampling frequency 44.1kHz
    n = [0:10239].'; % 10240 samples, 0.232s signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
M = 2; % Decimation factor.
Hm = mfilt.firdecim(M); % We use the default filter.
% No initial conditions
y1 = filter(Hm,x); % PersistentMemory is false.
zf = Hm.States; % Final conditions.
% Non-zero initial conditions.
Hm.PersistentMemory = true;
Hm.States = 1; % Uses scalar expansion.
y2 = filter(Hm,x);
stem([y1(1:60) y2(1:60)])% Different sequences at the
                                    % beginning.
% Streaming data
reset(Hm); % Clear filter history.
y3 = filter (Hm,x); % Filter the entire signal in one
                                    % block.
reset(Hm); %Clear filter history.
yloop = [];
xblock = reshape(x,[2048 5]);
% Filtering the signal section by section is equivalent to
% filtering the entire signal at once.
for i=1:5,
    yloop = [yloop; filter(Hm,xblock(:,i))];
end
```


Generating Simulink Blocks

When the Signal Processing Blockset is installed, you can generate a Simulink ${ }^{\circledR}$ block of the mfilt object if the Signal Processing Blockset
supports the filter structure. For example hm1, the direct-form FIR polyphase interpolator that you have been using throughout these examples, can be rendered as a Simulink block.

```
block(hm1,'destination','new','blockname','FIR Interp');
```

This figure shows the block as generated by the toolbox from the filter hm1.

FIR Interp

Getting Help About Multirate Filters

Entering helpwin mfilt in the MATLAB Command Window returns a list of multirate structures that the toolbox supports, as well as functions that operate on mfilt objects. For further information about a particular structure or function, enter helpwin mfilt/functionname, which returns the help information about functionname in a formatted HTML view, or enter help mfilt/functionname that returns the help information as plain text. For example:
help mfilt/firinterp \% Help on the FIRINTERP structure
returns the following text in the Command Window.
FIRINTERP Direct-Form FIR Polyphase Interpolator.
Hm = mfilt.FIRINTERP(L,NUM) returns a direct-form FIR polyphase interpolator Hm .
L is the interpolation factor. It must be an integer. If not specified, it defaults to 2.
NUM is a vector containing the coefficients of the FIR lowpass filter used for interpolation. If omitted, a low-pass Nyquist filter of gain L

EXAMPLE: Interpolation by a factor of 2 (used to convert from 22.05 kHz to 44.1 kHz)

```
L = 2; % Interpolation factor.
Hm = mfilt.firinterp(L); % We use the default filter.
Fs = 22.05e3; % Original sampling frequency: 22.05kHz.
```

```
n = 0:5119; % 5120 samples, 0.232 second long
signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
y = filter (Hm,x); % 10240 samples, still 0.232 seconds.
stem(n(1:22)/Fs,x(1:22),'filled') % Plot original sampled at
    % 22.05kHz.
hold on % Plot interpolated signal (44.1kHz) in
    % red.
stem(n(1:44)/(Fs*L),y(25:68), 'r')
xlabel('Time (sec)');
ylabel('Signal value')
See also mfilt/HOLDINTERP, mfilt/LINEARINTERP, mfilt/FFTFIRINTERP,
mfilt/FIRFRACINTERP, mfilt/CICINTERP, mfilt/CICINTERPZEROLAT,
FDESIGN/INTERP, FDESIGN/SRC.
```

You can also enter
help mfilt/polyphase \% Get help on the POLYPHASE method
at the MATLAB prompt to return this information about polyphase.
POLYPHASE Polyphase decomposition of multirate filters.
P=POLYPHASE (Hm) returns the polyphase matrix of the multirate filter Hm . The ith row of the matrix P represents the ith subfilter.
POLYPHASE(Hm) called with no outputs launches the Filter Visualization Tool (FVTool) with all the polyphase subfilters to allow analysis of each component individually.
To use the online help system, use the doc function instead of help.

```
doc mfilt
```

opens the Help browser and displays the general help text for multirate filter objects.

To obtain information about CIC decimation filter objects, enter either

```
helpwin mfilt/cicdecim
helpwin mfilt/cicinterp
```

at the command prompt, depending on which structure you need to know about.

For a complete list of the multirate filters that are available in the toolbox, enter help mfilt.

FIR Decimation - Filtering with FIR Decimators

This section demonstrates how you can decrease the sampling rate of a signal using FIR decimators from the toolbox. To show you how this works, this section takes you through the following tasks:

- "Creating FIR Decimators" on page 5-18
- "Understanding Input Sample Processing and the InputOffset Property" on page 5-19
- "Filtering with FIR Decimators" on page 5-21

Creating FIR Decimators

The Filter Design Toolbox supports different structures to perform decimation including different FIR-based structures and cascaded integrator-comb (CIC) structures. Entering helpwin mfilt at the prompt gives you a list of all supported structures.

Start by defining the filter decimation factor for your FIR decimator.

```
m = 3; % Specify the decimation factor as m.
```

Since the toolbox uses objects to implement multirate filters, you use the same methods to create most decimators. First you specify the decimation factor and then the FIR filter coefficients. If you do not include filter coefficients when you construct the filter, the toolbox filter constructor returns a lowpass filter with a cutoff frequency of ($\pi /$ decimation factor) and a gain of 1 . This example uses mfilt.firdecim to create a direct-form polyphase FIR decimator. After constructing the filter, you can change the filter coefficients that are stored in the Numerator property.

Begin by designing an FIR decimator with the decimation factor set to 3.

```
hm1 = mfilt.firdecim(m); % Default decimator filter
```

mfilt.firdecim produces filters that decimate signals by integer factors. To change the sampling rate of a signal by a fractional factor, you might use a direct-form FIR polyphase sample rate converter. One way to create such a rate-changing filter is mfilt.firsrc. This structure uses L polyphase subfilters where L is the interpolation factor. Sample rate convertors use both a decimation factor and interpolation factor to perform fractional rate changing.

```
l = 2; % Set the interpolation factor.
hm2 = mfilt.firsrc(l,m); % Create the rate changing filter.
```

Here is the configuration information about hm2.

```
hm2 =
    FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
    Numerator: [1\times72 double]
    RateChangeFactors: [2 3]
PersistentMemory: false
    States: [35x1 double]
NumSamplesProcessed: 0
```


Understanding Input Sample Processing and the InputOffset Property

When you decimate signals whose length is not a multiple of the decimation factor M, the last samples- $(n M+1)$ to $[(n+1)(M)-1]$, where n is an integerare processed and used to track where the filter stopped processing input data and when to expect the next output sample. If you think of the filtering process as generating an output for a block of input data, where each block has M elements, every complete input data block yields one output sample. Incomplete blocks of data (one or more input samples up to one less than the decimation factor) increment the InputOffset property by one for each sample in the incomplete block.

Note InputOffset applies only when you set PersistentMemory to true. Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:
1 The input signal is a multiple of the filter decimation factor. In this case, the filter processes the input samples and generates output samples for all inputs as determined by the decimation factor. For example, processing 99 input samples with a filter that decimates by three returns 33 output samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, the filter processes all of the input samples, generates output samples as
determined by the decimation factor, and has one or more input samples that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has decimation factor of 3 , you get 33 output samples, and 1 sample that did not generate an output. In this case, InputOffset stores the value 1 after the filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into blocks of data with length equal to your filter decimation factor, the filter processed one sample from a new block of data. Subsequent inputs to the filter are concatenated with this single sample to form the next block of length m.

One way to define the value stored in InputOffset is

```
InputOffset = mod(length(nx),m)
```

where $n x$ is the number of input samples in the data set and m is the decimation factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any point and start over from there (provided that the PersistentMemory property is set to true). Being able to resume filtering after stopping a signal lets you break large data sets in to smalller pieces for filtering. With PersistentMemory set to true and the InputOffset property in the filter, breaking a signal into sections of arbitrary length and filtering the sections is equivalent to filtering the entire signal at once.

```
xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =
    0
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]
ysec =
    0
```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

All of the preceding discussion applies to interpolation filters as well, with appropriate changes from decimation to interpolation.

Filtering with FIR Decimators

After creating your decimator, you are ready to filter data. Rather than use random data, as you did earlier, this example uses a more realistic data set.

For this example, define the input signal x as a 1 kHz sinusoid sampled at 44.1 kHz . Here is one way to create $\mathrm{x}[\mathrm{n}]$.

```
N = 159;
fs = 44.1e3;
n = 0:N-1;
x = sin(2*pi*n*1e3/fs); % Signal as required. 159 data points.
```

Now you can use filter hm1 you designed earlier to try decimating x .

Filtering with the Direct-Form FIR Polyphase Decimator hm 1

You have data and a decimator in your workspace. Applying the filter to the data takes two steps-reset the filter and use filter to apply the decimator to x .

```
reset(hm1) % Reset the filter history and states to zeros.
y1 = filter(hm1,x);
```

Two stem plots give a sense of the decimation.

y1 contains 53 samples-one-third of the number in x. Filter hm1 decimated x by two-thirds. Since multirate filters support sample-by-sample processing, all input samples passed through the filter.
For further information about filtering options in general and specifying initial conditions for filters in particular, refer to "Getting Started-Designing Multirate Filters" on page 5-4.

The previous stem plot shows a feature of the filter-a delay of a number of samples before the filter starts to output the decimated input signal. Called the transient response, the length of the transient response of the decimator is equal to half the order of a polyphase subfilter. For hm1, the subfilter order is 24 , so the transient response should be 12 samples. This is also the group delay of the filter.

From the plot, it appears that the transient response is about 12 samples long. The next plot makes this more clear by plotting the decimated signal with a delayed version of the input x.

```
delay = mean(grpdelay(hm1)); % Constant group delay equal to its
    % mean.
tx = delay+[1:length(x)];
ty = 1:m:m*length(y1);
```

Plot the output of the direct-form FIR polyphase decimator hm1 and overlay a shifted version of the original signal using $t x$ and ty.

```
stem(tx,x,'k');hold on;stem(ty,y1,'filled');
```

Using the delayed signals makes the transient response clear.

CIC Filter Example-Using CIC Decimation Filters

This demonstration shows how to use multirate cascaded integrator-comb (CIC) decimation filters in the Filter Design Toolbox. CIC filters are efficient, multiplierless structures that are often used in high-decimation ratio or high-interpolation ratio systems.

Digital down convertors and digital up convertors commonly use CIC filters. Refer to the demonstration program "Design of a Digital Down-Converter for GSM (Group Speciale Mobile)" in the Filter Design Toolbox demos for an example that uses a CIC decimator for digital down-conversion processing of a signal.

To help you understand what CIC filters do and how, this example includes the following sections:

- "Creating CIC Decimator filters" on page 5-24
- "Analyzing CIC Decimation Filters" on page 5-26
- "Working with Section Word Lengths" on page 5-28
- "CIC Filter States" on page 5-31
- "Filter Implementation—Signal Flow Graph" on page 5-33
- "Reference" on page 5-35

Creating CIC Decimator filters

The Filter Design Toolbox provides a CIC decimating filter structure-the Cascaded Integrator-Comb Decimator. As you see in the figure below, the structure is optimized for pipelined implementations such as might be used on field-programmable gate arrays (FPGAs). The following Simulink model provides a signal-flow graph of the structure.

With the Fixed-Point Toolbox installed (required for you to use CIC filters), you create a default cascaded integrator-comb decimator object with this command

```
hm = mfilt.cicdecim
```

at the prompt. MATLAB returns the CIC filter with the specifications shown here.
hm =
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 2
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
SectionWordLengthMode: 'MinWordLengths'
OutputWordLength: 16
The CIC decimation filter comprises three portions-an integrator portion, a rate change factor, and a comb portion. Similarly, you can completely specify a CIC decimation filter with three parameters-a decimation factor r, the number of individual integrator or comb sections n, and the differential delay of the comb section m.

The display of the multirate filter object (mfilt) in the Command Window groups the filter properties together in a logical manner, making the filter specification more clear.

Only the writable properties appear in the display by default. Changing a filter property, such as resetting PersistentMemory from false to true reveals more properties as they become writable-in this case the States property appears when PersistentMemory is true.

Unlike other multirate filters and discrete-time objects, CIC filter objects allow only fixed-point arithmetic (the Arithmetic property is always set to fixed) since these filters are inherently fixed-point filters. Check the value of the Arithmetic property

```
set(hm,'arithmetic')
ans =
    'fixed'
```

to see that fixed is the only option. As with all filter objects, and all objects in general, the get function returns the complete set of properties (read-only and writable) for the filter and object.

```
get(hm)
```


Analyzing CIC Decimation Filters

Analyzing CIC filters is the same as analyzing any multirate filter object in the Filter Design Toolbox. The Filter Visualization Tool (FVTool) provides graphical access to all analyses.

```
hm = mfilt.cicdecim(8,1,4);
hfvt=fvtool(hm);
hfvt.showreference='off';
```

FVTool returns the magnitude response for hm, shown here. As hm is a fixed-point filter, we suppress the reference filter in the display by setting the ShowReference property in FVTool to off.

After you have the filter displayed in FVTool, you can use any of the filter analysis capabilities provided to learn more about hm. To perform an analysis, select one of the analytical options, such as Impulse Response or Round-off Noise Power Spectrum from Analysis on the FVTool menu bar.

About the MSB at the Filter Output

A significant consideration in CIC filters is the size (number of bits) of data that can pass through the filter without loss. The most significant bit (MSB) of the filter represents the maximum number of bits that can be propagated through the filter while maintaining the integrity of the data.

Parameters R, M, N and the InputWordLength specify the MSB of the filter output. Since the output of the integrator sections of the filter can grow without bounds, the MSB at the filter output is also the MSB for all filter sections.

Called $\mathrm{B}_{\text {max }}$ in the reference, the maximum wordlength in the filter, or most significant bit (MSB), is both the maximum word length for all of the filter sections as well as the MSB at the filter output.
Hogenauer defines $\mathrm{B}_{\max }$, the MSB at the filter output, as follows:
$B_{\text {max }}=\left[N \log _{2} R M+B_{\text {in }}-1\right]$
with

- N is the number of filter sections
- M is the comb portion differential delay
- R is the decimation factor
- B_{in} is the input word length in bits

Working with Section Word Lengths

CIC filters include a property that defines how you specify the section word and fraction lengths for the filter. Called SectionWordLengthMode, this property specifies the specific data format (word length and fraction length) the filter uses when accumulating data in the integrator sections or subtracting data in the comb sections. SectionWordLengthMode can take one of two values:

- MinWordLengths-the filter calculates the optimal section word lengths given the filter parameters R (the rate change factor), M (the differential delay), N (the number of filter sections), and the input and output word lengths.
- SpecifyWordLengths-you specify the word lengths for the sections by entering a scalar or a vector of length $2^{*} \mathrm{~N}$. When you provide a scalar, the filter method expands the scalar into a vector with $2^{*} \mathrm{~N}$ elements, applying the same word length to all sections. If you specify a vector, it must meet these requirements:
- It must contain $2 * \mathrm{~N}$ elements.
- The values of the vector elements must be monotonically decreasing.

When you construct a new CIC decimating filter, SectionWordLengthMode is set to MinWordLength by default.

Using hm as an example, here is the SectionWordLengthMode.

```
set(hm,'SectionWordLengthMode')
```

```
ans =
    'MinWordLengths'
    'SpecifyWordLengths'
```

In the reference provided later in this section ([1] on page 5-35), Hogenauer shows that during filtering you can discard least significant bits (LSBs) from each section (refer to Equation 21 of the reference) of the filter so long as the error introduced by removing the LSBs is acceptable at the filter output. In this case, the section word lengths reported by the filter are computed by subtracting the LSBs from the maximum word lengths in the filter (refer to Equation 11 in the reference for details).

To help connect the CIC filter designs in the toolbox to the analysis by Hogenauer, the next example designs a CIC decimator that matches the design on page 159 of the Hogenauer paper.

```
m=1; % Set the differential delay to one.
n=4; % Specify the number of sections.
r=25; % Set the rate change factor.
inwl=16; % Set the word length at the filter input.
outwl=16; % Set the filter output word length.
% With the specifications prepared, design the CIC decimator.
hm=mfilt.cicdecim(r,m,n,inwl,outwl);
```

hm reproduces the referenced filter exactly. To see the correspondence, check that the word lengths applied to each filter section match those developed in the reference example, where the MSB is 34 bits.

Filter Section	Number of LSBs Discarded	Word Length Calculated in [1] on page 5-35 (MSB-Discarded LSBs)
1	1	$33(34-1)$
2	6	$28(34-6)$
3	9	$25(34-9)$
4	13	$21(34-13)$

Filter Section	Number of LSBs Discarded	Word Length Calculated in [1] on page 5-35 (MSB-Discarded LSBs)
5	14	$20(34-14)$
6	15	$19(34-15)$
7	16	$18(34-16)$
8	17	$17(34-17)$

In the referenced paper by Hogenauer, the MSB is also called $\mathrm{B}_{\text {max }}$. Use get to verify the match.

```
get(hm,'sectionwordlengths')
ans =
    33
```

For cases where you enter the word lengths explicitly when you construct the filter, rather than letting the mfilt constructor determine them, by setting SectionWordLengthMode to SpecifyWordLengths, you enter the word lengths to use as either a scalar or a vector of length 2^{*} n. Recall from earlier that the input vector containing the section word lengths must meet two criteria-the number of elements must be twice the number of filter sections n, and the element values must be monotonically decreasing.

As you see in this example, when you enter the word length as a scalar, the filter constructor expands the scalar to apply it as the section word length for all of the filter sections.

```
set(hm,'sectionWordLengthMode','SpecifyWordLengths');
hm.sectionWordLengths=32;
get(hm,'sectionWordLengths')
ans =
    32
```


CIC Filter States

The States property of CIC decimation filters contains an objectfiltstates.cic. This object represents or stores the initial conditions of the filter before filtering and the final conditions after filtering. filtstates.cic has two properties, Integrator and Comb, that correspond to their respective portions of the filter. When you construct a CIC filter, the states contain zeros. After you filter data with the filter, the states contain the values stored in the filter delay elements. To demonstrate the filter states, the following example creates a decimator, and then applies the filter to a set of fixed-point input data.

```
% Construct the input data set for filter filter some fixed-point
% ones.
x = fi(ones(1,10),true, 16,0);
% Construct a decimator to use to filter x.
hm = mfilt.cicdecim(2,1,2,16,16,16);
```

Take a look at x and hm to see what you have.

```
X
X =
    1 
                DataTypeMode: Fixed-point: binary point scaling
                    Signed: true
                WordLength: 16
            FractionLength: 0
                RoundMode: round
            OverflowMode: saturate
            ProductMode: FullPrecision
        MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
hm
hm =
```

```
    FilterStructure: 'Cascaded Integrator-Comb Decimator'
                Arithmetic: 'fixed'
    DifferentialDelay: 1
    NumberOfSections: 2
    DecimationFactor: 2
    PersistentMemory: false
    InputWordLength: 16
    InputFracLength: 15
SectionWordLengthMode: 'SpecifyWordLengths'
    SectionWordLengths: [16 16 16 16]
    OutputWordLength: 16
get(hm,'states')
ans =
    Integrator: [2x1 States]
        Comb: [2x1 States]
```

At this point, the states for the filter are zeros. That changes after you filter a set of data.
hm.inputfraclength $=0$; Set the input to use integer data. $y=$ filter (hm, x);

You can extract the final states by using the int function and assigning the output to a variable.

```
sts = int(Hm.states)
sts =
    10 45
    28 13
```

As you see, the states now contain nonzero values related to the filtering operation.

This states matrix has dimensions $\mathrm{M}+1$-by- N , where M is the differential delay of the comb section and N is the number of sections. Filter hm stores the integrator sections states (hm.states.integrator) in the first row of the states matrix and stores the states for the comb portion in the remaining rows in the matrix.

You might have noticed that the States property is not displayed by the default filter display. When PersistentMemory is set to false, you do not see the states property in the default listing in MATLAB.

```
hm % Generate the default filter display.
hm =
    FilterStructure: 'Cascaded Integrator-Comb Decimator'
            Arithmetic: 'fixed'
        DifferentialDelay: 1
        NumberOfSections: 2
        DecimationFactor: 2
        PersistentMemory: false
        InputWordLength: 16
        InputFracLength: 15
SectionWordLengthMode: 'MinWordLengths'
    OutputWordLength: 16
```

Setting PersistentMemory to true reveals the States property in the filter display. However, when you use get to review the properties, you see the States property listed in all instances.

For more information about the fi object used in x above, refer to the Fixed-Point Toolbox documentation in the online Help system.

Filter Implementation-Signal Flow Graph

The toolbox implements a structure that differs slightly from the one in the referenced paper by [1] on page 5-35. The difference lies in the location of the delays in the integrator portion of the filter. We made this change to optimize the filter for pipelining on hardware such as field-programmable gate arrays (FPGAs). The following figure shows the flow graph as implemented by
mfilt.cicdecim. After the table following the figure, is a short example that should help interpret the entries in the figure.

The word length and fraction length at each stage of the decimator are shown in the following table. Either you specify the word length for each filter stage in the SectionWordLengths property as a vector of integers, or you let the filter constructor set the word lengths by making MinWordLengths the value for SectionWordLengthMode. The calculation for each fraction length is shown below:

Decimator Word Lengths and Fraction Lengths

Position in the Signal Flow	Word Length	Fraction Length
Filter Input	InputWL	InputFL
$1^{\text {st }}$ Section Output	SectionOneWL	InputFL
$2^{\text {nd }}$ Section Output	SectionTwoWL	InputFL (SectionTwoWL - SectionOneWL)
$3^{\text {rd }}$ Section Output	SectionThreeWL	SectionTwoFL + (SectionThreeWL - SectionTwoWL)
$4^{\text {th }}$ Section Output	SectionFourWL	SectionThreeFL + (SectionFourWL - SectionThreeWL)
$\mathrm{N}^{\text {th }}$ Section Output	Section(N)WL	Section(N-1)FL + (Section(N)WL - Section(N-1)WL)
Filter Output	OutputWL	FinalSectionFL + (OutputWL - FinalSectionWL)

Reference

The following paper formed the basis for developing the CIC filters in the Filter Design Toolbox. Many more details of the CIC multirate filters are discussed in this reference.
[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.

Analyzing Multirate and Multistage Filters

Multirate filter analysis presents some differences from analyzing single-rate discrete-time filters. While most of the same analytical tools apply, the primary difference is the filter sample rate-what the sample rate is, how it is defined, and where. Filter sample rate, called Fs in the toolbox, changes depending on the type of multirate filter you are using. Or more precisely, how the sample rate is defined changes according to the multirate filter under discussion.

Generally, filter sample rate refers to the rate at which the filter is running:

- For decimators, the filter sample rate equals the sample rate at the filter input, prior to decimating the input.
- For interpolators, the filter sample rate is equal to the sample rate at the output of the filter, after interpolation.
- For sample rate change filters, Fs is the input rate multiplied by the interpolation factor. The decimation factor does not apply to define the sample rate.

When you provide a sampling frequency for the analysis, the analytical tool, such as FVTool, assume that the rate specified is the sampling frequency at which the filter is operating.

Another feature of analyzing multirate filters that have more than one stage is that the analysis process applies to a filter that is the overall equivalent of the multistage filter under consideration. Recognizing that the analytical tool you choose first computes an equivalent filter makes understanding the analytical process somewhat easier.
For example, a multistage filter that included

- Multiple interpolators
- Multiple decimators
might be reduced to an equivalent filter with
- One equivalent interpolation filter
- One equivalent decimation stage

For more about how the tools develop the equivalent filter they use to analyze your filter, refer to "Performing Multistage Filter Analysis" on page 5-40.

A pair of definitions will help as you read this section:

- Multirate filters consist of sections.
- Multistage filters are the result of using dfilt.cascade or dfilt. parallel to create filters by combining other filters. Each filter that composes the multistage filter is called a stage.

This tutorial demonstrates how to perform analysis on single-stage and multistage multirate filters by presenting the following topics:

- "Analyzing Single-Stage Multirate Filters" on page 5-37
- "Comparing Interpolators" on page 5-38
- "Performing Multistage Filter Analysis" on page 5-40
- "Analyzing Multistage Interpolators" on page 5-42
- "Analyzing a Multistage Sample-Rate Converter" on page 5-43
- "Analyzing Other Multistage Configurations" on page 5-45

Analyzing Single-Stage Multirate Filters

You analyze single-stage multirate filters at the rate the filter is operating. As mentioned in the introduction to this tutorial section, the sample rate you use depends on the filter your are analyzing.

The following plot overlays the magnitude response of a sample-rate converter, an interpolator, and a decimator. For the first filter, the input sampling frequency is $1000 / 5$ and the output sampling frequency is $1000 / 3$. For the interpolator, the input fs is $1000 / 4$ and the output fs is 1000 . Finally, for the decimator, the input fs is 1000 and the output fs is $1000 / 3$.

Here are the commands to create the three filters to analyze.

```
h1 = mfilt.firsrc(5,3); % Use a default filter.
h2 = mfilt.firinterp(4); % Use a default filter.
h3 = mfilt.firdecim(3); % Use a default filter.
```

Now you need to specify the sampling rate and the number of points in the FFT used.

```
fs = 1000; nfft = 8192;
```

With the filters in your workspace and the sampling frequency set, use FVTool to visualize the filters using a common sampling rate.

```
fvtool(h1,h2,h3,'fs',fs);
```


Comparing Interpolators

Interpolators and decimators exhibit a lowpass magnitude response. Simple interpolators, like the CIC interpolator and the hold or linear interpolators, have a poor lowpass response. However, they are easy to implement and they do not require the filter to perform any multiplications in real-time while filtering data. The following plot compares the lowpass response of four different interpolators:

- An FIR interpolator (mfilt.firinterp)
- A linear interpolator (mfilt.linearinterp)
- A hold interpolator (mfilt.holdinterp)
- A CIC interpolator (mfilt.cicinterp)

They each have an interpolation factor of 4 . You can see that the quality of the lowpass filter, such as the sharpness of the lowpass cutoff, depends on which type of interpolator you use. By design, the CIC interpolator has more gain than the other interpolators. For the purposes of this analysis, we include a scalar in cascade with the CIC filter to normalize its gain. Normalizing the gain makes comparing the different filters easier.

```
h(1) = mfilt.firinterp(4); % Use the default filter.
h(2) = mfilt.linearinterp(4);
h(3) = mfilt.holdinterp(4);
hcic = mfilt.cicinterp(4,1,3); % 3-section CIC with
                            % differential delay = 1.
hscalar = dfilt.scalar(1/gain(hcic));
h(4) = dfilt.cascade(hscalar,hcic); % Add a gain correction
filter...
    % in cascade.
```

Use FVTool to see the results of the four filters. An interesting trick you might notice-naming the filters as indexes of the variable h lets you plot all four interpolators by passing h to FVTool.

```
fvtool(h);
```


Performing Multistage Filter Analysis

Using the tools provided in the toolbox, either from the command line or in FVtool, you can analyze multirate filters of the following form.

In a multirate filter, any of the blue, red, or green sections is optional. Since that is true, you can perform analysis on multistage interpolators, multistage decimators, or multistage sample-rate converters.
When you choose to perform the analysis, the analysis tool computes an equivalent overall filter for the interpolation section and/or the decimation section as shown in the next figure, and performs the requested analysis on the equivalent filter.

In the equivalent filter shown in the figure, the following conversions apply.

- Upsample block $\mathrm{L}=\mathrm{Lo}{ }^{*} \mathrm{~L} 1 * \mathrm{~L} 2 * \ldots * \mathrm{Lm}$; (convolved interpolators)
- Downsample block $\mathrm{M}=\mathrm{Mo}{ }^{*} \mathrm{M} 1^{*} \mathrm{M} 2^{*} . . .{ }^{*} \mathrm{Mn}$; (convolved decimators)
- Interpolator transfer function

$$
\mathrm{H}(\mathrm{z})=\mathrm{H} 1\left(\mathrm{z}^{\wedge}\left(\mathrm{Lo} 0^{*} \mathrm{~L}^{*} \ldots \mathrm{Lm}\right)\right)^{*} \mathrm{H} 2\left(\mathrm{z}^{\wedge}\left(\mathrm{Lo}{ }^{*} \mathrm{~L} 2 \ldots \mathrm{Lm}\right)\right) \ldots \mathrm{Hm}\left(\mathrm{z}^{\wedge}(\mathrm{Lo})\right) ;
$$

- Decimator transfer function

$$
\mathrm{G}(\mathrm{z})=\mathrm{G} 1\left(\mathrm{z}^{\wedge}\left(\mathrm{Mo}^{*} \mathrm{M}^{*}{ }^{*} \ldots \mathrm{Mn}\right)\right)^{*} \mathrm{G} 2\left(\mathrm{z}^{\wedge}(\mathrm{Mo} * \mathrm{M} 2 \ldots \mathrm{Mn})\right) \ldots \mathrm{Gn}\left(\mathrm{z}^{\wedge}(\mathrm{Mo})\right)
$$

Finally, filters $\mathrm{H}(\mathrm{z}), \mathrm{G}(\mathrm{z})$, and $\mathrm{Ho}(\mathrm{z})$ are all operating at the same rate and can be combined into a single filter on which to perform the analysis. If you specify
a sampling frequency as an input to the analytical tool, the analysis assumes that the single overall filter (equivalent to the subfilters that have been combined) is operating at the rate you specified.

Analyzing Multistage Interpolators

Here is an example of how you might analyze a multistage interpolator. Refer to the demo "Design of a Digital Down-Converter for GSM" in the Filter Design Toolbox demos for an example in which the Global System for Mobile Communications (GSM) uses a multistage decimator.
This section cascades four interpolators to form a four stage filter. The fourth interpolator is a CIC filter. In this case, the sampling frequency specified for the filter corresponds to the output of the four stage interpolator because this is the rate at which the equivalent filter operates.

```
h(1) = mfilt.firinterp(4);
h(2) = mfilt.firinterp(2);
h(3) = mfilt.firinterp(2);
h(4) = mfilt.cicinterp(16);
hc = dfilt.cascade(h);
hc
hc =
    FilterStructure: Cascade
    Stage(1): Direct-Form FIR Polyphase Interpolator
    Stage(2): Direct-Form FIR Polyphase Interpolator
    Stage(3): Direct-Form FIR Polyphase Interpolator
    Stage(4): Cascaded Integrator-Comb Interpolator
PersistentMemory: false
```

To perform the analysis on hc, compute the frequency response between 0 and 200 Hz . set the sampling frequency Fs to 1000 Hz .

```
[hf,f] = freqz(hc,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))
```

freqz returns the transfer function for the cascaded filter at the sampling frequency you entered as an input argument.

Analyzing a Multistage Sample-Rate Converter

To demonstrate working with multistage sample rate convertors, add some decimation stages to filter hc to form a multistage sample-rate converter. Again, the sampling frequency fs you specify as input to freqz once again represents and is assumed to be the rate of the equivalent filter. And this is the rate at which the frequency response of hc2 is analyzed. This fs is the fastest rate in the entire system in this case.

```
h(5) = mfilt.firsrc(2,3);
h(6) = mfilt.cicdecim(13);
h(7) = mfilt.firdecim(5);
hc2 = dfilt.cascade(h)
```

```
hc2 =
FilterStructure: Cascade
    Stage(1): Direct-Form FIR Polyphase Interpolator
    Stage(2): Direct-Form FIR Polyphase Interpolator
    Stage(3): Direct-Form FIR Polyphase Interpolator
    Stage(4): Cascaded Integrator-Comb Interpolator
    Stage(5): Direct-Form FIR Polyphase Sample-Rate Converter
        Stage(6): Cascaded Integrator-Comb Decimator
        Stage(7): Direct-Form FIR Polyphase Decimator
PersistentMemory: false
```

As you did in the preceding section, compute the frequency response between 0 and 200 Hz using Fs equal to 1000 Hz .

```
[hf,f] = freqz(hc2,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))
```

The figure show the frequency response of hc2, the result of adding decimators and a rate changing filter to hc.

Analyzing Other Multistage Configurations

In addition to the multistage filters hc and hc2 shown, the toolbox lets you analyze multistage filters where decimation occurs prior to interpolation, provided the overall filter interpolation and decimation factors are the same. Notice that this does not necessarily mean that there is an equal number of decimation and interpolation stages.

One multistage structure that you could analyze in the toolbox is this one:

In this case, the analysis tools develop two equivalent filters as shown in the next figure, where $\mathrm{M}=\mathrm{M} 1^{*} \mathrm{M} 2^{*} . . \mathrm{Mn}=\mathrm{L} 1 * \mathrm{~L} 2^{*} . . \mathrm{Lm}=\mathrm{L}$.

Because the overall interpolation factor L is equal to the overall decimation factor M , the equivalent filters are operating at the same rate.

As before, when you provide a sampling frequency for the analysis, the tools assume that the supplied rate is the rate at which both filters are operating. For this case, this would also be equal to the input and output rate for these filters.

To see a demonstration about this type of analysis, where you are analyzing multistage, multirate filters, refer to "Multirate Multistage FIR Filter Design" in the Filter Design Toolbox demos.

Audio Example-Audio Sample Rate Conversion

For a more concrete application of multirate filters, this section illustrates multirate filters that you might use to perform sample rate conversion on different audio formats. During this section, you create each of the following:

- FIR sample rate conversion filter
- FIR fractional interpolator
- FIR fractional decimator

To do these tasks, this section contains the following topics:

- "Creating the Multirate Filters" on page 5-47
- "Decreasing the Sample Rate by a Fractional Factor" on page 5-48
- "Constructing the Fractional Decimator" on page 5-48
- "Filtering to Change the Sample Rate" on page 5-49
- "Comparing the Resampled Signals" on page 5-49
- "Increasing the Sample Rate by a Fractional Factor" on page 5-51
- "Plotting the Original Signal and the Reconverted Signal" on page 5-52
- "Converting from 48 kHz to 44.1 kHz " on page $5-53$
- "Plotting the 48 kHz Signal and the 44.1 kHz Signal" on page 5-54

Creating the Multirate Filters

All sample rate conversion filters are created in the same way. You first specify the interpolation factor L , and then the decimation factor M , and finally the FIR filter coefficients. Note that L and M must be relatively prime. Two integers a and b are relatively prime when they do not share any common factors. For example, 21 and 54 are not relatively prime- 7 is a factor common to both. 14 and 25 are relatively prime. When L and M are not relatively prime, they are converted to relatively prime factors and you get a warning in MATLAB.

If you do not provide filter coefficients when you construct your filter, the filter design process returns a lowpass filter with a cutoff frequency of $\pi /$ max (L,M) and a gain of L in the passband.

Begin by designing a default rate change filter hm1.

```
hm1 = mfilt.firsrc(4,3); % Default sample rate change filter.
hm2 = mfilt.firfracinterp(8,6);
Warning: L and M are not relatively prime. Converting ratio 8/6
to 4/3.
The cutoff frequency of the filter should be approximately pi/4.
```

MATLAB notifies you that the factors 8 and 6 do not meet the relatively prime specification and reduces each by the common factor 2 . Then MATLAB designs the filter.

Decreasing the Sample Rate by a Fractional Factor

Suppose you are converting an audio signal recorded at 48 kHz to 32 kHz for broadcasting. Consider the following audio sample recorded at 48 kHz (Copyright 2002 FingerBomb) by loading the sample into MATLAB and then playing the file.

```
load audio48;
```

To listen to the original 48 kHz signal, you can use an audio player object in MATLAB.

```
p48 = audioplayer(signal48kHz,Fs48); % Create audio player
    % object.
play(p48); % Play the track. Use stop(p48) to stop play.
```

In all, the track lasts about 9 seconds.

Constructing the Fractional Decimator

Reducing the 48 kHz sample rate for the signal to 32 kHz requires decimating the signal by two-thirds (discard one sample out of every three). Decimation by two-thirds is an example of fractional decimation.

The interpolation factor for this case is 2 and the decimation factor is 3 . You can use a fractional decimator to achieve this sample rate modification. To avoid making this example more complicated, use the default filter that mfilt.firfracdecim designs for now.

```
hfd = mfilt.firfracdecim(2,3); % Use default decimator filter.
hfd
```

```
hfd =
    FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
            Numerator: [1x72 double]
    RateChangeFactors: [2 3]
PersistentMemory: false
    States: [36x1 double]
NumSamplesProcessed: 0
```

You could also use your own lowpass filter by specifying the coefficients as a third input argument

```
hfd = mfilt.firfracdecim(l,m,coeffs)
```

where coeffs contains the FIR filter coefficients to use.

Filtering to Change the Sample Rate

To use the fractional decimator hfd to convert the sample rate of the signal, you invoke the filter method with the signal signal48kHz and hfd.

```
s32 = filter(hfd,signal48kHz);
```

Once again, you can use an audioplayer object to listen to the down-converted signal.

```
p32 = audioplayer(s32,32e3); % Create a new audio player.
```

play(p32);

Comparing the Resampled Signals

You now have about 9 seconds of audio. Of course, you can find the exact length in seconds from

```
length(signal48kHz)/Fs48 % Or length(s32)/32e3.
ans =
    8.9634
```

For clarity, you should overlay the two signals on a plot to compare them.
Because the audio track contains some 430,000 samples, you show only a small signal segment. You also have to account for the delay the filter introduces in the 32 kHz signal (the transient response mentioned earlier). Filter hfd has a
group-delay of 36 samples. Since it is running three times faster than the 32 kHz signal, the delay is equivalent to 12 low speed samples.

Note that there are three samples of the 48 kHz signal for every two samples of the 32 kHz signal. Now to pick some audio data samples to display.

To make the overlay work, you need the same starting point for each signal. The following code finds common points for the 48 kHz and 32 kHz signals and displays them in a stem plot.

```
xindx = 999:1500; % 0.0105 seconds of audio at 48 kHz.
figure
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
xindx2 = xindx(1)*32e3/48e3:xindx(end)*32e3/48e3; % Find the same
                                    % start and
                                    % stop times.
```

```
stem(xindx2/32,s32(xindx2+12),'r'); % Add 12 samples to account
                                    % for filter transient delay.
```


Increasing the Sample Rate by a Fractional Factor

You can convert the broadcast quality signal at 32 kHz back to 48 kHz with a fractional interpolator, perhaps to store it on a digital audio tape (DAT). Moving from 32 to 48 requires upsampling by 50 percent, achieved using an interpolation factor of 3 and decimation by 2 . Again, you use the fractional FIR interpolator.

```
hfi = mfilt.firfracinterp(3,2);
s48 = filter(hfi,s32);
```

Listening to the up-converted audio might be interesting. Use an audio player again.

```
ps48 = audioplayer(s48,Fs48);
play(ps48);
```


Plotting the Original Signal and the Reconverted Signal

To compare both 48 kHz signals-the original and the twice-converted signal, you must account for the delay introduced by both the fractional decimation and the fractional interpolation processes when you converted the signal down to 32 kHz and back to 48 kHz . In the stem plot shown here, notice that most of the reconverted signal samples have moved slightly from where they were originally. This is distortion introduced by converting down to 32 kHz by decimation and then converting back up to 48 kHz by interpolation.

```
figure;
xindx = 1000:1500;
stem(xindx/Fs48*1e3, signal48kHz(xindx));
hold on;
stem(xindx/Fs48*1e3,s48(1037:1537),'r'); % Account for the
% process-induced
% delays.
```


Different filters achieve different results. You used the default filters which do not optimize the output.

Converting from 48 kHz to 44.1 kHz

To convert from studio quality audio at 48 kHz to CD quality audio, 44.1 kHz , you would use a multirate filter better suited for this ratio change (interpolation factor of 147 , decimation factor of 160 ; decimation by 1.088). To avoid the startup delay (latency) introduced by the filter, preload half of the filter states with the beginning of the signal. Doing this step compensates for the delay caused by filtering and decimation. For this rate change, you use the FIR sample rate change multirate filter-firsrc.

```
hsrc = mfilt.firsrc(147,160) % Use default filter coefficients.
hsrc =
```

```
        FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
            Numerator: [1x3840 double]
        RateChangeFactors: [147 160]
        PersistentMemory: true
            States: [26x1 double]
    NumSamplesProcessed: 430080
hsrc.persistentmemory = 'true'; % Allows you to set the states
    % to eliminate delay.
hsrc.States(13:-1:1) = signal48kHz(1:13); % Preload the states.
s441 = filter(hsrc,signal48kHz(14:end)); % This takes a few
                    % seconds.
```

Again, you can play the down-converted signal at 44.1 kHz with a MATLAB audio player.

```
p441 = audioplayer(s441,44.1e3);
play(p441);
```

When you are doing sample-rate conversion with large values of L or M , as you are in this case where $\mathrm{L}=147$ and $\mathrm{M}=160$, using the mfilt.firsrc structure is the most effective approach. Other possible fractional rate change structures, such as mfilt.firfracinterp (where $\mathrm{L}>\mathrm{M}$) or mfilt.firfracdecim (where $\mathrm{L}<\mathrm{M}$) may have prohibitively large memory requirements for applications that require large rate changes.

Plotting the 48 kHz Signal and the 44.1 kHz Signal

Now compare segments of the two signals graphically. In this case you can verify visually in the stem plot shown that the filter does not introduce delay since you compensated for its group delay by preloading the states.

```
figure
xindx = 1:160;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on
xindx2 = 1:147;
stem(xindx2/44.1,s441(xindx2),'r');
```


Digital Frequency Transformations

Introduction (p. 6-2)
Definition of the Problem (p. 6-3)
Frequency Transformations for Real Filters (p. 6-11)
Frequency Transformations for Complex Filters (p. 6-26)

Provides background about digital frequency transformations for filters

Presents and defines the problem of using digital frequency transformation

Discusses the functions in the toolbox used for transforming real filters to other real filters

Talks about the functions in the toolbox used for transforming complex filters to other complex filters, or real filters to complex filters

Introduction

Converting existing FIR or IIR filter designs to a modified IIR form is often done using allpass frequency transformations. Although the resulting designs can be considerably more expensive in terms of dimensionality than the prototype (original) filter, their ease of use in fixed or variable applications is a big advantage.

The general idea of the frequency transformation is to take an existing prototype filter and produce another filter from it that retains some of the characteristics of the prototype, in the frequency domain. Transformation functions achieve this by replacing each delaying element of the prototype filter with an allpass filter carefully designed to have a prescribed phase characteristic for achieving the modifications requested by the designer.

This tutorial gives an overview and interpretation of the frequency transformations, and describes the range of transformations available to the toolbox user. To aid this purpose the tutorial has been arranged into three sections:

- "Definition of the Problem" on page 6-3 introduces the frequency transformation concept and provides its mathematical and intuitive interpretations.
- "Frequency Transformations for Real Filters" on page 6-11 describes the real frequency transformations available in the toolbox. Such transformations start from a real prototype filter and return a real target filter.
- "Frequency Transformations for Complex Filters" on page 6-26 describes complex frequency transformations available in the toolbox. Such transformations start from the any real or complex prototype filter and return a complex target filter.

Definition of the Problem

The basic form of mapping in common use is

$$
H_{T}(z)=H_{o}\left[H_{A}(z)\right]
$$

The $H_{A}(z)$ is an Nth-order allpass mapping filter given by

$$
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}}=\frac{N_{A}(z)}{D_{A}(z)} \\
& \alpha_{0}=1
\end{aligned}
$$

where
$H_{o}(z)$ - Transfer function of the prototype filter
$H_{A}(z)$ - Transfer function of the allpass mapping filter
$H_{T}(z)$ - Transfer function of the target filter
Let's look at a simple example of the transformation given by

$$
H_{T}(z)=H_{o}(-z)
$$

The target filter has its poles and zeroes flipped across the origin of the real and imaginary axes. For the real filter prototype, it gives a mirror effect against 0.5, which means that lowpass $H_{o}(z)$ gives rise to a real highpass $H_{T}(z)$. This is shown in the following figure for the prototype filter designed as a third-order halfband elliptic filter.

Figure 6-1: Example of a Simple Mirror Transformation
The choice of an allpass filter to provide the frequency mapping is necessary to provide the frequency translation of the prototype filter frequency response to the target filter by changing the frequency position of the features from the prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to π can be interpreted as a translation function:

$$
H\left(w_{\text {new }}\right)=\omega_{o l d}
$$

The graphical interpretation of the frequency transformation is shown in the figure below. The complex multiband transformation takes a real lowpass filter and converts it into a number of passbands around the unit circle.

Figure 6-2: Graphical Interpretation of the Mapping Process
Most of the frequency transformations are based on the second-order allpass mapping filter:

$$
H_{A}(z)= \pm \frac{1+\alpha_{1} z^{-1}+\alpha_{2} z^{-2}}{\alpha_{2}+\alpha_{1} z^{-1}+z^{-2}}
$$

The two degrees of freedom provided by α_{1} and α_{2} choices are not fully used by the usual restrictive set of "flat-top" classical mappings like lowpass to bandpass. Instead, any two transfer function features can be migrated to (almost) any two other frequency locations if α_{1} and α_{2} are chosen so as to keep the poles of $H_{A}(z)$ strictly outside the unit circle (since $H_{A}(z)$ is substituted for z in the prototype transfer function). Moreover, as first pointed out by Constantinides, the selection of the outside sign influences whether the original feature at zero can be moved (the minus sign, a condition known as
"DC mobility") or whether the Nyquist frequency can be migrated (the "Nyquist mobility" case arising when the leading sign is positive).

All the transformations forming the package are explained in the next sections of the tutorial. They are separated into those operating on real filters and those generating or working with complex filters. The choice of transformation ranges from standard Constantinides first and second-order ones [16][17] up to the real multiband filter by Mullis and Franchitti [18], and the complex multiband filter and real/complex multipoint ones by Krukowski, Cain and Kale [19].

Selecting Features Subject to Transformation

Choosing the appropriate frequency transformation for achieving the required effect and the correct features of the prototype filter is very important and needs careful consideration. It is not advisable to use a first-order transformation for controlling more than one feature. The mapping filter will not give enough flexibility. It is also not good to use higher order transformation just to change the cutoff frequency of the lowpass filter. The increase of the filter order would be too big, without considering the additional replica of the prototype filter that may be created in undesired places.

Figure 6-3: Feature Selection for Real Lowpass to Bandpass Transformation
To illustrate the idea, the second-order real multipoint transformation was applied three times to the same elliptic halfband filter in order to make it into
a bandpass filter. In each of the three cases, two different features of the prototype filter were selected in order to obtain a bandpass filter with passband ranging from 0.25 to 0.75 . The position of the DC feature was not important, but it would be advantageous if it were in the middle between the edges of the passband in the target filter. In the first case the selected features were the left and the right band edges of the lowpass filter passband, in the second case they were the left band edge and the DC, in the third case they were DC and the right band edge.

Figure 6-4: Result of choosing different features
The results of all three approaches are completely different. For each of them only the selected features were positioned precisely where they were required. In the first case the DC is moved toward the left passband edge just like all the other features close to the left edge being squeezed there. In the second case the right passband edge was pushed way out of the expected target as the precise position of DC was required. In the third case the left passband edge was pulled toward the DC in order to position it at the correct frequency. The conclusion is that if only the DC can be anywhere in the passband, the edges of the passband should have been selected for the transformation. For most of the
cases requiring the positioning of passbands and stopbands, designers should always choose the position of the edges of the prototype filter in order to make sure that they get the edges of the target filter in the correct places. Frequency responses for the three cases considered are shown in the figure. The prototype filter was a third-order elliptic lowpass filter with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.
The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

In the example the requirements are set to create a real bandpass filter with passband edges at 0.1 and 0.3 out of the real lowpass filter having the cutoff frequency at 0.5 . This is attempted in three different ways. In the first approach both edges of the passband are selected, in the second approach the left edge of the passband and the DC are chosen, while in the third approach the DC and the right edge of the passband are taken:

```
[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [ 0.0, 0.5], [0.2, 0.3]);
```


Mapping from Prototype Filter to Target Filter

In general the frequency mapping converts the prototype filter, $H_{0}(z)$, to the target filter, $H_{T}(z)$, using the N_{A} th-order allpass filter, $H_{A}(z)$. The general form of the allpass mapping filter is given in Equation. The frequency mapping is a mathematical operation that replaces each delayer of the prototype filter with an allpass filter. There are two ways of performing such mapping. The choice of the approach is dependent on how prototype and target filters are represented.

When the Nth-order prototype filter is given with pole-zero form

$$
H_{o}(z)=\frac{\sum_{i=1}\left(z-z_{i}\right)}{\sum_{i-1}^{N}\left(z-p_{i}\right)}
$$

the mapping will replace each pole, p_{i}, and each zero, z_{i}, with a number of poles and zeros equal to the order of the allpass mapping filter:

$$
H_{o}(z)=\frac{\left.\sum_{i=1} \mid S \sum_{k=0} \alpha_{k} z^{k}-z_{i} \cdot \sum_{k=0} \alpha_{k} z^{N-k}\right)}{\sum_{n}^{N}\left(S \sum_{n}^{N-1} \alpha_{k} z^{k}-p_{i} \cdot \sum_{n}^{N-1} \alpha_{k} z^{N-k}\right)}
$$

The root finding needs to be used on the bracketed expressions in order to find the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:

$$
H_{T}(z)=\left.\frac{\beta_{0} z^{N}+\beta_{1} z^{N-1}+\ldots+\beta_{N}}{\alpha_{0} z^{N}+\alpha_{1} z^{N-1}+\ldots+\alpha_{N}}\right|_{z=H_{A}(z)}
$$

Then the mapping process will require a number of convolutions in order to calculate the numerator and denominator of the target filter:

$$
H_{T}(z)=\frac{\beta_{1} N_{A}(z)^{N}+\beta_{2} N_{A}(z)^{N-1} D_{A}(z)+\ldots+\beta_{N} D_{A}(z)^{N}}{\beta_{1} N_{A}(z)^{N}+\beta_{2} N_{A}(z)^{N-1} D_{A}(z)+\ldots+\beta_{N} D_{A}(z)^{N}}
$$

For each coefficient α_{i} and β_{i} of the prototype filter the N_{A} th-order polynomials must be convolved N times. Such approach may cause rounding errors for large prototype filters and/or high order mapping filters. In such a case the user should consider the alternative of doing the mapping using via poles and zeros.

Summary of Frequency Transformations

Advantages

- Most frequency transformations are described by closed-form solutions or can be calculated from the set of linear equations.
- They give predictable and familiar results.
- Ripple heights from the prototype filter are preserved in the target filter.
- They are architecturally appealing for variable and adaptive filters.

Disadvantages

- There are cases when using optimization methods to design the required filter gives better results.
- High-order transformations increase the dimensionality of the target filter, which may give expensive final results.
- Starting from fresh designs helps avoid locked-in compromises.

Frequency Transformations for Real Filters

This section discusses real frequency transformations that take the real lowpass prototype filter and convert it into a different real target filter. The target filter has its frequency response modified in respect to the frequency response of the prototype filter according to the characteristic of the applied frequency transformation:

- "Real Frequency Shift" on page 6-12
- "Real Lowpass to Real Lowpass" on page 6-13
- "Real Lowpass to Real Highpass" on page 6-15
- "Real Lowpass to Real Bandpass" on page 6-17
- "Real Lowpass to Real Bandstop" on page 6-19
- "Real Lowpass to Real Multiband" on page 6-21
- "Real Lowpass to Real Multipoint" on page 6-23

Real Frequency Shift

Real frequency shift transformation uses a second-order allpass mapping filter. It performs an exact mapping of one selected feature of the frequency response into its new location, additionally moving both the Nyquist and DC features. This effectively moves the whole response of the lowpass filter by the distance specified by the selection of the feature from the prototype filter and the target filter. As a real transformation, it works in a similar way for positive and negative frequencies.

$$
H_{A}(z)=z^{-1} \cdot \frac{1-\alpha z^{-1}}{\alpha-z^{-1}}
$$

with α given by

$$
\alpha= \begin{cases}\frac{\cos \frac{\pi}{2}\left(\omega_{\text {old }}-2 \omega_{\text {new }}\right)}{\cos \frac{\pi}{2} \omega_{\text {old }}} & \text { for } \\ \frac{\sin \frac{\pi}{2}\left(\omega_{\text {old }}-2 \omega_{\text {new }}\right)}{\sin \frac{\pi}{2} \omega_{\text {old }}} & \text { otherwise }\end{cases}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new }}$ - Position of the feature originally at $\omega_{\text {old }}$ in the target filter
The example below shows how this transformation can be used to move the response of the prototype lowpass filter in either direction. Please note that because the target filter must also be real, the response of the target filter will inherently be disturbed at frequencies close to Nyquist and close to DC. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

$$
[b, a]=e l l i p(3,0.1,30,0.409) ;
$$

The example transformation moves the feature originally at 0.5 to 0.9 :

```
[num,den] = iirshift(b, a, 0.5, 0.9);
```


Figure 6-5: Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass

Real lowpass filter to real lowpass filter transformation uses a first-order allpass mapping filter. It performs an exact mapping of one feature of the frequency response into the new location keeping DC and Nyquist features fixed. As a real transformation, it works in a similar way for positive and negative frequencies. It is important to mention that using first-order mapping ensures that the order of the filter after the transformation is the same as it was originally.

$$
H_{A}(z)=-\left(\frac{1-\alpha z^{-1}}{\alpha-z^{-1}}\right)
$$

with α given by

$$
\alpha=\frac{\sin \frac{\pi}{2}\left(w_{o l d}-w_{\text {new }}\right)}{\sin \frac{\pi}{2}\left(w_{o l d}+w_{\text {new }}\right)}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new }}$ - Frequency location of the same feature in the target filter
The example below shows how to modify the cutoff frequency of the prototype filter. The MATLAB code for this example is shown in the figure below.

The prototype filter is a halfband elliptic, real, third-order filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The cutoff frequency moves from 0.5 to 0.75 :
[num,den] = iirlp2lp(b, a, 0.5, 0.75);

Figure 6-6: Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass

Real lowpass filter to real highpass filter transformation uses a first-order allpass mapping filter. It performs an exact mapping of one feature of the frequency response into the new location additionally swapping DC and Nyquist features. As a real transformation, it works in a similar way for positive and negative frequencies. Just like in the previous transformation because of using a first-order mapping, the order of the filter before and after the transformation is the same.

$$
H_{A}(z)=-\left(\frac{1+\alpha z^{-1}}{\alpha+z^{-1}}\right)
$$

with α given by

$$
\alpha=-\left(\frac{\cos \frac{\pi}{2}\left(w_{\text {old }}+w_{\text {new }}\right)}{\cos \frac{\pi}{2}\left(w_{\text {old }}-w_{\text {new }}\right)}\right)
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new }}$ - Frequency location of the same feature in the target filter
The example below shows how to convert the lowpass filter into a highpass filter with arbitrarily chosen cutoff frequency. In the MATLAB code below, the lowpass filter is converted into a highpass with cutoff frequency shifted from 0.5 to 0.75 . Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The example moves the cutoff frequency from 0.5 to 0.75 :

```
[num,den] = iirlp2lp(b, a, 0.5, 0.75);
```


Figure 6-7: Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass

Real lowpass filter to real bandpass filter transformation uses a second-order allpass mapping filter. It performs an exact mapping of two features of the frequency response into their new location additionally moving a DC feature and keeping the Nyquist feature fixed. As a real transformation, it works in a similar way for positive and negative frequencies.

$$
H_{A}(z)=-\left(\frac{1-\beta(1+\alpha) z^{-1}-\alpha z^{-2}}{\alpha-\beta(1+\alpha) z^{-1}+z^{-2}}\right)
$$

with α and β given by

$$
\begin{aligned}
\alpha & =\frac{\sin \frac{\pi}{4}\left(2 w_{\text {old }}-w_{n e w, 2}+w_{n e w, 1}\right)}{\sin \frac{\pi}{4}\left(2 w_{\text {old }}+w_{n e w, 2}-w_{\text {new }, 1}\right)} \\
\beta & =\cos \frac{\pi}{2}\left(w_{\text {new }, 1}+w_{\text {new }, 2}\right)
\end{aligned}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new }, 1}$ - Position of the feature originally at $\left(-\omega_{\text {old }}\right)$ in the target filter
$\omega_{\text {new }, 2}$ - Position of the feature originally at $\left(+\omega_{\text {old }}\right)$ in the target filter
The example below shows how to move the response of the prototype lowpass filter in either direction. Please note that because the target filter must also be real, the response of the target filter will inherently be disturbed at frequencies close to Nyquist and close to DC. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The example transformation creates the passband between 0.5 and 0.75 :

```
[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);
```


Figure 6-8: Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop

Real lowpass filter to real bandstop filter transformation uses a second-order allpass mapping filter. It performs an exact mapping of two features of the frequency response into their new location additionally moving a Nyquist feature and keeping the DC feature fixed. This effectively creates a stopband between the selected frequency locations in the target filter. As a real transformation, it works in a similar way for positive and negative frequencies.

$$
H_{A}(z)=\frac{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}{\alpha-\beta(1+\alpha) z^{-1}+z^{-2}}
$$

with α and β given by

$$
\begin{aligned}
& \alpha=\frac{\cos \frac{\pi}{4}\left(2 w_{\text {old }}+w_{\text {new }, 2}-w_{\text {new }, 1}\right)}{\cos \frac{\pi}{4}\left(2 w_{\text {old }}-w_{\text {new }, 2}+w_{\text {new }, 1}\right)} \\
& \beta=\cos \frac{\pi}{2}\left(w_{\text {new }, 1}+w_{\text {new }, 2}\right)
\end{aligned}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new, } 1}$ - Position of the feature originally at $\left(-\omega_{\text {old }}\right)$ in the target filter
$\omega_{\text {new }, 2}$ - Position of the feature originally at $\left(+\omega_{\text {old }}\right)$ in the target filter
The example below shows how this transformation can be used to convert the prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop filter with the same passband and stopband ripple structure and stopband positioned between 0.5 and 0.75 . Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The example transformation creates a stopband from 0.5 to 0.75 :

```
[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);
```


Figure 6-9: Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband

This high-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into a number of new locations in the target filter. Its most common use is to convert a real lowpass with predefined passband and stopband ripples into a real multiband filter with N arbitrary band edges, where N is the order of the allpass mapping filter.

$$
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}} \\
& \alpha_{n}=1
\end{aligned}
$$

The coefficients α are given by

$$
\left\{\begin{array}{l}
\alpha_{0}=1 \quad k=1, \ldots, N \\
\alpha_{k}=-S \frac{\sin \frac{\pi}{2}\left(N \omega_{n e w}+(-1)^{k} \omega_{o l d}\right)}{\sin \frac{\pi}{2}\left((N-2 k) \omega_{\text {new }}+(-1)^{k} \omega_{o l d}\right)}
\end{array}\right.
$$

where
$\omega_{o l d, k}$ - Frequency location of the first feature in the prototype filter
$\omega_{\text {new,k }}$ - Position of the feature originally at $\omega_{o l d, k}$ in the target filter
The mobility factor, s, specifies the mobility or either DC or Nyquist feature:

$$
S=\left\{\begin{array}{lc}
1 & \text { Nyquist } \\
-1 & D C
\end{array}\right.
$$

The example below shows how this transformation can be used to convert the prototype lowpass filter with cutoff frequency at 0.5 into a filter having a number of bands positioned at arbitrary edge frequencies $1 / 5,2 / 5,3 / 5$ and $4 / 5$. Parameter S was such that there is a passband at DC. Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

The example transformation creates three passbands, from DC to 0.2 , from 0.4 to 0.6 and from 0.8 to Nyquist:

```
[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], `pass');
```


Figure 6-10: Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint

This high-order frequency transformation performs an exact mapping of a number of selected features of the prototype filter frequency response to their new locations in the target filter. The mapping filter is given by the general IIR polynomial form of the transfer function as given below.

$$
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}} \\
& \alpha_{\mathrm{n}}=1
\end{aligned}
$$

For the Nth-order multipoint frequency transformation the coefficients α are

$$
\left\{\begin{array}{l}
\sum_{i=1}^{N} \alpha_{N-i} z_{o l d, k} \cdot z_{\text {new }, k}^{i}-S \cdot z_{\text {new }, k}^{N-i}=-z_{o l d, k}-S \cdot z_{\text {new }, k} \\
z_{o l d, k}=e^{j \pi \omega_{o l d, k}} \\
z_{\text {new }, k}=e^{j \pi \omega_{\text {neen } k}} \\
k=1, \ldots, N
\end{array}\right.
$$

where
$\omega_{o l d, k}$ - Frequency location of the first feature in the prototype filter
$\omega_{\text {new, } k}$ - Position of the feature originally at $\omega_{o l d, k}$ in the target filter
The mobility factor, s, specifies the mobility of either DC or Nyquist feature:

$$
S=\left\{\begin{array}{lc}
1 & \text { Nyquist } \\
-1 & D C
\end{array}\right.
$$

The example below shows how this transformation can be used to move features of the prototype lowpass filter originally at -0.5 and 0.5 to their new locations at 0.5 and 0.75 , effectively changing a position of the filter passband. Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The example transformation creates a passband from 0.5 to 0.75 :

$$
\text { [num,den] }=\text { iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], `pass'); }
$$

Figure 6-11: Example of Real Lowpass to Real Multipoint Mapping

Frequency Transformations for Complex Filters

This section discusses complex frequency transformation that take the complex prototype filter and convert it into a different complex target filter. The target filter has its frequency response modified in respect to the frequency response of the prototype filter according to the characteristic of the applied frequency transformation from:

- "Complex Frequency Shift" on page 6-26
- "Real Lowpass to Complex Bandpass" on page 6-28
- "Real Lowpass to Complex Bandstop" on page 6-29
- "Real Lowpass to Complex Multiband" on page 6-31
- "Real Lowpass to Complex Multipoint" on page 6-33
- "Complex Bandpass to Complex Bandpass" on page 6-36

Complex Frequency Shift

Complex frequency shift transformation is the simplest first-order transformation that performs an exact mapping of one selected feature of the frequency response into its new location. At the same time it rotates the whole response of the prototype lowpass filter by the distance specified by the selection of the feature from the prototype filter and the target filter.

$$
H_{A}(z)=\alpha z^{-1}
$$

with α given by

$$
\alpha=e^{j 2 \pi\left(v_{\text {new }}-v_{\text {old }}\right)}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new }}$ - Position of the feature originally at $\omega_{\text {old }}$ in the target filter
A special case of the complex frequency shift is a, so called, Hilbert Transformer. It can be designed by setting the parameter to $|\alpha|=1$, that is

$$
\alpha=\left\{\begin{array}{lr}
1 & \text { forward } \\
-1 & \text { inverse }
\end{array}\right.
$$

The example below shows how to apply this transformation to rotate the response of the prototype lowpass filter in either direction. Please note that because the transformation can be achieved by a simple phase shift operator, all features of the prototype filter will be moved by the same amount. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

The example transformation moves the feature originally at 0.5 to 0.9 :

```
[num,den] = iirshift(b, a, 0.5, 0.9);
```


Figure 6-12: Example of Complex Frequency Shift Mapping

Real Lowpass to Complex Bandpass

This first-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into two new locations in the target filter creating a passband between them. Both Nyquist and DC features can be moved with the rest of the frequency response.

$$
H_{A}(z)=\frac{\beta-\alpha z^{-1}}{z^{-1}-\alpha \beta}
$$

with α and β are given by

$$
\begin{aligned}
& \alpha=\frac{\sin \frac{\pi}{4}\left(2 w_{\text {old }}-w_{\text {new }, 2}+w_{\text {new }, 1}\right)}{\sin \pi\left(2 w_{\text {old }}+w_{\text {new }, 2}-w_{\text {new }, 1}\right)} \\
& \beta=e^{-j \pi\left(w_{\text {new }}-w_{\text {old }}\right)}
\end{aligned}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new }, 1}$ - Position of the feature originally at $\left(-\omega_{\text {old }}\right)$ in the target filter
$\omega_{\text {new, } 2}$ - Position of the feature originally at $\left(+\omega_{\text {old }}\right)$ in the target filter
The example below shows the use of such a transformation for converting a real halfband lowpass filter into a complex bandpass filter with band edges at 0.5 and 0.75 . Here is the MATLAB code for generating the example in the figure.
The prototype filter is a half band elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The transformation creates a passband from 0.5 to 0.75 :

```
[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);
```


Figure 6-13: Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop

This first-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into two new locations in the target filter creating a stopband between them. Both Nyquist and DC features can be moved with the rest of the frequency response.

$$
H_{A}(z)=\frac{\beta-\alpha z^{-1}}{\alpha \beta-z^{-1}}
$$

with α and β are given by

$$
\begin{aligned}
& \alpha=\frac{\cos \pi\left(2 w_{\text {old }}+v_{\text {new }, 2}-v_{\text {new }, 1}\right)}{\cos \pi\left(2 w_{\text {old }}-v_{\text {new }, 2}+v_{\text {new }, 1}\right)} \\
& \beta=e^{-j \pi\left(w_{\text {new }}-w_{\text {old }}\right)}
\end{aligned}
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new, } 1}$ - Position of the feature originally at $\left(-\omega_{\text {old }}\right)$ in the target filter
$\omega_{\text {new, } 2}$ - Position of the feature originally at $\left(+\omega_{\text {old }}\right)$ in the target filter
The example below shows the use of such a transformation for converting a real halfband lowpass filter into a complex bandstop filter with band edges at 0.5 and 0.75 . Here is the MATLAB code for generating the example in the figure. The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The transformation creates a stopband from 0.5 to 0.75 :

```
[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);
```


Figure 6-14: Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband

This high-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into a number of new locations in the target filter. Its most common use is to convert a real lowpass with predefined passband and stopband ripples into a multiband filter with arbitrary band edges. The order of the mapping filter must be even, which corresponds to an even number of band edges in the target filter. The Nth-order complex allpass mapping filter is given by the general transfer function form as shown below.

$$
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}} \\
& \alpha_{0}=1
\end{aligned}
$$

The coefficients α are calculated from the system of linear equations:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{\mathrm{N}} \mathfrak{R}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}-\cos \beta_{2, k}\right]+\mathfrak{J}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}+\sin \beta_{2, k}\right]=\cos \beta_{3, k} \\
N \\
\sum_{i=1} \mathfrak{R}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}-\sin \beta_{2, k}\right]-\mathfrak{J}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}+\cos \beta_{2, k}\right]=\sin \beta_{3, k} \\
\beta_{1, k}=-\pi\left[v_{\text {old }} \cdot(-1)^{k}+v_{\text {new }, k}(N-k)\right] \\
\beta_{2, k}=-\pi\left[\Delta C+v_{n e w, k} k\right] \\
\beta_{3, k}=-\pi\left[v_{\text {old }} \cdot(-1)^{k}+v_{\text {new }, k} N\right] \\
k=1 \ldots N
\end{array}\right.
$$

where
$\omega_{\text {old }}$ - Frequency location of the selected feature in the prototype filter
$\omega_{\text {new,i }}$ - Position of features originally at $\pm \omega_{\text {old }}$ in the target filter
Parameter S is the additional rotation factor by the frequency distance ΔC, giving the additional flexibility of achieving the required mapping:

$$
S=e^{-j \pi \Delta C}
$$

The example shows the use of such a transformation for converting a prototype real lowpass filter with the cutoff frequency at 0.5 into a multiband complex filter with band edges at $0.2,0.4,0.6$ and 0.8 , creating two passbands around the unit circle. Here is the MATLAB code for generating the figure.

Figure 6-15: Example of Real Lowpass to Complex Multiband Mapping
The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The example transformation creates two complex passbands:

```
[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);
```


Real Lowpass to Complex Multipoint

This high-order transformation performs an exact mapping of a number of selected features of the prototype filter frequency response to their new locations in the target filter. The Nth-order complex allpass mapping filter is given by the general transfer function form as shown below.

$$
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}} \\
& \alpha_{0}=1
\end{aligned}
$$

The coefficients α can be calculated from the system of linear equations:

$$
\left\{\begin{array}{l}
\sum_{i=1} \mathfrak{R}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}-\cos \beta_{2, k}\right]+\mathfrak{J}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}+\sin \beta_{2, k}\right]=\cos \beta_{3, k} \\
\sum_{i=1} \mathfrak{R}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}-\sin \beta_{2, k}\right]-\mathfrak{J}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}+\cos \beta_{2, k}\right]=\sin \beta_{3, k} \\
\beta_{1, k}=-\frac{\pi}{2}\left[w_{\text {old }, k}+w_{n e w, k}(N-k)\right] \\
\beta_{2, k}=-\frac{\pi}{2}\left[2 \Delta C+w_{\text {new }, k} k\right] \\
\beta_{3, k}=-\frac{\pi}{2}\left[w_{\text {old }, k}+w_{\text {new }, k} N\right] \\
k=1 \ldots N
\end{array}\right.
$$

where
$\omega_{o l d, k}$ - Frequency location of the first feature in the prototype filter
$\omega_{\text {new, }}$ - Position of the feature originally at $\omega_{o l d, k}$ in the target filter Parameter S is the additional rotation factor by the frequency distance ΔC, giving the additional flexibility of achieving the required mapping:

$$
S=e^{-j \pi \Delta C}
$$

The example below shows how this transformation can be used to move one selected feature of the prototype lowpass filter originally at -0.5 to two new frequencies -0.5 and 0.1 , and the second feature of the prototype filter from 0.5 to new locations at -0.25 and 0.3 . This creates two nonsymmetric passbands
around the unit circle, creating a complex filter. Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

The example transformation creates two nonsymmetric passbands:

$$
\text { [num, den] }=\operatorname{iirlp2xc}\left(b, a, 0.5^{*}[-1,1,-1,1],[-0.5,-0.25,0.1,0.3]\right) ;
$$

Figure 6-16: Example of Real Lowpass to Complex Multipoint Mapping

Complex Bandpass to Complex Bandpass

This first-order transformation performs an exact mapping of two selected features of the prototype filter frequency response into two new locations in the target filter. Its most common use is to adjust the edges of the complex bandpass filter.

$$
H_{A}(z)=\frac{\alpha\left(\gamma-\beta z^{-1}\right)}{z^{-1}-\beta \gamma}
$$

with α and β are given by

$$
\begin{aligned}
& \alpha=\frac{\sin \frac{\pi}{4}\left(\left(w_{\text {old }, 2}-w_{\text {old }, 1}\right)-\left(w_{\text {new }, 2}-w_{\text {new }, 1}\right)\right)}{\sin \frac{\pi}{4}\left(\left(w_{\text {old }, 2}-w_{\text {old }, 1}\right)+\left(w_{\text {new }, 2}-w_{\text {new }, 1}\right)\right)} \\
& \alpha=e^{-j \pi\left(w_{\text {old }, 2}-w_{\text {old }, 1}\right)} \\
& \gamma=e^{-j \pi\left(w_{\text {new }, 2}-w_{\text {new }, 1}\right)}
\end{aligned}
$$

where
$\omega_{o l d, 1}$ - Frequency location of the first feature in the prototype filter
$\omega_{\text {old, } 2}$ - Frequency location of the second feature in the prototype filter
$\omega_{\text {new, } 1}$ - Position of the feature originally at $\omega_{o l d, 1}$ in the target filter
$\omega_{\text {new }, 2}$ - Position of the feature originally at $\omega_{o l d, 2}$ in the target filter
The example below shows how this transformation can be used to modify the position of the passband of the prototype filter, either real or complex. In the example below the prototype filter passband spanned from 0.5 to 0.75 . It was converted to having a passband between -0.5 and 0.1 . Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
```

The example transformation creates a passband from 0.25 to 0.75 :

```
[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);
```


Figure 6-17: Example of Complex Bandpass to Complex Bandpass Mapping

Using FDATool with the Filter Design Toolbox

Designing Advanced Filters in FDATool (p. 7-5)

Switching FDATool to Quantization Mode (p. 7-10)

Quantizing Filters in the Filter Design and Analysis Tool (p. 7-14)
Analyzing Filters with a Noise-Based Method (p. 7-25)

Scaling Second-Order Section Filters (p. 7-32)

Reordering the Sections of Second-Order Section Filters (p. 7-40)

Viewing SOS Filter Sections (p. 7-48)

Importing and Exporting Quantized Filters (p. 7-55)

Importing XILINX Coefficient (.COE) Files (p. 7-60)

Transforming Filters (p. 7-61)

Using FDATool to design more advanced filters. This sections assumes you are familiar with FDATool from the Signal Processing Toolbox.

After you open FDATool, this section explain how to access the quantization features in the tool.

Explains how you quantize a filter in FDATool.

FDATool provides a variety of analysis methods for quantized filters; this section explains how to use two of them.

You can adjust the way FDATool scales SOS filters. To learn how, read this section.

Shows you how to change the order of the sections in an SOS filter.

Shows you how to use the SOS View feature in FDATool to analyze the sections of SOS filters.

Shows you how to import and export filters to and from your MATLAB workspace, as well as to other destinations.

Import the coefficients from a XILINX .coe file to create a quantized filter in FDATool.

Describes how you use the filter transformation capability in FDATool to change the magnitude response of your FIR or IIR filters in the tool.

Designing Multirate Filters in FDATool (p. 7-72)

Realizing Filters as Simulink Subsystem Blocks (p. 7-86)
Getting Help for FDATool (p. 7-90)

Explains how to use FDATool to design multirate filters. This section assumes you are familiar with FDATool from the Signal Processing Toolbox and you are familiar with mfilt objects.
Using the Realize Model feature to create a Simulink model of your quantized filter as a subsystem block.
Shows you how to get help about the features in FDATool, such as using Help or using the What's This option.

The Filter Design Toolbox adds new dialogs and operating modes, and new menu selections, to the Filter Design and Analysis Tool (FDATool) provided by the Signal Processing Toolbox. From the new dialogs, one titled Set
Quantization Parameters and one titled Frequency Transformations, you can:

- Design advanced filters that Signal Processing Toolbox does not provide the design tools to develop.
- View Simulink models of the filter structures available in the toolbox.
- Quantize double-precision filters you design in this GUI using the design mode.
- Quantize double-precision filters you import into this GUI using the import mode.
- Analyze quantized filters.
- Scale second-order section filters.
- Select the quantization settings for the properties of the quantized filter displayed by the tool:
- Coefficients-select the quantization options applied to the filter coefficients
- Input/output-control how the filter processes input and output data
- Filter Internals-specify how the arithmetic for the filter behaves
- Design multirate filters.
- Transform both FIR and IIR filters from one response to another.

After you import a filter in to FDATool, the options on the quantization dialog let you quantize the filter and investigate the effects of various quantization settings.

Options in the frequency transformations dialog let you change the frequency response of your filter, keeping various important features while changing the response shape.

This section presents the following information and procedures for using FDATool:

- "Designing Advanced Filters in FDATool" on page 7-5
- "Switching FDATool to Quantization Mode" on page 7-10
- "Quantizing Filters in the Filter Design and Analysis Tool" on page 7-14
- "Analyzing Filters with a Noise-Based Method" on page 7-25
- "Choosing Quantized Filter Structures" on page 7-30
- "Reordering the Sections of Second-Order Section Filters" on page 7-40
- "Viewing SOS Filter Sections" on page 7-48
- "Importing XILINX Coefficient (.COE) Files" on page 7-60
- "Transforming Filters" on page 7-61
- "Designing Multirate Filters in FDATool" on page 7-72
- "Realizing Filters as Simulink Subsystem Blocks" on page 7-86

Designing Advanced Filters in FDATool

Adding the Filter Design Toolbox to your tool suite adds a number of new filter design techniques to FDATool. Use the new filter responses to develop filters that meet more complex requirements than those you can design in the Signal Processing Toolbox. While the designs in FDATool are available as command line functions, the graphical user interface of FDATool makes the design process more clear and easier to accomplish.

In addition to the designs provided by FDATool and the Signal Processing Toolbox, you gain the following response types in FDATool when you have the Filter Design Toolbox:

Added Lowpass Responses

Response Type	Description
Halfband lowpass	Design a lowpass filter using the halfband algorithm
Inverse sinc lowpass	Design a lowpass filter using the inverse sinc technique
Nyquist	Design a lowpass Nyquist filter
Added Highpass Responses	Description
Response Type	Design a highpass filter using the halfband algorithm
Halfband highpass	Design a highpass filter using the inverse sinc technique
Inverse sinc highpass	

Added Assorted Others

Response Type	Description
Arbitrary group delay	Design a filter whose group delay meets your specific needs
Notching	Design filter responses that you carefully tune to de-emphasize specific frequencies in your input data
Peaking	Design filter responses that you tune to emphasize specific frequencies in your input data

As you select a response type, the options in the panels to the right in FDATool change to let you set the values that define your filter. You also see that the
analysis area includes a diagram that describes the options for the filter response you choose. By reviewing the diagram you can see how the options are defined and how to use them. While this is usually straightforward for lowpass or highpass filter responses, setting the options for the arbitrary response types or the peaking/notching filters is more complicated. Having the diagrams leads you to your result more easily.

Changing the filter design method changes the available response type options. Similarly, the response type you select may change the filter design methods you can choose.

Example-Design a Notch Filter

Notch filters aim to remove one or a few frequencies from a broader spectrum. You must specify the frequencies to remove by setting the filter design options in FDATool appropriately:

- Response Type
- Design Method
- Frequency Specifications
- Magnitude Specifications

Here is how you design a notch filter that removes concert A (440 Hz) from an input musical signal spectrum.

1 Select Notching from the Differentiator list in Response Type.
2 Select IIR in Filter Design Method and choose Single Notch from the list.
3 For the Frequency Specifications, set Units to Hz and Fs, the full scale frequency, to 10000.

4 Set the location of the center of the notch, in either normalized frequency or Hz . For the notch center at 440 Hz , enter 440.

5 To shape the notch, enter the bandwidth, bw, to be 40.
6 Leave the Magnitude Specification in dB (the default) and leave Apass as 1.

7 Click Design Filter.

FDATool computes the filter coefficients and plots the filter magnitude response in the analysis area for you to review.

When you design a single notch filter, you do not have the option of setting the filter order-the Filter Order options are disabled.

Your filter should look about like this:

For more information about a design method, refer to the online Help system. For instance, to get further information about the \mathbf{Q} setting for the notch filter in FDATool, enter

```
doc iirnotch
```

at the prompt. This opens the Help browser and displays the reference page for function iirnotch.

Designing other filters follows a similar procedure, adjusting for different design specification options as each design requires.

Any one of the designs may be quantized in FDATool and analyzed with the available analyses on the Analysis menu. For more general information about FDATool, such as the user interface and areas, refer to the FDATool
documentation in the Signal Processing Toolbox documentation. One way to do this is to enter
doc signal/fdatool
at the prompt. The signal qualifier is necessary to open the reference page in the Signal Processing Toolbox documentation, rather than the page in the Filter Design Toolbox documentation. You might also look at the general section on FDATool in the Signal Processing Toolbox User's Guide.

Switching FDATool to Quantization Mode

You use the quantization mode in FDATool to quantize filters. Quantization represents the fourth operating mode for FDATool, along with the filter design, filter transformation, and import modes. To switch to quantization mode, open FDATool from the MATLAB command prompt by entering
fdatool
You see FDATool in this configuration.

When FDATool opens, click the Set Quantization Parameters button on the side bar. FDATool switches to quantization mode and you see the following panel at the bottom of FDATool, with the default double-precision option shown for Filter arithmetic.

The Filter arithmetic option lets you quantize filters and investigate the effects of changing quantization settings. To enable the quantization settings in FDATool, select Fixed-point from the Filter Arithmetic.

The quantization options appear in the lower panel of FDATool. You see tabs that access various sets of options for quantizing your filter.

You use the following tabs in the dialog to perform tasks related to quantizing filters in FDATool:

- Coefficients provides access the settings for defining the coefficient quantization. This is the default active panel when you switch FDATool to quantization mode without a quantized filter in the tool. When you import a fixed-point filter into FDATool, this is the active pane when you switch to quantization mode.
- Input/Output switches FDATool to the options for quantizing the inputs and outputs for your filter.
- Filter Internals lets you set a variety of options for the arithmetic your filter performs, such as how the filter handles the results of multiplication operations or how the filter uses the accumulator.
- Apply-applies changes you make to the quantization parameters for your filter.

Quantizing Filters in the Filter Design and Analysis Tool

Quantized filters have properties that define how they quantize data you filter. Use the Set Quantization Parameters dialog in FDATool to set the properties. Using options in the Set Quantization Parameters dialog, FDATool lets you perform a number of tasks:

- Create a quantized filter from a double-precision filter after either importing the filter from your workspace, or using FDATool to design the prototype filter.
- Create a quantized filter that has the default structure (Direct form II transposed) or any structure you choose, and other property values you select.
- Change the quantization property values for a quantized filter after you design the filter or import it from your workspace.

When you click Set Quantization Parameters, and then change Filter Arithmetic to Fixed-point, the quantized filter panel opens in FDATool, with the coefficient quantization options set to default values. In this image, you see the options for an SOS filter. Some of the options shown apply only to SOS filters. Other filter structures present a subset of the options you see here.

Coefficients Options

To let you set the properties for the filter coefficients that make up your quantized filter, FDATool lists options for numerator word length (and denominator word length if you have an IIR filter). Table 7-1 lists every coefficients option and a short description of what the option setting does in the filter.

Table 7-1: Filter Options

Option Name	When Used	Description
Numerator Word Length	FIR filters only	Sets the word length used to represent numerator coefficients in FIR filters.
Numerator Frac. Length	FIR/IIR	Sets the fraction length used to interpret numerator coefficients in FIR filters.
Numerator Range (+/-)	FIR/IIR	Lets you set the range the numerators represent. You use this instead of the Numerator Frac. Length option to set the precision. When you enter a value x, the resulting range is -x to x. Range must be a positive integer.
Coefficient Word Length	IIR filters only	Sets the word length used to represent both numerator and denominator coefficients in IIR filters. You cannot set different word lengths for the numerator and denominator coefficients.
Denominator Frac. Length	IIR filters	Sets the fraction length used to interpret denominator coefficients in IIR filters.

Table 7-1: Filter Options

Option Name	When Used	Description
Denominator Range (+/-)	IIR filters	Lets you set the range the denominator coefficients represent. You use this instead of the Denominator Frac. Length option to set the precision. When you enter a value x, the resulting range is -x to x. Range must be a positive integer.
Best-precision fraction lengths	All filters	Directs FDATool to select the fraction lengths for numerator (and denominator where available) values to maximize the filter performance. Selecting this option disables all of the fraction length options for the filter.
Scale Values frac. length	SOS IIR filters	Sets the fraction length used to interpret the scale values in SOS filters.
Scale Values range (+/-)	SOS IIR filters	Lets you set the range the SOS scale values represent. You use this with SOS filters to adjust the scaling used between filter sections. Setting this value disables the Scale Values frac. length option. When you enter a value x, the resulting range is -x to x. Range must be a positive integer.
Use unsigned		
representation	All filters	All filters
Scale the numerator coefficients to fully utilize the entire dynamic range	roefficients as unsigned values.	

Input/Output Options

The options that specify how the quantized filter uses input and output values are listed in Table 7-2. In the following picture you see the options for an SOS filter.

Table 7-2: Input/Output Options

Option Name	When Used	Description
Input Word Length	All filters	Sets the word length used to represent the input to a filter.
Input fraction length	All filters	Sets the fraction length used to interpret input values to filter.
Input range (+/-)	All filters	Lets you set the range the inputs represent. You use this instead of the Input fraction length option to set the precision. When you enter a value x, the resulting range is -x to x. Range must be a positive integer.
Output word length	All filters	Sets the word length used to represent the output from a filter.

Table 7-2: Input/Output Options (Continued)

Option Name	When Used	Description
Avoid overflow	All filters	Directs the filter to set the fraction length for the input to prevent the output values from exceeding the available range as defined by the word length. Clearing this option lets you set Output fraction length.
Output fraction length	All filters	All filters
Output range (+/-)	Sets the fraction length used to represent output values from a filter.	
Stage input word length	SOS filters only	Lets you set the range the outputs represent. You use this instead of the Output fraction length option to set the precision. When you enter a value x, the resulting range is -x to x. Range must be a positive integer.
Avoid overflow	Sets the word length used to represent the input to an SOS filter section.	
SOS filters only	Directs the filter to use a fraction length for stage inputs that prevents overflows in the values. When you clear this option, you can set Stage input fraction length.	
Stage input fraction length	SOS filters only	Sets the fraction length used to represent input to a section of an SOS filter.
Stage output word length	SOS filters only	Sets the word length used to represent the output from an SOS filter section.

Table 7-2: Input/Output Options (Continued)

Option Name	When Used		
Avoid overflow	SOS filters only		
Description Stage output fraction length SOS filters onlyDirects the filter to use a fraction length for stage outputs that prevents overflows in the values. When you clear this option, you can set Stage output fraction length.			Sets the fraction length used to
:---			
represent the output from a section of an			
SOS filter.			

Filter Internals Options

The options that specify how the quantized filter performs arithmetic operations are listed in Table 7-3. In the following picture you see the options for an SOS filter.

Table 7-3: Options for the Filter Internals

Option	Equivalent Filter Property (using wildcard *)	Description
Round towards	RoundMode	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). Choose from one of: - convergent-round up to the next allowable quantized value - ceil-round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 - fix-round negative numbers up and positive numbers down to the next allowable quantized value - floor-round down to the next allowable quantized value - round-round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.

Table 7-3: Options for the Filter Internals (Continued)

Option	Equivalent Filter Property (using wildcard *)	Description
Overflow Mode	OverflowMode	Sets the mode used to respond to overflow conditions in fixed-point arithmetic. Choose from either saturate (limit the output to the largest positive or negative representable value) or wrap (set overflowing values to the nearest representable value using modular arithmetic.
Filter Product (Multiply) Options		
Product Mode	ProductMode	Determines how the filter handles the output of product operations. Choose from full precision (FullPrecision), or whether to keep the most significant bit (KeepMSB) or least significant bit (KeepLSB) in the result when you need to shorten the word length. Specify all lets you set the fraction length applied to the results of product operations.
Product word length	*ProdWordLength	Sets the word length applied to interpret the results of multiply operations.
Num. fraction length	NumProdFracLength	Sets the fraction length used to interpret the results of product operations that involve numerator coefficients.

Table 7-3: Options for the Filter Internals (Continued)

Option	Equivalent Filter Property (using wildcard *)	Description
Den. fraction length	DenProdFracLength	Sets the fraction length used to interpret the results of product operations that involve denominator coefficients.
Filter Sum Options		
Accum. mode	AccumMode	Determines how the accumulator outputs stored values. Choose from full precision (FullPrecision), or whether to keep the most significant bits (KeepMSB) or least significant bits (KeepLSB) when output results need shorter word length than the accumulator supports. To let you set the word length and the precision (the fraction length) used by the output from the accumulator, set this to Specify all.
Accum. word length	*AccumWordLength	Sets the word length used to store data in the accumulator/buffer.
Num. fraction length	NumAccumFracLength	Sets the fraction length used to interpret the numerator coefficients.
Den. fraction length	DenAccumFracLength	Sets the fraction length the filter uses to interpret denominator coefficients.
Cast signals before sum	CastBeforeSum	Specifies whether to cast numeric data to the appropriate accumulator format (as shown in the signal flow diagrams for each filter structure) before performing sum operations.
Filter State Options		

Table 7-3: Options for the Filter Internals (Continued)

Option	Equivalent Filter Property (using wildcard *)	Description
State word length	*StateWordLength	Sets the word length used to represent the filter states. Applied to both numerator- and denominator-related states
Avoid overflow	None	Prevent overflows in arithmetic calculations by setting the fraction length appropriately.
State fraction length	*StateFracLength	Lets you set the fraction length applied to interpret the filter states. Applied to both numerator- and denominator-related states

Example-Quantize Double-Precision Filters

When you are quantizing a double-precision filter by switching to fixed-point or single-precision floating point arithmetic, follow these steps.

1 Click Set Quantization Parameters to display the Set Quantization Parameters pane in FDATool.

2 Select Single-precision floating point or Fixed-point from Filter arithmetic.

When you select one of the optional arithmetic settings, FDATool quantizes the current filter according to the settings of the options in the Set Quantization Parameter panes, and changes the information displayed in the analysis area to show quantized filter data.

3 In the quantization panes, set the options for your filter. Set options for Coefficients, Input/Output, and Filter Internals.

4 Click Apply.
FDATool quantizes your filter using your new settings.

5 Use the analysis features in FDATool to determine whether your new quantized filter meets your requirements.

Example-Change the Quantization Properties of Quantized Filters

When you are changing the settings for the quantization of a quantized filter, or after you import a quantized filter from your MATLAB workspace, follow these steps to set the property values for the filter:

1 Verify that the current filter is quantized.
2 Click Set Quantization Parameters to display the Set Quantization Parameters panel.

3 Review and select property settings for the filter quantization: Coefficients, Input/Output, and Filter Internals. Settings for options on these panes determine how your filter quantizes data during filtering operations.

4 Click Apply to update your current quantized filter to use the new quantization property settings from Step 3.

5 Use the analysis features in FDATool to determine whether your new quantized filter meets your requirements.

Analyzing Filters with a Noise-Based Method

One technique for estimating the frequency response for quantized filters is the magnitude response estimate. FDATool offers this noise-based method as a filter analysis tool accessible from the toolbar.

Using the Magnitude Response Estimate Method

After you design and quantize your filter, the Magnitude Response Estimate option on the Analysis menu lets you apply the noise loading method to your filter. When you select Analysis -> Magnitude Response Estimate from the menubar, FDATool immediately starts the Monte Carlo trials that form the basis for the method and runs the analysis, ending by displaying the results in the analysis area in FDATool.

With the noise-based method, you estimate the complex frequency response for your filter as determined by applying a noise- like signal to the filter input. Magnitude Response Estimate uses the Monte Carlo trials to generate a noise signal that contains complete frequency content across the range 0 to Fs. The first time you run the analysis, magnitude response estimate uses default settings for the various conditions that define the process, such as the number of test points and the number of trials.

Analysis Parameter	Default Setting	Description
Number of Points	512	Number of equally spaced points around the upper half of the unit circle.
Frequency Range	0 to Fs/2	Frequency range of the plot x-axis.
Frequency Units	Hz	Units for specifying the frequency range.
Sampling Frequency	48000	Inverse of the sampling period.

Analysis Parameter	Default Setting	Description
Frequency Scale	dB	Units used for the y-axis display of the output.
Normalized Frequency	Off	Use normalized frequency for the display.

After your first analysis run ends, open the Analysis Parameters dialog and adjust your settings appropriately, such as changing the number of trials or number of points.
To open the Analysis Parameters dialog, use either of the next procedures when you have a quantized filter in FDATool:

- Select Analysis -> Analysis Parameters from the menu bar
- Right-click in the filter analysis area and select Analysis Parameters from the context menu

Whichever option you choose opens the dialog as shown in the figure. Notice that the settings for the options reflect the defaults.

Example-Noise Method Applied to a Filter

To demonstrate the magnitude response estimate method, start by creating a quantized filter. For this example, use FDATool to design a sixth-order Butterworth IIR filter.

To Use Noise-Based Analysis in FDATool

1 Enter fdatool at the MATLAB prompt to launch FDATool.
2 Under Response Type, select Highpass.
3 Select IIR in Design Method. Then select Butterworth.
4 To set the filter order to 6, select Specify order under Filter Order. Enter 6 in the text box.

5 Click Design Filter.
In FDATool, the analysis area changes to display the magnitude response for your filter.

6 To generate the quantized version of your filter, using default quantizer settings, click on the side bar.

FDATool switches to quantization mode and displays the quantization panel.

7 From Filter arithmetic, select fixed-point.
Now the analysis areas shows the magnitude response for both filters-your original filter and the fixed-point arithmetic version.

8 Finally, to use noise-based estimation on your quantized filter, select Analysis -> Magnitude Response Estimate from the menubar.

FDATool runs the trial, calculates the estimated magnitude response for the filter, and displays the result in the analysis area as shown in this figure.

Magnitude Response Estimate

In the figure you see the magnitude response as estimated by the analysis method.

To View the Noise Power Spectrum

When you use the noise method to estimate the magnitude response of a filter, FDATool simulates and applies a spectrum of noise values to test your filter response. While the simulated noise is essentially white, you might want to see the actual spectrum that FDATool used to test your filter.

From the Analysis menu bar option, select Round-off Noise Power Spectrum. In the analysis area in FDATool, you see the spectrum of the noise used to estimate the filter response. The details of the noise spectrum, such as the range and number of data points, appear in the Analysis Parameters dialog.

To Change Your Noise Analysis Parameters

In "Example-Noise Method Applied to a Filter", you used synthetic white noise to estimate the magnitude response for a fixed-point highpass Butterworth filter. Since you ran the estimate only once in FDATool, your noise analysis used the default analysis parameters settings shown in "Using the Magnitude Response Estimate Method".

To change the settings, follow these steps after the first time you use the noise estimate on your quantized filter.

1 With the results from running the noise estimating method displayed in the FDATool analysis area, select Analysis->Analysis Parameters from the menubar.

To give you access to the analysis parameters, the Analysis Parameters dialog opens as shown here (with default settings).

2 To use more points in the spectrum to estimate the magnitude response, change Number of Points to 1024 and click OK to run the analysis.

FDATool closes the Analysis Parameters dialog and reruns the noise estimate, returning the results in the analysis area.

To rerun the test without closing the dialog, press Enter after you type your new value into a setting, then click Apply. Now FDATool runs the test without closing the dailog. When you want to try many different settings for the noise-based analysis, this is a useful shortcut.

Comparing the Estimated and Theoretical Magnitude Responses

An important measure of the effectiveness of the noise method for estimating the magnitude response of a quantized filter is to compare the estimated response to the theoretical response.

One way to do this comparison is to overlay the theoretical response on the estimated response. While you have the Magnitude Response Estimate displaying in FDATool, select Analysis->Overlay Analysis from the menu bar. Then select Magnitude Response to show both response curves plotted together in the analysis area.

Choosing Quantized Filter Structures

FDATool lets you change the structure of any quantized filter. Use the Convert structure option to change the structure of your filter to one that meets your needs.

To learn about changing the structure of a filter in FDATool, refer to "Converting to a New Structure" in your Signal Processing Toolbox documentation.

Converting the Structure of a Quantized Filter

You use the Convert structure option to change the structure of filter. When the Source is Designed(Quantized) or Imported(Quantized), Convert structure lets you recast the filter to one of the following structures:

- "Direct Form II Transposed Filter Structure" on page 8-55
- "Direct Form I Transposed Filter Structure" on page 8-51
- "Direct Form II Filter Structure" on page 8-52
- "Direct Form I Filter Structure" on page 8-50
- "Direct Form Finite Impulse Response (FIR) Filter Structure" on page 8-60
- "Direct Form FIR Transposed Filter Structure" on page 8-61
- "Lattice Autoregressive Moving Average (ARMA) Filter Structure" on page 8-67
- "dfilt.calattice" on page 9-281
- "dfilt.calatticepc" on page 9-284
- "Direct Form Symmetric FIR Filter Structure (Any Order)" on page 8-69

Starting from any quantized filter, you can convert to one of the following representation:

- Direct form I
- Direct form II
- Direct form I transposed
- Direct form II transposed
- Lattice ARMA

Additionally, FDATool lets you do the following conversions:

- Minimum phase FIR filter to Lattice MA minimum phase
- Maximum phase FIR filter to Lattice MA maximum phase
- Allpass filters to Lattice allpass

Refer to "FilterStructure" on page 8-46 for details about each of these structures.

Converting Filters to Second-Order Sections Form

To learn about using FDATool to convert your quantized filter to use second-order sections, refer to "Converting to Second-Order Sections" in your Signal Processing Toolbox documentation. You might notice that filters you design in FDATool, rather than filters you imported, are implemented in SOS form.

To View Filter Structures in FDATool

To open the demonstration, click Help -> Show filter structures. After the Help browser opens, you see the reference page for the current filter. You find the filter structure signal flow diagram on this reference page, or you can navigate to reference pages for other filter.

Scaling Second-Order Section Filters

FDATool provides the ability to scale SOS filters after you create them. Using options on the Reordering and Scaling Second-Order Sections dialog, FDATool scales either or both the filter numerators and filter scale values according to your choices for the scaling options.

$\left.\left.\left.\begin{array}{ll}\hline \text { Parameter } & \text { Description and Valid Value } \\ \hline \text { Scale } & \begin{array}{l}\text { Apply any scaling options to the filter. } \\ \text { Select this when you are reordering your } \\ \text { SOS filter and you want to scale it at the } \\ \text { same time. Or when you are scaling your } \\ \text { filter, with or without reordering. Scaling } \\ \text { is disabled by default. }\end{array} \\ \hline \text { No Overflow-High SNR } & \begin{array}{l}\text { Lets you set whether scaling favors } \\ \text { reducing arithmetic overflow in the filter } \\ \text { slider maximizing the signal-to-noise ratio } \\ \text { (SNR)) at the filter output. Moving the }\end{array} \\ \text { slider to the right increases the } \\ \text { emphasis on SNR at the expense of } \\ \text { possible overflows. }\end{array}\right\} \begin{array}{l}\text { The markings indicate the P-norm } \\ \text { applied to achieve the desired result in }\end{array}\right\} \begin{array}{l}\text { SNR or overflow protection. For more } \\ \text { information about the P-norm settings, } \\ \text { refer to norm for details. }\end{array}\right\}$

Parameter	Description and Valid Value
Overflow Mode	Sets the way the filter handles arithmetic overflow situations during scaling. Choose from either saturate (limit the output to the largest positive or negative representable value) or wrap (set overflowing values to the nearest representable value using modular arithmetic.
Scale Value Constraint	Specify whether to constrain the filter scale values, and how to constrain them. Valid options are none, power of 2, and unit. Choosing unit for the constraint disables the Max. Scale Value setting and limits scale values to one.
	Power of 2 constrains the scale values to be powers of 2, such as 2 or 0.5, while none removes any constraint on the scale
values.	

Various combinations of settings let you scale filter numerators without changing the scale values, or adjust the filter scale values without changing the numerators. There is no scaling control for denominators.

Example-Scale An SOS Filter

Start the process by designing a lowpass elliptical filter in FDATool.
1 Launch FDATool.
2 In Response Type, select Lowpass.
3 In Design Method, select IIR and Elliptic from the IIR design methods list.
4 Select Minimum Order for the filter.
5 Switch the frequency units by choosing Normalized (0 to 1) from the Units list.

6 To set the passband specifications, enter 0.45 for wpass and 0.55 for wstop. Finally, in Magnitude Specifications, set Astop to 60.

7 Click Design Filter to design the filter.
After FDATool finishes designing the filter, you see the following plot and settings in the tool.

You kept the Options setting for Match exactly as both, meaning the filter design matches the specification for the passband and the stopband.

8 To switch to scaling the filter, select Edit—>Reorder and Scale Second-Order Sections from the menu bar.

Your selection opens the Reordering and Scaling Second-Order Sections dialog shown here.

9 To see the filter coefficients, return to FDATool and select Filter Coefficients from the Analysis menu. FDATool displays the coefficients and scale values in FDATool.

```
_ Filter Coefficients
```

| Sos matrix: | l. | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1.729397029770226 | 1 | 1 | -1.087129242767174 | 0.418972372994757 |
| 1 | 0.748473366528337 | 1 | 1 | -0.590169079330449 | 0.709160377407721 |
| 1 | 0.318456238149725 | 1 | 1 | -0.304359210053485 | 0.922024429931248 |
| Scale Factors: | | | | | |
| 0.079303838869308 | | | | | |
| 0.407131941573331 | | | | | |
| 0.697733773559928 | | | | | |
| 1.000000000000000 | | | | | |

With the coefficients displayed you can see the effects of scaling your filter directly in the scale values and filter coefficients.
Now try scaling the filter in a few different ways. First scale the filter to maximize the SNR.

1 Return to the Reordering and Scaling Second-Order Sections dialog and select None for Reordering in the left pane. This prevents FDATool from reordering the filter sections when you rescale the filter.

2 Move the No Overflow-High SNR slider from No Overflow to High SNR.
3 Click Apply to scale the filter and leave the dialog open.
After a few moments, FDATool updates the coefficients displayed so you see the new scaling, as shown here.

Coefficients

All of the scale factors are now 1, and the SOS matrix of coefficients shows that none of the numerator coefficients are 1 and the first denominator coefficient of each section is 1 .

4 Click Revert to Original Filter to restore the filter to the original settings for scaling and coefficients.

Reordering the Sections of Second-Order Section Filters

FDATool design most discrete-time filters in second-order sections. Generally, SOS filters resist the effects of quantization changes when you create fixed-point filters. After you have a second-order section filter in FDATool, either one you designed in the tool, or one you imported, FDATool provides the capability to change the order of the sections that compose the filter.

Any SOS filter in FDATool allows reordering of the sections.

Switching FDATool to Reorder Filters

To reorder the sections of a filter, you access the Reorder and Scaling of Second-Order Sections dialog in FDATool.
With your SOS filter in FDATool, select
Edit \longrightarrow Reorder and Scale Second-Order Sections from the menu bar. FDATool returns the reordering dialog shown here with the default settings.

Controls on the Reordering and Scaling of Second-Order Sections Dialog

In this dialog, the left-hand side contains options for reordering SOS filters. On the right you see the scaling options. These are independent-reordering your filter does not require scaling (note the Scale option) and scaling does not require that you reorder your filter (note the None option under Reordering). For more about scaling SOS filters, refer to "Scaling Second-Order Section Filters" on page 7-32 and to scale in the reference section.

Reordering SOS filters involves using the options in the Reordering and Scaling of Second-Order Sections dialog. The following table lists each reorder option and provides a description of what the option does.

Control Option	Description
Auto	Reorders the filter sections to minimize the output noise power of the filter. Note that different ordering applies to each specification type, such as lowpass or highpass. Automatic ordering adapts to the specification type of your filter.
None	Does no reordering on your filter. Selecting None lets you scale your filter without applying reordering at the same time. When you access this dialog with a current filter, this is the default setting-no reordering is applied.
Least selective section to most selective section	Rearranges the filter sections so the least restrictive (lowest Q) section is the first section and the most restrictive (highest Q) section is the last section.
Most selective section to least selective section	Rearranges the filter sections so the most restrictive (highest Q) section is the first section and the least restrictive (lowest Q) section is the last section.
Custom reordering	Lets you specify the section ordering to use by enabling the Numerator Order and
Numerator Order	Denominator Order options
Specify new ordering for the sections of your	
SOS filter. Enter a vector of the indices of the	
sections in the order in which to rearrange	
them. For example, a filter with five sections	
has indices 1, 2, 3, 4, and 5. To switch the	
second and fourth sections, the vector would be	
[1,4,3,2,5].	

$\left.\begin{array}{l|l}\hline \text { Control Option } & \text { Description } \\ \hline \text { Use Numerator Order } & \begin{array}{l}\text { Rearranges the denominators in the order } \\ \text { assigned to the numerators. }\end{array} \\ \hline \text { Specify } & \begin{array}{l}\text { Lets you specify the order of the denominators, } \\ \text { rather than using the numerator order. Enter } \\ \text { a vector of the indices of the sections to specify } \\ \text { the order of the denominators to use. For } \\ \text { example, a filter with five sections has indices } \\ 1,2,3,4, \text { and } 5 . \text { To switch the second and } \\ \text { fourth sections, the vector would be [1,4,3,2,5]. }\end{array} \\ \hline \text { Use Numerator Order } & \begin{array}{l}\text { Reorders the scale values according to the } \\ \text { order of the numerators. }\end{array} \\ \hline \text { Specify } & \begin{array}{l}\text { Lets you specify the order of the scale values, } \\ \text { rather than using the numerator order. Enter } \\ \text { a vector of the indices of the sections to specify } \\ \text { the order of the denominators to use. For } \\ \text { example, a filter with five sections has indices }\end{array} \\ 1,2,3,4, \text { and 5. To switch the second and } \\ \text { fourth sections, the vector would be [1,4,3,2,5]. }\end{array}\right\}$

Example-Reorder an SOS Filter

With FDATool open and a second-order filter as the current filter, you use the following process to access the reordering capability and reorder you filter. Start by launching FDATool from the command prompt.

1 Enter fdatool at the command prompt to launch FDATool.
2 Design a lowpass Butterworth filter with order 10 and the default frequency specifications by entering the following settings:

- Under Response Type select Lowpass.
- Under Design Method, select IIR and Butterworth from the list.
- Specify the order equal to 10 in Specify order under Filter Order.
- Keep the default Fs and Fc values in Frequency Specifications.

3 Click Design Filter.

FDATool design the Butterworth filter and returns your filter as a Direct-Form II filter implemented with second-order sections. You see the specifications in the Current Filter Information area.

With the second-order filter in FDATool, reordering the filter uses the Reordering and Scaling of Second-Order Sections feature in FDATool (also available in Filter Visualization Tool, fvtool).

4 To reorder your filter, select Edit—>Reorder and Scale Second-Order Sections from the FDATool menus. FDATool opens the following dialog that controls reordering of the sections of your filter.

Now you are ready to reorder the sections of your filter. Note that FDATool performs the reordering on the current filter in the session.

Use Least Selective to Most Selective Section Reordering

To let FDATool reorder your filter so the least selective section is first and the most selective section is last, perform the following steps in the Reordering and Scaling of Second-Order Sections dialog.

1 In Reordering, select Least selective section to most selective section.
2 To prevent filter scaling at the same time, clear Scale in Scaling.
3 In FDATool, select View \rightarrow SOS View from the menu bar so you see the sections of your filter displayed in FDATool.

4 In the SOS View dialog, select Individual sections. Making this choice configures FDATool to show the magnitude response curves for each section of your filter in the analysis area.

5 Back in the Reordering and Scaling of Second-Order Sections dialog, click Apply to reorder your filter according to the Qs of the filter sections, and keep the dialog open. In response, FDATool presents the responses for each filter section (there should be five sections) in the analysis area.

In the next two figures you can compare the ordering of the sections of your filter. In the first figure, your original filter sections appear. In the second figure, the sections have been rearranged from least selective to most selective.

You see what reordering does, although the result is a bit subtle. Now try custom reordering the sections of your filter or using the most selective to least selective reordering option.

Viewing SOS Filter Sections

Since you can design and reorder the sections of SOS filters, FDATool provides the ability to view the filter sections in the analysis area-SOS View. Once you have a second-order section filter as your current filter in FDATool, you turn on the SOS View option to see the filter sections individually, or cumulatively, or even only some of the sections. Enabling SOS View puts FDATool in a mode where all second-order section filters display sections until you disable the SOS View option. SOS View mode applies to any analysis you display in the analysis area. For example, if you configure FDATool to show the phase responses for filters, enabling SOS View means FDATool displays the phase response for each section of SOS filters.

Controls on the SOS View Dialog

SOS View uses a few options to control how FDATool displays the sections, or which sections to display. When you select View \rightarrow SOS View from the FDATool menu bar, you see this dialog containing options to configure SOS View operation.

4 Sos view			- - $\square^{\text {a }}$ x	
[Sos View				
Coverall fiter				
C Individual sections				
C Cumulative sections				
\bigcirc User defined				
\{1, 1:2				
Г Use secondary-scaling points				
OK	Cancel	Help	Apply	

By default, SOS View shows the overall response of SOS filters. Options in the SOS View dialog let you change the display. This table lists all the options and describes the effects of each.
$\left.\begin{array}{l|l}\hline \text { Option } & \text { Description } \\ \hline \text { Overall Filter } & \begin{array}{l}\text { This is the familiar display in FDATool. } \\ \text { For a second-order section filter you see } \\ \text { only the overall response rather than the } \\ \text { responses for the individual sections. This } \\ \text { is the default configuration. }\end{array} \\ \hline \text { Individual sections } & \begin{array}{l}\text { When you select this option, FDATool } \\ \text { displays the response for each section as a } \\ \text { curve. If your filter has five sections you } \\ \text { see five response curves, one for each } \\ \text { section, and they are independent. } \\ \text { Compare to Cumulative sections. }\end{array} \\ & \begin{array}{l}\text { When you select this option, FDATool } \\ \text { displays the response for each section as } \\ \text { the accumulated response of all prior } \\ \text { sections in the filter. If your filter has five } \\ \text { sections you see five response curves: }\end{array} \\ \hline \text { Cumulative sections } & \begin{array}{l}\text { - The first curve plots the response for the }\end{array} \\ & \text { first filter section. } \\ \text { - The second curve plots the response for } \\ \text { the combined first and second sections. }\end{array}\right\}$

Option	Description
User defined	Here you define which sections to display, and in which order. Selecting this option enables the text box where you enter a cell array of the indices of the filter sections.
	Each index represents one section. Entering one index plots one response. Entering something like $1: 2\}$ plots the combined response of sections 1 and 2. If you have a filter with four sections, the entry \{1:4\} plots the combined response for all four sections, whereas $\{1,2,3,4\}$ plots the response for each section.
	Note that after you enter the cell array, you need to click OK or Apply to update the FDATol analysis area to the new SOS View configuration.
Use secondary-scaling points	This directs FDATool

Example-View the Sections of SOS Filters

After you design or import an SOS filter in to FDATool, the SOS view option lets you see the per section performance of your filter. Enabling SOS View from the View menu in FDATool configures the tool to display the sections of SOS filters whenever the current filter is an SOS filter.

These next steps demonstrate using SOS View to see your filter sections displayed in FDATool.

1 Launch FDATool.

2 Create a lowpass SOS filter using the Butterworth design method. Specify the filter order to be 6 . Using a low order filter makes seeing the sections more clear.

3 Design your new filter by clicking Design Filter.
FDATool design your filter and show you the magnitude response in the analysis area. In Current Filter Information you see the specifications for your filter. You should have a sixth-order Direct-Form II, Second-Order Sections filter with three sections.

4 To enable SOS View, select View \rightarrow SOS View from the menu bar.
Now you see the SOS View dialog in FDATool. Options here let you specify how to display the filter sections.

By default the analysis area in FDATool shows the overall filter response, not the individual filter section responses. This dialog lets you change the display configuration to see the sections.

5 To see the magnitude responses for each filter section, select Individual sections.

6 Click Apply to update FDATool to display the responses for each filter section. The analysis area changes to show you something like the following figure.

If you switch FDATool to display filter phase responses, you see the phase response for each filter section in the analysis area.

7 To define your own display of the sections, you use the User defined option and enter a vector of section indices to display. Now we display the first section response, and the cumulative first, second. and third sections response:

- Select User defined to enable the text entry box in the dialog.
- Enter the cell array $\{1,1: 3\}$ to specify that FDATool should display the response of the first section and the cumulative response of the first three sections of the filter.

8 To apply your new SOS View selection, click Apply or OK (which closes the SOS View dialog).

In the FDATool analysis area you see two curves-one for the response of the first filter section and one for the combined response of sections 1,2 , and 3.

Magnitude Response (dB)

Importing and Exporting Quantized Filters

When you import a quantized filter into FDATool, or export a quantized filter from FDATool to your workspace, the import and export functions use objects and you specify the filter as a variable. This contrasts with importing and exporting nonquantized filters, where you select the filter structure and enter the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace, exporting them to text files, or exporting them to MAT-files.

This section includes:

- "Example-Import Quantized Filters"
- "To Export Quantized Filters"

For general information about importing and exporting filters in FDATool, refer to "Filter Design and Analysis Tool" section in your Signal Processing Toolbox User's Guide.

FDATool imports quantized filters having the following structures:

- Direct form I
- Direct form II
- Direct form I transposed
- Direct form II transposed
- Direct form symmetric FIR
- Direct form antisymmetric FIR
- Lattice allpass
- Lattice AR
- Lattice MA minimum phase
- Lattice MA maximum phase
- Lattice ARMA
- Lattice coupled-allpass
- Lattice coupled-allpass power complementary

Example-Import Quantized Filters

After you design or open a quantized filter in your MATLAB workspace, FDATool lets you import the filter for analysis. Follow these steps to import your filter in to FDATool:

1 Open FDATool.
2 Select Filter->Import Filter from the menu bar.
In the lower region of FDATool, the Design Filter pane becomes Import Filter, and options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Filter object.
The options for importing filters change to include:

- Discrete filter-Enter the variable name for the discrete-time, fixed-point filter in your workspace.
- Frequency units-Select the frequency units from the Units list under Sampling Frequency, and specify the sampling frequency value in $\mathbf{F s}$ if needed. Your sampling frequency must correspond to the units you select. For example, when you select Normalized (0 to 1), Fs defaults to one. But if you choose one of the frequency options, enter the sampling
frequency in your selected units. If you have the sampling frequency defined in your workspace as a variable, enter the variable name for the sampling frequency.

4 Click Import to import the filter.
FDATool checks your workspace for the specified filter. It imports the filter if it finds it, displaying the magnitude response for the filter in the analysis area. If it cannot find the filter it returns an FDATool Error dialog.

Note If, during any FDATool session, you switch to quantization mode and create a fixed-point filter, FDATool remains in quantization mode. If you import a double-precision filter, FDATool automatically quantizes your imported filter applying the most recent quantization parameters.

When you check the current filter information for your imported filter, it will indicate that the filter is Source: imported (quantized) even though you did not import a quantized filter.

To Export Quantized Filters

To save your filter design, FDATool lets you export the quantized filter to your MATLAB workspace (or you can save the current session in FDATool). When you choose to save the quantized filter by exporting it, you select one of these options:

- Export to your MATLAB workspace
- Export to a text file
- Export to a MAT-file

Example-Export Coefficients or Objects to the Workspace

You can save the filter as filter coefficients variables or as a dfilt filter object variable. To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog appears.
2 Select Workspace from the Export To list.

3 Select Coefficients from the Export As list to save the filter coefficients or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and Denominator options under Variable Names. For objects, assign the variable name in the Discrete or Quantized filter option. If you have variables with the same names in your workspace and you want to overwrite them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your workspace, and you did not select Overwrite existing variables, FDATool stops the export operation and returns a warning that the variable you specified as the quantized filter name already exists in the workspace. To continue to export the filter to the existing variable, click OK to dismiss the warning dialog, select the Overwrite existing variables check box and click OK or Apply.

Getting Filter Coefficients after Exporting

To extract the filter coefficients from your quantized filter after you export the filter to MATLAB, use the celldisp function in MATLAB. For example, create a quantized filter in FDATool and export the filter as Hq. To extract the filter coefficients for Hq, use

```
celldisp(Hq.referencecoefficients)
```

which returns the cell array containing the filter reference coefficients, or

```
celldisp(Hq.quantizedcoefficients)
```

to return the quantized coefficients.

Example-Exporting as a Text File

To save your quantized filter as a text file, follow these steps:
1 Select Export from the File menu.
2 Select Text-file under Export to.

3 Click OK to export the filter and close the dialog. Click Apply to export the filter without closing the Export dialog. Clicking Apply lets you export your quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to Text-file dialog appears. This is the standard Microsoft Windows save file dialog.

4 Choose or enter a directory and filename for the text file and click OK.
FDATool exports your quantized filter as a text file with the name you provided, and the MATLAB editor opens, displaying the file for editing.

Example-Exporting as a MAT-File

To save your quantized filter as a MAT-file, follow these steps:
1 Select Export from the File menu.
2 Select MAT-file under Export to.
3 Assign a variable name for the filter.
4 Click OK to export the filter and close the dialog. Click Apply to export the filter without closing the Export dialog. Clicking Apply lets you export your quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to MAT-file dialog appears. This is the standard Microsoft Windows save file dialog.

5 Choose or enter a directory and filename for the text file and click OK.
FDATool exports your quantized filter as a MAT-file with the specified name.

Importing XILINX Coefficient (.COE) Files

You can import XILINX coefficients (.coe) files into FDATool to create quantized filters directly using the imported filter coefficients.

Example-Import XILINX .COE Files

To use the new import file feature:
1 Select File->Import Filter From XILINX Coefficient (.COE) File in FDATool.

2 In the Import Filter From XILINX Coefficient (.COE) File dialog, find and select the .coe file to import.

3 Click Open to dismiss the dialog and start the import process.
FDATool imports the coefficient file and creates a quantized, single-section, direct-form FIR filter.

Transforming Filters

The toolbox provides functions for transforming filters between various forms. When you use FDATool with the Toolbox installed, a side bar button and a menu bar option enable you to use the Transform Filter panel to transform filters as well as using the command line functions.

From the selection on the FDATool menu bar-Transformations-you can transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

- Lowpass to lowpass.
- Lowpass to highpass.

For IIR filters, you can convert from:

- Lowpass to lowpass.
- Lowpass to highpass.
- Lowpass to bandpass.
- Lowpass to bandstop.

When you click the Transform Filter button, 범 , on the side bar, the Transform Filter panel opens in FDATool, as shown here.

- Frequency Transformations					
Original filter type:	Lowpass	\square	Transformed filter type:	Lowpass	\checkmark
Frequency point to transform:	9.6	kHz	Specify desired frequency location:	7.2	kHz
Transform Filter					

Your options for Original filter type refer to the type of your current filter to transform. If you select lowpass, you can transform your lowpass filter to another lowpass filter or to a highpass filter, or to numerous other filter formats, real and complex.

Note When your original filter is an FIR filter, both the FIR and IIR transformed filter type options appear on the Transformed filter type list. Both options remain active because you can apply the IIR transforms to an FIR filter. If your source is as IIR filter, only the IIR transformed filter options show on the list.

Original Filter Type

Select the magnitude response of the filter you are transforming from the list. Your selection changes the types of filters you can transform to. For example:

- When you select Lowpass with an IIR filter, your transformed filter type can be
- Lowpass
- Highpass
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)
- When you select Lowpass with an FIR filter, your transformed filter type can be
- Lowpass
- Lowpass (FIR)
- Highpass
- Highpass (FIR) narrowband
- Highpass (FIR) wideband
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

In the following table you see each available original filter type and all the types of filter to which you can transform your original.

Original Filter	Available Transformed Filter Types
Lowpass FIR	\bullet Lowpass
	\bullet Lowpass (FIR)
	\bullet Highpass
	\bullet Highpass (FIR) narrowband
	\bullet Highpass (FIR) wideband
	\bullet Bandpass
	\bullet Bandstop
	\bullet Multiband
	\bullet Bandpass (complex)
	\bullet Bandstop (complex)
	\bullet Multiband (complex)
	\bullet Lowpass
	\bullet Highpass
	\bullet Bandpass
	\bullet Bandstop
	\bullet Multiband
	\bullet Bandpass (complex)
	\bullet Bandstop (complex)
	\bullet Multiband (complex)

Original Filter	Available Transformed Filter Types
Highpass FIR	- Lowpass - Lowpass (FIR) narrowband - Lowpass (FIR) wideband - Highpass (FIR) - Highpass - Bandpass - Bandstop - Multiband - Bandpass (complex) - Bandstop (complex) - Multiband (complex)
Highpass IIR	- Lowpass - Highpass - Bandpass - Bandstop - Multiband - Bandpass (complex) - Bandstop (complex) - Multiband (complex)
Bandpass FIR	- Bandpass - Bandpass (FIR)
Bandpass IIR	Bandpass
Bandstop FIR	- Bandstop - Bandstop (FIR)
Bandstop IIR	Bandstop

Note also that the transform options change depending on whether your original filter is FIR or IIR. Starting from an IIR filter, you can transform to IIR or FIR forms. With an IIR original filter, you are limited to IIR target filters.

After selecting your response type, use Frequency point to transform to specify the magnitude response point in your original filter to transfer to your target filter. Your target filter inherits the performance features of your original filter, such as passband ripple, while changing to the new response form.

For more information about transforming filters, refer to "Frequency Transformations for Real Filters" on page 6-11 and "Frequency Transformations for Complex Filters" on page 6-26.

Frequency Point To Transform

The frequency point you enter in this field identifies a magnitude response value (in dB) on the magnitude response curve.

When you enter frequency values in the Specify desired frequency location option, the frequency transformation tries to set the magnitude response of the transformed filter to the value identified by the frequency point you enter in this field.

While you can enter any location, generally you should specify a filter passband or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values you enter in Specify desired frequency location. Specify a value that lies at either the edge of the stopband or the edge of the passband. If, for example, you are creating a bandpass filter from a highpass filter, the transformation algorithm sets the magnitude response of the transformed filter at the Specify desired frequency location to be the same as the response at the Frequency point to transform value. Thus you get a bandpass filter whose response at the low and high frequency locations is the same. Notice that the passband between them is undefined. In the next two figures you see the original highpass filter and the transformed bandpass filter.

For more information about transforming filters, refer to "Digital Frequency Transformations" on page 6-1.

Transformed Filter Type

Select the magnitude response for the target filter from the list. The complete list of transformed filter types is:

- Lowpass
- Lowpass (FIR)
- Highpass
- Highpass (FIR) narrowband
- Highpass (FIR) wideband
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

Not all types of transformed filters are available for all filter types on the Original filter types list. You can transform bandpass filters only to bandpass filters. Or bandstop filters to bandstop filters. Or IIR filters to IIR filters.

For more information about transforming filters, refer to "Frequency Transformations for Real Filters" on page 6-11 and "Frequency Transformations for Complex Filters" on page 6-26.

Specify Desired Frequency Location

The frequency point you enter in Frequency point to transform matched a magnitude response value. At each frequency you enter here, the transformation tries to make the magnitude response the same as the response identified by your Frequency point to transform value.
While you can enter any location, generally you should specify a filter passband or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to "Digital Frequency Transformations" on page 6-1.

Example-Transform Filters

To transform the magnitude response of your filter, use the Transform Filter option on the side bar.

1 Design or import your filter into FDATool.

FDATool opens the Transform Filter panel in FDATool.

- Frequency Transformations					
Original filter type:	Lowpass	\square	Transformed filter type:	Lowpass	\square
Frequency point to transform:	9.6	kHz	Specify desired frequency location:	7.2	kHz
Transform Filter					

3 From the Original filter type list, select the response form of the filter you are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or bandstop, FDATool recognizes whether your filter form is FIR or IIR. Using both your filter type selection and the filter form, FDATool adjusts the entries on the Transformed filter type list to show only those that apply to your original filter.

4 Enter the frequency point to transform value in Frequency point to transform. Notice that the value you enter must be in KHz ; for example, enter 0.1 for 100 Hz or 1.5 for 1500 Hz .

5 From the Transformed filter type list, select the type of filter you want to transform to.

Your filter type selection changes the options here.

- When you pick a lowpass or highpass filter type, you enter one value in Specify desired frequency location.
- When you pick a bandpass or bandstop filter type, you enter two valuesone in Specify desired low frequency location and one in Specify desired high frequency location. Your values define the edges of the passband or stopband.
- When you pick a multiband filter type, you enter values as elements in a vector in Specify a vector or desired frequency locations- one element for each desired location. Your values define the edges of the passbands and stopbands.
After you click Transform Filter, FDATool transforms your filter, displays the magnitude response of your new filter, and updates the Current Filter Information to show you that your filter has been transformed. In the filter information, the Source is Transformed. For example, the figure shown here includes the magnitude response curves for two filter. The original filter is a lowpass filter with rolloff between 0.2 and 0.25 . The transformed filter is a lowpass filter with rolloff region between 0.8 and 0.85 .

- To transform your lowpass filter to a highpass filter, select Lowpass to Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog shown here. More information about the Select Transform... dialog follows the figure.

To demonstrate the effects of selecting Narrowband Highpass or Wideband Highpass, the next figure presents the magnitude response curves for a source lowpass filter after it is transformed to both narrow- and wideband highpass filters. For comparison, the response of the original filter appears as well.

For the narrowband case, the transformation algorithm essentially reverses the magnitude response, like reflecting the curve around the y-axis, then translating the curve to the right until the origin lies at 1 on the x-axis. After reflecting and translating, the passband at high frequencies is the reverse of the passband of the original filter at low frequencies with the same rolloff and ripple characteristics.

Designing Multirate Filters in FDATool

Not only can you design multirate filters from the MATLAB command prompt, FDATool provides the same design capability in a graphical user interface tool. By starting FDATool and switching to the multirate filter design mode you have access to all of the multirate design capabilities in the toolboxdecimators, interpolators, and fractional rate changing filters, among others.

Switching FDATool to Multirate Filter Design Mode

The multirate filter design mode in FDATool lets you specify and design a wide range of multirate filters, including decimators and interpolators.

With FDATool open, click Create a Multirate Filter, 国, on the side bar. You see FDATool switch to the design mode showing the multirate filter design options. Shown in the figure below is the default multirate design configuration that designs an interpolating filter with an interpolation factor of 2 . The design uses the current FIR filter in FDATool.

When the current filter in FDATool is not an FIR filter, the multirate filter design panel removes the Use current FIR filter option and selects the Use default Nyquist FIR filter option instead as the default setting.

Controls on the Multirate Design Panel

You see the options that allow you to design a variety of multirate filters. The Type option is your starting point. From this list you select the multirate filter to design. Based on your selection, other options change to provide the controls you need to specify your filter.

Notice the separate sections of the design panel. On the left is the filter type area where you choose the type of multirate filter to design and set the filter performance specifications.
In the center section FDATool provides choices that let you pick the filter design method to use.

The rightmost section offers options that control filter configuration when you select Cascaded-Integrator Comb (CIC) as the design method in the center section. Both the Decimator type and Interpolator type filters let you use the Cascaded-Integrator Comb (CIC) option to design multirate filters.
Here are all the options available when you switch to multirate filter design mode. Each option listed includes a brief description of what the option does when you use it.

Options for Selecting and Configuring Your Filter

$\left.\left.\begin{array}{l|l}\hline \text { Option } & \text { Description } \\ \hline \text { Type } & \begin{array}{l}\text { Specifies the type of multirate filter to design. Choose from } \\ \text { Decimator, Interpolator, or Fractional-rate convertor. } \\ \text { - When you choose Decimator, set Decimation Factor to specify the } \\ \text { decimation to apply. }\end{array} \\ \text { - When you choose Interpolator, set Interpolation Factor to } \\ \text { specify the interpolation amount applied. } \\ \text { - When you choose Fractional - rate convertor, set both } \\ \text { Interpolation Factor and Decimation Factor. FDATool uses both } \\ \text { to determine the fractional rate change by dividing Interpolation } \\ \text { Factor by Decimation Factor to determine the fractional rate } \\ \text { change in the signal. }\end{array}\right\} \begin{array}{l}\text { You should select values for interpolation and decimation that are } \\ \text { relatively prime. When your interpolation factor and decimation } \\ \text { factor are not relatively prime, FDATool reduces the } \\ \text { interpolation/decimation fractional rate to the lowest common } \\ \text { denominator and issues a message in the status bar in FDATool. }\end{array}\right\}$

Option	Description
Units	Specify whether Fs is specified in Hz, kHz, MHz, GHz, or Normalized (0 to 1) units.
Fs	Set the full scale sampling frequency in the frequency units you specified in Units. When you select Normalized for Units, you do not enter a value for Fs.

Options for Designing Your Filter

Option	Description
Use current FIR filter	Directs FDATool to use the current FIR filter to design the multirate filter. If the current filter is an IIR form, you cannot select this option. For an IIR filter, the multirate design process uses either a Nyquist filter, one of the CIC filter options, or designs an interpolator.
Use a default Nyquist Filter	Tells FDATool to use the default Nyquist design method when the current filter in FDATool is not an FIR filter.
Cascaded Integrator-Comb (CIC)	Design CIC filters using the options provided in the right-hand area of the multirate design panel.

Option	Description
Hold Interpolator (Zero-order)	When you design an interpolator, you can specify how the filter sets interpolated values between signal values. When you select this option, the interpolator applies the most recent signal value for each interpolated value until it processes the next signal value. This is similar to sample-and-hold techniques. Compare to the Linear Interpolator option.
	When you design an interpolator, Linear Interpolator (First-order) ynterpolated values between signal values. When you select this option, therpolator applies linear interpolation between signal value to set the interpolated value until it processes the next signal value. Compare to the Linear Interpolator option.

To see the difference between hold interpolation and linear interpolation, the following figure presents a sine wave signal s1 in three forms:

- The top subplot in the figure presents s 1 without interpolation.
- The middle subplot shows signal s1 interpolated by a linear interpolator with an interpolation factor of 5 .
- The bottom subplot shows signal s1 interpolated by a hold interpolator with an interpolation factor of 5 .

You see in the bottom figure the sample and hold nature of hold interpolation, and the first-order linear interpolation applied by the linear interpolator.

We used FDATool to create interpolators similar to the following code for the figure:

- Linear interpolator—hm=mfilt.linearinterp(5)
- Hold interpolator-hm=mfilt.holdinterp(5)

Options for Designing CIC Filters

Option	Description
Differential Delay	Sets the differential delay for the CIC filter. Usually a value of one or two is appropriate.
Number of Sections	Specifies the number of sections in a CIC decimator. The default number of sections is 2 and the range is any positive integer.
Input Word Length	Specifies the word length in bits of the input samples to the CIC filter. Usually 8, 16, or 32 bits. 16 bits is the default value.
Output Word Length	Specifies the word length in bits of the output samples after filtering by the CIC filter. Ranging from 1 to 32 bits, the default is 16 bits.
Bits Per Section	Defines the number of bits per stage used while accumulating the data in the integrator stages or while subtracting the data during the comb stages (using wrap arithmetic) of a CIC decimator. Enter a positive integer number of bits. The default is 16 for each stage in the decimator. Applies only when you design CIC decimators (the
Filter Type is Decimator).	

Example-Design a Fractional Rate Convertor

To introduce the process you use to design a multirate filter in FDATool, this example uses the options to design a fractional rate convertor which uses $7 / 3$ as the fractional rate. Begin the design by creating a default lowpass FIR filter in FDATool. You do not have to begin with this FIR filter, but the default filter works fine.

1 Launch FDATool.
2 Select the settings for a minimum-order lowpass FIR filter, using the Equiripple design method.

3 When FDATool displays the magnitude response for the filter, click in the side bar. FDATool switches to multirate filter design mode, showing the multirate design panel, shown here.

4 To design a fractional rate filter, select Fractional-rate convertor from the Type list. The Interpolation Factor and Decimation Factor options become available.

5 In Interpolation Factor, use the up arrow to set the interpolation factor to 7 .

6 Using the up arrow in Decimation Factor, set 3 as the decimation factor.

7 Select Use a default Nyquist FIR filter. You could design the rate convertor with the current FIR filter as well.

8 Enter 24000 to set Fs.
9 Click Design Multirate Filter.
After designing the filter, FDATool returns with the specifications for your new filter displayed in Current Filter Information, and shows the magnitude response of the filter.

You can test the filter by exporting it to your workspace and using it to filter a signal. For information about exporting filters, refer to "Importing and Exporting Quantized Filters" on page 7-55.

Example—Design a CIC Decimator for 8 Bit Input/Output Data

Another kind of filter you can design in FDATool is Cascaded-Integrator Comb (CIC) filters. FDATool provides the options needed to configure your CIC to meet your needs.

1 Launch FDATool and design the default FIR lowpass filter. Designing a filter at this time is an optional step.

2 Switch FDATool to multirate design mode by clicking on the side bar.
3 For Type, select Decimator, and set Decimation Factor to 3.
4 To design the decimator using a CIC implementation, select Cascaded-Integrator Comb (CIC). This enables the CIC-related options on the right of the panel.

5 Set Differential Delay to 2. Generally, 1 or 2 are good values to use.
6 Enter 8 for the Input Word Length and Output Word Length.
7 For Bits Per Section, enter 8. Settings in the multirate design panel should look like this.

8 Click Design Multirate Filter.

FDATool designs the filter, shows the magnitude response in the analysis area, and updates the current filter information to show that you designed a tenth-order cascaded-integrator comb decimator with two sections. Notice the source is Multirate Design, indicating you used the multirate design mode in FDATool to make the filter. FDATool should look like this now.

Designing other multirate filters follows the same pattern.

To design a multirate filter from an IIR prototype rather than from an FIR filter, do one of the following depending on the filter to design:

- To design an interpolator, select one of these options.
- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)
- Hold Interpolator (Zero-order)
- Linear Interpolator (First-order)
- To design a decimator, select from these options.
- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)
- To design a fractional-rate convertor, select Use a default Nyquist FIR filter. This is the only options for designing a rate convertor from an IIR prototype.

Realizing Filters as Simulink Subsystem Blocks

After you design or import a filter in FDATool, the realize model feature lets you create a Simulink subsystem block that implements your filter. The generated filter subsystem block uses the delay, gain, and sum blocks in fixedpoint mode from Simulink. If you do not own Simulink Fixed Point, FDATool still realizes your model using blocks in fixed-point mode from Simulink, but you cannot run any model that includes your filter subsystem block in Simulink.

About the Realize Model Panel in FDATool

Switching FDATool to realize model mode, by clicking 䄈兼 on the sidebar, gives you access to the Realize Model panel and the options for realizing your quantized filter as a Simulink subsystem block.

On the panel, as shown here, are the options provided for configuring how FDATool realizes your model.

Model Options

Under Model, you set options that direct FDATool where to put your new subsystem block and what to name the block.

Destination. Tells FDATool whether to put the new block in your current Simulink model or open a new Simulink model and add the block to that window. Select Current model to add the block to your current model, or select New model to create a new model for the block.

Block name. Provides FDATool with a name to assign to your block. When you realize your filter as a subsystem, the resulting block shows the name you enter here as the block name, positioned just below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block with this block in the destination model. The result is that the new filter realization subsystem block replaces the existing filter subsystem block. Selecting this option replaces your existing filter realization subsystem block with the one you create when you click Realize Model. Clearing Overwrite block causes FDATool to create a new block in the destination model, rather than replacing the existing block.

Block Type Option

To realize your quantized filter as a subsystem block, the most appropriate choice is to select Fixed-point blocks from the list. When you are licensed to use the fixed-point blocks in DSP Blockset, you have the option of realizing your model as either fixed- or floating-point blocks. Since your filter is designed to use quantized coefficients, the fixed-point blocks option usually matches your needs most closely.
You can elect to realize your filter using floating-point blocks, with the understanding that while the coefficients and gains of your filter retain their fixed-point values (the filter uses the fixed-point values for both gain and coefficients, in floating-point format), the math performed during filtering uses floating-point arithmetic and does not truly match the output of your filter running in fixed-point mode. Although realizing your quantized filter with floating-point blocks is not recommended, selecting Floating-point blocks from the list creates your filter from blocks in Simulink and the DSP Blockset.
If you do not own a license for the fixed-point blockset, realizing your quantized filter as a subsystem generates a subsystem block that uses fixed-point blocks, but you cannot run or edit the block. If you use the filter subsystem in a Simulink model, you cannot run the model.

Optimization Options

Four options enable you to tailor the way the realized model optimizes various filter features such as delays and gains. When you open the Realize Model panel, these options are selected by default.

Optimize for zero gains. Specify whether to remove zero-gain blocks from the realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks with direct connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain blocks with a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay blocks with a single integer delay block to provide an equivalent delay.
Each of these options can optimize the way your filter performs in simulation and in code you might generate from your model.

Example-Realize a Filter Using FDATool

After your quantized filter in FDATool is performing the way you want, with your desired phase and magnitude response, and with the right coefficients and form, follow these steps to realize your filter as a subsystem that you can use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model mode.

2 From the Destination list under Model, select either:

- Current model-to add the realized filter subsystem to your current model
- New model-to open a new Simulink model window and add your filter subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.
4 Decide whether to overwrite an existing block with this new one, and select or clear Overwrite block to direct FDATool which way to go-overwrite or not.

5 Select Fixed-point blocks from the list in Block Type.
6 Select or clear the optimizations to apply.

- Optimize for zero gains-removes zero gain blocks from the model realization
- Optimize for unity gains-replaces unity gain blocks with direct connections to adjacent blocks
- Optimize for -1 gains-replaces negative gain blocks by a change of sign at the nearest sum block
- Optimize delay chains-replaces cascaded delay blocks with a single delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the filter implementation in Simulink model form. Depending on the options you chose when you realized your filter, and the filter you started with, you might see one or more sections, or different architectures based on the form of your quantized filter. From this point on, the subsystem filter block acts like any other block that you use in Simulink models.

Getting Help for FDATool

To find out more about the buttons or options in the FDATool dialogs, use the What's This? button to access context-sensitive help.

Context-Sensitive Help-The What's This? Option

To find information on a particular option or region of the dialog:

1 Click the What's This? button 4?

Your cursor changes to $\$$?
2 Click on the region or option of interest.
For example, click Turn quantization on to find out what this option does.
You can also select What's this? from the Help menu to launch context-sensitive help.

Additional Help for FDATool

For help about importing filters into FDATool, or for details about using FDATool to create and analyze double-precision filters, refer to the "Filter Design and Analysis Tool Overview" in your Signal Processing Toolbox documentation.

Reference for the Properties of Filter Objects

Fixed-Point Filter Properties (p. 8-3)
Adaptive Filter Properties (p. 8-108)
Multirate Filter Properties (p. 8-122)

Provides an overview and details of the properties of fixed-point filters

Summarizes and details the properties of adaptive filters
Provides a summary and the details of the properties of multirate filters

Overview

This chapter presents all of the properties for adaptive filters (adaptfilt objects), discrete-time filters (both floating-point and fixed-point dfilt objects), and multirate filters (mfilt objects).

- "Fixed-Point Filter Properties" on page 8-3
- "Adaptive Filter Properties" on page 8-108
- "Multirate Filter Properties" on page 8-122

Fixed-Point Filter Properties

There is a distinction between fixed-point filters and quantized filtersquantized filters represent a superset that includes fixed-point filters.

When dfilt objects have their Arithmetic property set to single or fixed, they are quantized filters. However, after you set the Arithmetic property to fixed, the resulting filter is both quantized and fixed-point. Fixed-point filters perform arithmetic operations without allowing the binary point to move in response to the calculation-hence the name fixed-point. You can find out more about fixed-point arithmetic in your Fixed-Point Toolbox documentation or from the Help system.

With the Arithmetic property set to single, meaning the filter uses single-precision floating-point arithmetic, the filter allows the binary point to move during mathematical operations, such as sums or products. Therefore these filters cannot be considered fixed-point filters. But they are quantized filters.

This section presents the properties for fixed-point filters, which includes all the properties for double-precision and single-precision floating-point filters as well.

Fixed-Point Objects and Filters

Fixed-point filters depend in part on fixed-point objects from the Fixed-Point Toolbox. You can see this when you display a fixed-point filter at the command prompt.

```
hd=dfilt.df2t
hd =
    FilterStructure: 'Direct-Form II Transposed'
                    Arithmetic: 'double'
                    Numerator: 1
            Denominator: 1
        PersistentMemory: false
            States: [0x1 double]
        NumSamplesProcessed: 0
set(hd,'arithmetic','fixed')
```

```
hd
hd =
            FilterStructure: 'Direct-Form II Transposed'
                        Arithmetic: 'fixed'
                        Numerator: 1
            Denominator: 1
            PersistentMemory: false
                            States: [1x1 embedded.fi]
                NumSamplesProcessed: 0
                    CoeffWordLength: 16
                    CoeffAutoScale: true
                            Signed: true
                    InputWordLength: 16
                    InputFracLength: 15
                    OutputWordLength: 16
                    OutputFracLength: 15
                    StateWordLength: 16
                            StateAutoScale: true
            ProductMode: 'FullPrecision'
                    AccumMode: 'KeepMSB'
AccumWordLength: 40
    CastBeforeSum: true
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

Look at the States property, shown here
States: [1x1 embedded.fi]
The notation embedded.fi indicates that the states are being represented by fixed-point objects, usually called fi objects. If you take a closer look at the property States, you see how the properties of the fi object represent the values for the filter states.

```
hd.states
ans =
[]
                    DataType: Fixed
                            Scaling: BinaryPoint
                            Signed: true
                WordLength: 16
        FractionLength: 15
            RoundMode: round
            OverflowMode: saturate
                ProductMode: FullPrecision
MaxProductWordLength: 128
            SumMode: FullPrecision
        MaxSumWordLength: 128
            CastBeforeSum: true
```

To learn more about fi objects (fixed-point objects) in general, refer to your Fixed-Point Toolbox documentation. Commands like the following can help you get the information you are looking for:

```
    docsearch(fixed-point object)
docsearch(fi)
```

or

Either command opens the Help system and searches for information about fixed-point objects in the Fixed Point Toolbox.

As inputs (data to be filtered), fixed-point filters accept both regular double-precision values and fi objects. Which you use depends on your needs. How your filter responds to the input data is determined by the settings of the filter properties, discussed in the next few sections.

Summary—Fixed-Point Filter Properties

Discrete-time filters in this toolbox use objects that perform the filtering and configuration of the filter. As objects, they include properties and methods
(that we often call functions-not strictly the same as MATLAB functions but mostly so) to provide filtering capability. In discrete-time filters, or dfilt objects, many of the properties are dynamic, meaning they become available depending on the settings of other properties in the dfilt object or filter.

Dynamic Properties

When you use a dfilt.structure function to create a filter, MATLAB displays the filter properties in the command window in return (unless you end the command with a semicolon which suppresses the output display). Generally you see six or seven properties, ranging from the property FilterStructure to PersistentMemory. These first properties are always present in the filter. One of the most important properties is Arithmetic. The Arithmetic property controls all of the dynamic properties for a filter.

Dynamic properties become available when you change another property in the filter. For example, when you change the Arithmetic property value to fixed, the display now shows many more properties for the filter, all of them considered dynamic. Here is an example that uses a direct form II filter. First create the default filter:

```
hd=dfilt.df2
hd =
            FilterStructure: 'Direct-Form II'
            Arithmetic: 'double'
                Numerator: 1
            Denominator: 1
        PersistentMemory: false
            States: [0x1 double]
    NumSamplesProcessed: 0
```

With the filter hd in the workspace, convert the arithmetic to fixed-point. Do this by setting the property Arithmetic to fixed. Notice the display. Instead of a few properties, the filter now has many more, each one related to a particular part of the filter and its operation. Each of the now-visible properties is dynamic.

```
hd.arithmetic='fixed'
hd =
```

```
    FilterStructure: 'Direct-Form II'
    Arithmetic: 'fixed'
        Numerator: 1
        Denominator: 1
PersistentMemory: false
            States: [1x1 embedded.fi]
NumSamplesProcessed: 0
    CoeffWordLength: 16
    CoeffAutoScale: true
            Signed: true
    InputWordLength: 16
    InputFracLength: 15
OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
    StateWordLength: 16
    StateFracLength: 15
        ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
    AccumWordLength: 40
        CastBeforeSum: true
            RoundMode: 'convergent'
        OverflowMode: 'wrap'
```

Even this list of properties is not yet complete. Changing the value of other properties such as the ProductMode or CoeffAutoScale properties may reveal even more properties that control how the filter works. Remember this feature about dfilt objects and dynamic properties as you review the rest of this section about properties of fixed-point filters.

An important distinction is you cannot change the value of a property unless you see the property listed in the default display for the filter. Entering the filter name at the MATLAB prompt generates the default property display for the named filter. Using get (filtername) does not generate the default
display-it lists all of the filter properties, both those that you can change and those that are not available yet.

The following table summarizes the properties, static and dynamic, of fixed-point filters and provides a brief description of each. Full descriptions of each property, in alphabetical order, follow the table.

Property Name	Valid Values [default value]	Brief Description
AccumFracLength	Any positive or negative integer number of bits [29]	Specifies the fraction length used to interpret data output by the accumulator. This is a property of FIR filters and lattice filters. IIR filters have two similar properties-DenAccumFracLength and NumAccumFracLength-that let you set the precision for numerator and denominator operations separately.
AccumMode	FullPrecision, KeepLSB, [KeepMSB], SpecifyPrecision	Determines how the accumulator outputs stored values. Choose from full precision (FullPrecision), or whether to keep the most significant bits (KeepMSB) or least significant bits (KeepLSB) when output results need shorter word length than the accumulator supports. To let you set the word length and the precision (the fraction length) used by the output from the accumulator, set AccumMode to
SpecifyPrecision.		

Property Name (Continued)	Valid Values [default value]	Brief Description
CastBeforeSum	[True] or false	Specifies whether to cast numeric data to the appropriate accumulator format (as shown in the signal flow diagrams) before performing sum operations.
CoeffAutoScale	[True] or false	Specifies whether the filter automatically chooses the proper fraction length to represent filter coefficients without overflowing. Turning this off by setting the value to false enables you to change the NumFracLength and DenFracLength properties to specify the precision used.
CoeffFracLength	Any positive or negative integer number of bits [14]	Set the fraction length the filter uses to interpret coefficients. CoeffFracLength is not available until you set CoeffAutoScale to false. Scalar filters include this property.
CoeffWordLength	Any positive integer number of bits [16]	Specifies the word length to apply to filter coefficients.
DenAccumFracLength	Any positive or negative integer number of bits [29]	Specifies how the filter algorithm interprets the results of addition operations involving denominator coefficients. You can change the value for this property after you set AccumMode to SpecifyPrecision.
DenFracLength	Any positive or	Sets the fraction length the filter uses to interpret denominator coefficients.
negative integer		
numbracLength is always available, but it is		
read-only until you set CoeffAutoScale to		
false.		

\(\left.$$
\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\
\text { [default value] }\end{array} & \text { Brief Description } \\
\hline \text { Denominator } & \begin{array}{l}\text { Any filter } \\
\text { coefficient value } \\
\text { [1] }\end{array} & \begin{array}{l}\text { Holds the denominator coefficients for IIR } \\
\text { filters. }\end{array} \\
\hline \text { DenProdFracLength } & \begin{array}{l}\text { Any positive or } \\
\text { negative integer } \\
\text { number of bits [29] }\end{array} & \begin{array}{l}\text { Specifies how the filter algorithm } \\
\text { interprets the results of product operations } \\
\text { involving denominator coefficients. You can } \\
\text { change this property value after you set } \\
\text { ProductMode to SpecifyPrecision. }\end{array} \\
\hline \text { DenStateFracLength } & \begin{array}{l}\text { Any positive or } \\
\text { negative integer } \\
\text { number of bits [15] }\end{array} & \begin{array}{l}\text { Specifies the fraction length used to } \\
\text { interpret the states associated with } \\
\text { denominator coefficients in the filter. }\end{array} \\
\hline \text { DenStateWordLength } & \begin{array}{l}\text { Any positive } \\
\text { integer number of } \\
\text { bits [16] }\end{array} & \begin{array}{l}\text { Specifies the word length used to represent } \\
\text { the states associated with denominator } \\
\text { coefficients in the filter. }\end{array} \\
\hline \text { FilterInternals } & \begin{array}{l}\text { [FullPrecision], } \\
\text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Controls whether the filter sets the output } \\
\text { word and fraction lengths, and the } \\
\text { accumulator word and fraction lengths } \\
\text { automatically to maintain the best }\end{array}
$$

precision results during filtering. The

default value, FullPrecision, sets\end{array}\right\}\)| automatic word and fraction length |
| :--- |
| determination by the filter. |
| SpecifyPrecision exposes the output and |
| accumulator related properties so you can |
| set your own word and fraction lengths for |
| them. |

Property Name (Continued)	Valid Values [default value]	Brief Description		
InputFracLength	Any positive or negative integer number of bits [15]	Specifies the fraction length the filter uses to interpret data to be processed by the filter.		
InputWordLength	Any positive integer number of bits [16]	Specifies the word length applied to represent input data.		
Ladder	Any ladder coefficients in double-precision data type [1]	latticearma filters include this property to store the ladder coefficients.		
LadderAccumFracLength	Any positive or negative integer number of bits [29]	latticearma filters use this to define the fraction length applied to values output by the accumulator that stores the results of ladder computations.		
LadderFracLength	Any positive or negative integer number of bits [14]	latticearma filters use ladder coefficients in the signal flow. This property determines the fraction length used to interpret the coefficients.		
Lattice	Any lattice structure coefficients. No default value.	Stores the lattice coefficients for lattice-based filters.		
LatticeFracLength	Any positive or negative integer number of bits [29]	Specifies how the accumulator outputs the results of operations on the lattice coefficients.		
Any positive or				
negative integer				
number of bits [15]			\quad	Specifies the fraction length applied to the
:---				
lattice coefficients.				

Property Name (Continued)	Valid Values [default value]	Brief Description
MultiplicandFracLength	Any positive or negative integer number of bits [15]	Sets the fraction length for values used in product operations in the filter. Direct-form I transposed (df1t) filter structures include this property.
MultiplicandWordLength	Any positive integer number of bits [16]	Sets the word length applied to the values input to a multiply operation (the multiplicands). The filter structure df1t includes this property.
NumAccumFracLength	Any positive or negative integer number of bits [29]	Specifies how the filter algorithm interprets the results of addition operations involving numerator coefficients. You can change the value of this property after you set AccumMode to SpecifyPrecision.
Numerator	Any double-precision filter coefficients $[1]$	Holds the numerator coefficient values for the filter.
NumFracLength	Any positive or negative integer number of bits [14]	Sets the fraction length used to interpret the numerator coefficients.
NumProdFracLength	Any positive or negative integer number of bits [29]	Specifies how the filter algorithm interprets the results of product operations involving numerator coefficients. You can change the property value after you set
ProductMode to SpecifyPrecision.		

Property Name (Continued)	Valid Values [default value]	Brief Description
NumSamplesProcessed	Starts at 0 samples and grows to any number of samples processed	Reports the number of samples actually processed by the filter in a filtering operation. When PersistentMemory is true, this property reports the number of samples filtered for each input data set. Setting PersistentMemory to false causes this property to report the total number of samples processed for all data sets, not each one.
NumStateFracLength	Any positive or negative integer number of bits [15]	For IIR filters, this defines the fraction length applied to the numerator states of the filter. Specifies the fraction length used to interpret the states associated with numerator coefficients in the filter.
NumStateWordLength	Any positive integer number of bits [16]	For IIR filters, this defines the word length applied to the numerator states of the filter.
	Specifies the word length used to interpret the states associated with numerator coefficients in the filter.	
OutputFracLength	Any positive or negative integer number of bits- [15] or [12] bits depending on the filter structure	Determines how the filter interprets the filtered data. You can change the value of OutputFracLength after you set OutputMode to SpecifyPrecision.

\(\left.$$
\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\
\text { [default value] }\end{array} & \text { Brief Description } \\
\hline \text { OutputMode } & \begin{array}{l}\text { [AvoidOverflow], } \\
\text { BestPrecision, } \\
\text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\
\text { filtered input data. You have the following } \\
\text { choices: }\end{array}
$$

- AvoidOverflow-directs the filter to set

the output data fraction length to avoid

causing the data to overflow.

- BestPrecision-directs the filter to set

the output data fraction length to

maximize the precision in the output

data.\end{array}\right\}\)| - SpecifyPrecision-lets you set the |
| :--- |
| fraction length used by the filtered |
| data. |

Property Name (Continued)	Valid Values [default value]	Brief Description
ProductFracLength	Any positive or negative integer number of bits [29]	For the output from a product operation, this sets the fraction length used to interpret the numeric data. This property becomes writable (you can change the value) after you set ProductMode to SpecifyPrecision.
ProductMode	[FullPrecision], KeepLSB, KeepMSB, SpecifyPrecision	Determines how the filter handles the output of product operations. Choose from full precision (FullPrecision), or whether to keep the most significant bit (KeepMSB) or least significant bit (KeepLSB) in the result when you need to shorten the data words. For you to be able to set the precision (the fraction length) used by the output from the multiplies, you set ProductMode to
SpecifyPrecision.		

$\left.\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\ \text { [default value] }\end{array} & \text { Brief Description } \\ \hline \text { RoundMode } & \begin{array}{l}\text { [Convergent], ceil, } \\ \text { fix, floor, round }\end{array} & \begin{array}{l}\text { Sets the mode the filter uses to quantize } \\ \text { numeric values when the values lie } \\ \text { between representable values for the data } \\ \text { format (word and fraction lengths). }\end{array} \\ & & \begin{array}{l}\text { - convergent-Round up to the next } \\ \text { allowable quantized value. } \\ \text { - ceil-Round to the nearest allowable } \\ \text { quantized value. Numbers that are } \\ \text { exactly halfway between the two nearest } \\ \text { allowable quantized values are rounded }\end{array} \\ \text { up only if the least significant bit (after } \\ \text { rounding) would be set to 1. }\end{array}\right\}$

Property Name (Continued)	Valid Values [default value]	Brief Description
ScaleValueFracLength	Any positive or negative integer number of bits [29]	Scale values work with SOS filters. Setting this property controls how your filter interprets the scale values by setting the fraction length. Available only when you disable CoeffAutoScale by setting it to false.
ScaleValues	[2×1 double] array with values of 1	Stores the scaling values for sections in SOS filters.
Signed	[True] or false	Specifies whether the filter uses signed or unsigned fixed-point coefficients. Only coefficients reflect this property setting.
sosMatrix	$\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0\end{array}\right]$	Holds the filter coefficients as property values. Displays the matrix in the format [sections x coefficients/section datatype]. A [15×6 double] SOS matrix represents a filter with 6 coefficients per section and 15 sections, using data type double to represent the coefficients.
SectionInputAutoScale	[True] or false	Specifies whether the filter automatically chooses the proper fraction length to prevent overflow by data entering a section of an SOS filter. Setting this property to false enables you to change the SectionInputFracLength property to specify the precision used. Available only for SOS filters.

Property Name (Continued)	Valid Values [default value]	Brief Description
SectionInputFracLength	Any positive or negative integer number of bits [29]	Section values work with SOS filters. Setting this property controls how your filter interprets the section values between sections of the filter by setting the fraction length. This applies to data entering a section. Compare to SectionOutputFracLength. Available only when you disable SectionInputAutoScale by setting it to false.
SectionInputWordLength	Any positive or negative integer number of bits [29]	Sets the word length used to represent the data moving into a section of an SOS filter.
SectionOutputAutoScale	[True] or false	Specifies whether the filter automatically chooses the proper fraction length to prevent overflow by data leaving a section of an SOS filter. Setting this property to false enables you to change the SectionOutputFracLength property to specify the precision used.
SectionOutputFracLength	Any positive or negative integer number of bits [29]	Section values work with SOS filters. Setting this property controls how your filter interprets the section values between sections of the filter by setting the fraction length. This applies to data leaving a section. Compare to SectionInputFracLength. Available after you disable SectionOutputAutoScale by setting it to false.
SectionOutputWordLength	Any positive or negative integer number of bits [32]	Sets the word length used to represent the data moving out of one section of an SOS filter.

Property Name (Continued)	Valid Values [default value]	Brief Description
StateFracLength	Any positive or negative integer number of bits [15]	Lets you set the fraction length applied to interpret the filter states.
States	[1x1 embedded fi]	Contains the filter states before, during, and after filter operations. States act as filter memory between filtering runs or sessions. Notice that the states use fi objects, with the associated properties from those objects. For details, refer to filtstates in your Signal Processing Toolbox documentation or in the Help system.
StateWordLength	Any positive integer number of bits [16]	Sets the word length used to represent the filter states.
TapSumFracLength	Any positive or negative integer number of bits [15]	Sets the fraction length used to represent the filter tap values in addition operations. This is available after you set TapSumMode to false. Symmetric and antisymmetric
FIR filters include this property.		

Property Name (Continued)	Valid Values [default value]	Brief Description
TapSumMode	FullPrecision, KeepLSB, [KeepMSB], SpecifyPrecision	Determines how the accumulator outputs stored that involve filter tap weights. Choose from full precision (FullPrecision) to prevent overflows, or whether to keep the most significant bits (KeepMSB) or least significant bits (KeepLSB) when outputting results from the accumulator. To let you set the precision (the fraction length) used by the output from the accumulator, set AccumMode to SpecifyPrecision.
		Symmetric and antisymmetric FIR filters include this property.
TapSumWordLength	Any positive number of bits [17]	Sets the word length used to represent the filter tap weights during addition. Symmetric and antisymmetric FIR filters include this property.

Property Details for Fixed-Point Filters

When you create a fixed-point filter, you are creating a filter object (a dfilt object). In this manual, we use filter, dfilt object, and filter object interchangeably. To filter data, you apply the filter object to your data set. The output of the operation is the data filtered by the filter and the filter property values.

Filter objects have properties to which you assign property values. You use these property values to assign various characteristics to the filters you create, including

- The type of arithmetic to use in filtering operations
- The structure of the filter used to implement the filter (not a property you can set or change-you select it by the dfilt.structure function you choose)
- The locations of quantizations and cast operations in the filter
- The data formats used in quantizing, casting, and filtering operations

Details of the properties associated with fixed-point filters are described in alphabetical order on the following pages.

AccumFracLength

Except for state-space filters, all dfilt objects that use fixed arithmetic have this property that defines the fraction length applied to data in the accumulator. Combined with AccumWordLength and AccumMode, AccumFracLength helps fully specify how the accumulator outputs data after processing addition operations. As with all fraction length properties, AccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers.

AccumMode

This property, available after your filter is in fixed-point mode, specifies how the filter outputs the results of summation operations. All dfilt objects include this property when they use fixed-point arithmetic.

When you switch to fixed-point filtering from floating-point, you are most likely going to throw away some data bits after sum operations, perhaps because you have limited resources or the accumulator allows more bits (often 40 bits) than the filter itself, perhaps 32 bits or 16 bits.

When you have to change the word length of results from the accumulator, you might choose to discard the least significant bits (LSB) from the result because the quantization error caused by discarding the LSBs would be small since the LSBs carry less weight.

Or you might choose to discard the most significant bits (MSB) from the result because the results have MSBs that are mostly zero-your result values are small relative to the range of the format in which they are represented. The options for AccumMode let you choose how to maintain the information you need from the accumulator, or which bits to discard.

You select from one of the following values for AccumMode:

- Fullprecision-means the filter automatically chooses the word length to represent the results of sum operations so they retain all of the accuracy provided by the inputs (addends). This setting prevents overflows.
- KeepMSB-means you specify the word length for representing summation results. The filter sets the fraction length to discard the LSBs, keep the higher order bits in the data, and maintain the precision.
- KeepLSB—means you specify the word length for representing the sum operation results. The filter sets the fraction length to discard the MSBs, keep the lower order bits, and maintain the precision. Compare to the KeepMSB option.
- SpecifyPrecision-means you specify the word length and the fraction length to apply to data output from the accumulator.

For more information about data formats, word length, and fraction length in fixed-point arithmetic, refer to "Notes About Fraction Length, Word Length, and Precision" on page 8-32.

AccumWordLength

You use AccumWordLength to define the data word length used in the accumulator. Set this property to a value that matches your intended hardware. For example, many digital signal processors use 40-bit accumulators, so set AccumWordLength to 40 in your fixed-point filter:

```
set(hq,'arithmetic','fixed');
set(hq,'AccumWordLength',40);
```

Note that AccumWordLength only applies to filters whose Arithmetic property value is fixed.

Arithmetic

Perhaps the most important property when you are working with dfilt objects, Arithmetic determines the type of arithmetic the filter uses, and the properties or quantizers that compose the fixed-point or quantized filter. You use strings to set the Arithmetic property value.

The next table shows the valid strings for the Arithmetic property. Following the table, each property string appears with more detailed information about
what happens when you select the string as the value for Arithmetic in your dfilt.
$\left.\begin{array}{l|l}\hline \text { Arithmetic Property String } & \text { Brief Description of Effect on the Filter } \\ \hline \text { double } & \begin{array}{l}\text { All filtering operations and coefficients } \\ \text { use double-precision floating-point } \\ \text { representations and math. When you } \\ \text { use dfilt.structure to create a filter } \\ \text { object, double is the default value for } \\ \text { the Arithmetic property. }\end{array} \\ \hline \text { single } & \begin{array}{l}\text { All filtering operations and coefficients } \\ \text { use single-precision floating-point } \\ \text { representations and math. }\end{array} \\ \hline \text { fixed } & \begin{array}{l}\text { This string applies selected default } \\ \text { values for the properties in the } \\ \text { fixed-point filter object, including such } \\ \text { properties as coefficient word lengths, } \\ \text { fraction lengths, and various operating } \\ \text { modes. Generally, the default values } \\ \text { match those you use on many digital } \\ \text { signal processors. Allows signed fixed }\end{array} \\ \text { data types only. Fixed-point arithmetic }\end{array}\right\}$

double

When you use one of the dfilt.structure methods to create a filter, the Arithmetic property value is double by default. Your filter is identical to the same filter without the Arithmetic property, as you would create if you used the Signal Processing Toolbox.

Double means that the filter uses double-precision floating-point arithmetic in all operations while filtering:

- All input to the filter must be double data type. Any other data type returns an error.
- The states and output are doubles as well.
- All internal calculations are done in double math.

When you use double data type filter coefficients, the reference and quantized (fixed-point) filter coefficients are identical. The filter stores the reference coefficients as double data type.

single

When your filter should use single-precision floating-point arithmetic, set the Arithmetic property to single so all arithmetic in the filter processing gets restricted to single-precision data type.

- Input data must be single data type. Other data types return errors.
- The filter states and filter output use single data type.

When you choose single, you can provide the filter coefficients in either of two ways:

- Double data type coefficients. With Arithmetic set to single, the filter casts the double data type coefficients to single data type representation.
- Single data type. These remain unchanged by the filter.

Depending on whether you specified single or double data type coefficients, the reference coefficients for the filter are stored in the data type you provided. If you provide coefficients in double data type, the reference coefficients are double as well. Providing single data type coefficients generates single data type reference coefficients. Note that the arithmetic used by the reference filter is always double.

When you use reffilter to create a reference filter from the reference coefficients, the resulting filter uses double-precision versions of the reference filter coefficients.

To set the Arithmetic property value, create your filter, then use set to change the Arithmetic setting, as shown in this example using a direct form FIR filter.

```
b=fir1(7,0.45);
hd=dfilt.dffir(b)
```

```
hd =
            FilterStructure: 'Direct-Form FIR'
                    Arithmetic: 'double'
            Numerator: [1x8 double]
            PersistentMemory: false
            States: [7x1 double]
                NumSamplesProcessed: 0
set(hd,'arithmetic','single')
hd
hd =
            FilterStructure: 'Direct-Form FIR'
                    Arithmetic: 'single'
                    Numerator: [1x8 double]
            PersistentMemory: false
                            States: [7x1 single]
            NumSamplesProcessed: 0
```


fixed

Converting your dfilt object to use fixed arithmetic results in a filter structure that uses properties and property values to match how the filter would behave on digital signal processing hardware.

Note The fixed option for the property Arithmetic is available only when you install the Fixed-Point Toolbox as well as the Filter Design Toolbox.

After you set Arithmetic to fixed, you are free to change any property value from the default value to a value that more closely matches your needs. You cannot, however, mix floating-point and fixed-point arithmetic in your filter when you select fixed as the Arithmetic property value. Choosing fixed restricts you to using either fixed-point or floating point throughout the filter (the data type must be homogenous). Also, all data types must be signed. fixed does not support unsigned data types except for unsigned coefficients when you
set the property Signed to false. Mixing word and fraction lengths within the fixed object is acceptable. In short, using fixed arithmetic assumes

- fixed word length.
- fixed size and dedicated accumulator and product registers.
- the ability to do either saturation or wrap arithmetic.
- that multiple rounding modes are available.

Making these assumptions simplifies your job of creating fixed-point filters by reducing repetition in the filter construction process, such as only requiring you to enter the accumulator word size once, rather than for each step that uses the accumulator.

Default property values are a starting point in tailoring your filter to common hardware, such as choosing 40-bit word length for the accumulator, or 16 -bit words for data and coefficients.

In this dfilt object example, get returns the default values for dfilt.df1t structures.

```
[b,a]=butter(6,0.45);
hd=dfilt.df1(b,a)
hd =
        FilterStructure: 'Direct-Form I'
            Arithmetic: 'double'
                Numerator: [1\times7 double]
            Denominator: [1\times7 double]
        PersistentMemory: false
            States: Numerator: [6x1 double]
                                    Denominator:[6x1 double]
    NumSamplesProcessed: 0
set(hd,'arithmetic','fixed')
get(hd)
            PersistentMemory: false
        NumSamplesProcessed: 0
            FilterStructure: 'Direct-Form I'
                            States: [1x1 filtstates.dfiir]
```

Numerator: [1x7 double]Denominator: [1x7 double]Arithmetic: 'fixed'
CoeffWordLength: 16
CoeffAutoScale: 1
Signed:RoundMode: 'convergent'
OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
OutputWordLength: 16
OutputFracLength: 15
NumFracLength: 16
DenFracLength: 14
ProductWordLength: 32
NumProdFracLength: 31
DenProdFracLength: 29
AccumWordLength: 40
NumAccumFracLength: 31
DenAccumFracLength: 29
CastBeforeSum: 1
Here is the default display for hd.
hd hd =
FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'
Numerator: [1x7 double]
Denominator: [1x7 double]
PersistentMemory: false
States: Numerator: [6x1 fi]
Denominator:[6x1 fi]
NumSamplesProcessed: 0
CoeffWordLength: 16

```
    CoeffAutoScale: true
            Signed: true
                    InputWordLength: 16
                    InputFracLength: 15
                    OutputWordLength: 16
                    OutputFracLength: 15
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
AccumWordLength: 40
            CastBeforeSum: true
                    RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

This second example shows the default property values for dfilt.latticemamax filter objects, using the coefficients from an fir1 filter.

```
b=fir1(7,0.45)
```

hdlat=dfilt.latticemamax(b)
hdlat =
FilterStructure: [1x45 char]
Arithmetic: 'double'
Lattice: [1x8 double]
PersistentMemory: false
States: [8x1 double]
NumSamplesProcessed: 0
hdlat.arithmetic='fixed'
hdlat =
FilterStructure: [1x45 char]
Arithmetic: 'fixed'

```
    Lattice: [1x8 double]
    PersistentMemory: false
        States: [1x1 embedded.fi]
NumSamplesProcessed: 0
    CoeffWordLength: 16
    CoeffAutoScale: true
            Signed: true
    InputWordLength: 16
    InputFracLength: 15
OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
    StateWordLength: 16
    StateFracLength: 15
        ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
    AccumWordLength: 40
        CastBeforeSum: true
            RoundMode: 'convergent'
        OverflowMode: 'wrap'
```

Unlike the single or double options for Arithmetic, fixed uses properties to define the word and fraction lengths for each portion of your filter. By changing the property value of any of the properties, you control your filter performance. Every word length and fraction length property is independent-set the one you need and the others remain unchanged, such as setting the input word length with InputWordLength, while leaving the fraction length the same.

```
d=fdesign.lowpass('n,fc',6,0.45)
d =
    ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'
    Description: {2x1 cell}
```

```
    NormalizedFrequency: true
                            Fs: 'Normalized'
        FilterOrder: 6
                            Fcutoff: 0.4500
designmethods(d)
Design Methods for class fdesign.lowpass:
butter
hd=butter(d)
hd =
            FilterStructure: 'Direct-Form II, Second-Order Sections'
                    Arithmetic: 'double'
                            sosMatrix: [3x6 double]
            ScaleValues: [4x1 double]
            PersistentMemory: false
                            States: [2x3 double]
NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =
            FilterStructure: 'Direct-Form II, Second-Order Sections'
                    Arithmetic: 'fixed'
                    sosMatrix: [3x6 double]
                    ScaleValues: [4x1 double]
            PersistentMemory: false
                    States: [1x1 embedded.fi]
                NumSamplesProcessed: 0
                    CoeffWordLength: 16
                    CoeffAutoScale: true
```

```
            Signed: true
            InputWordLength: 16
            InputFracLength: 15
    SectionInputWordLength: 16
    SectionInputAutoScale: true
    SectionOutputWordLength: 16
    Section OutputAutoScale: true
        OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            StateWordLength: 16
            StateFracLength: 15
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
            AccumWordLength: 40
            CastBeforeSum: true
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
hd.inputWordLength=12
hd =
            FilterStructure: 'Direct-Form II, Second-Order Sections'
                    Arithmetic: 'fixed'
                    sosMatrix: [3x6 double]
            ScaleValues: [4x1 double]
            PersistentMemory: false
            States: [1x1 embedded.fi]
                NumSamplesProcessed: 0
                    CoeffWordLength: 16
                    CoeffAutoScale: true
```

```
                    Signed: true
            InputWordLength: 12
            InputFracLength: 15
    SectionInputWordLength: 16
    SectionInputAutoScale: true
SectionOutputWordLength: 16
    SectionOutputAutoScale: true
            OutputWordLength: 16
                    OutputMode: 'AvoidOverflow'
                    StateWordLength: 16
StateFracLength: 15
                    ProductMode: 'FullPrecision'
                    AccumMode: 'KeepMSB'
AccumWordLength: 40
            CastBeforeSum: true
                    RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

Notice that the properties for the lattice filter hdlat and direct-form II filter hd are different, as befits their differing filter structures. Also, some properties are common to both objects, such as RoundMode and PersistentMemory and behave the same way in both objects.

Notes About Fraction Length, Word Length, and Precision

Word length and fraction length combine to make the format for a fixed-point number, where word length is the number of bits used to represent the value and fraction length specifies, in bits, the location of the binary point in the fixed-point representation. Therein lies a problem-fraction length, which you specify in bits, can be larger than the word length, or a negative number of bits. This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to be used in this User's Guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the binary point) is true only when the fraction length is positive and less than or equal to the word length. In MATLAB format notation we use [word length fraction length]. For example, for the format [16 16], the second 16 (the fraction length) is the number of fractional bits or bits to the right of the binary point. In this example, all 16 bits are to the right of the binary point.
But it is also possible to have fixed-point formats of [16 18] or [16-45]. In these cases the fraction length can no longer be the number of bits to the right of the binary point since the format says the word length is 16 -there cannot be 18 fraction length bits on the right. And how can there be a negative number of bits for the fraction length, such as [16-45]?

A better way to think about fixed-point format [word length fraction length] and what it means is that the representation of a fixed-point number is a weighted sum of powers of two driven by the fraction length, or the two's complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive, negative, 0 , greater than B (the word length) or less than B. (B and L are always integers and B is always positive.)

Given a binary string $b(1) b(2) b(3) \ldots b(B)$, to determine the two's-complement value of the string in the format described by [B L], use the value of the individual bits in the binary string in the following formula, where $b(1)$ is the first binary bit (and most significant bit, MSB), $\mathrm{b}(2)$ is the second, and on up to $\mathrm{b}(\mathrm{B})$.

The decimal numeric value that those bits represent is given by

```
value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+\ldots+ b(B)*2^(-L)
```

L, the fraction length, represents the negative of the weight of the last, or least significant bit (LSB). L is also the step size or the precision provided by a given fraction length.

Precision

Here is how precision works.
When all of the bits of a binary string are zero except for the LSB (which is therefore equal to one), the value represented by the bit string is given by $2^{(-L)}$.

If L is negative, for example $L=-16$, the value is 2^{16}. The smallest step between numbers that can be represented in a format where $L=-16$ is given by 1×2^{16} (the rightmost term in the formula above), which is 65536 . Note the precision does not depend on the word length.
Take a look at another example. When the word length set to 8 bits, the decimal value 12 is represented in binary by 00001100 . That 12 is the decimal equivalent of 00001100 tells us we are using [80] data format representationthe word length is 8 bits and fraction length 0 bits, and the step size or precision (the smallest difference between two adjacent values in the format $[8,0]$, is $2^{0}=1$.

Suppose you plan to keep only the upper 5 bits and discard the other three. The resulting precision after removing the right-most three bits comes from the weight of the lowest remaining bit, the fifth bit from the left, which is $2^{3}=8$, so the format would be [5,-3].

Note that in this format the step size is 8, I cannot represent numbers that are between multiples of 8 .

In MATLAB, with the Fixed-Point Toolbox installed:

```
x=8;
q=quantizer([8,0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq
binxq =
0 0 0 0 1 0 0 0
binxq1
binxq1 =
0 0 0 0 1
```

But notice that in [5,-3] format, 00001 is the two's complement representation for 8 , not for $1 ; q=q u a n t i z e r([80])$ and q1 $=$ quantizer ([5-3]) are not the same. They cover the about the same range-range (q) $>$ range (q1) -but their quantization step is different-eps $(q)=8$, and eps $(q 1)=1$.

Look at one more example. When you construct a quantizer q

$$
q \text { = quantizer([a,b]) }
$$

the first element in [a, b] is a, the word length used for quantization. The second element in the expression, b, is related to the quantization step-the numerical difference between the two closest values that the quantizer can represent. This is also related to the weight given to the LSB. Note that $2^{\wedge}(-b)=e p s(q)$.

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let q2 use the format [16, -16].

```
q1 = quantizer([32,0])
q2 = quantizer([16,-16])
```

Quantizers q1 and q2 cover the same range, but q2 has less precision. It covers the range in steps of 2^{16}, while q covers the range in steps of 1 .

This lost precision is due to (or can be used to model) throwing out 16 least-significant bits.

An important point to understand is that in dfilt objects and filtering you control which bits are carried from the sum and product operations in the filter to the filter output by setting the format for the output from the sum or product operation.

For instance, if you use [16 0] as the output format for a 32 -bit result from a sum operation when the original format is [320], you take the lower 16 bits from the result. If you use [16-16], you take the higher 16 bits of the original 32 bits. You could even take 16 bits somewhere in between the 32 bits by choosing something like [16-8], but you probably do not want to do that.

Filter scaling is directly implicated in the format and precision for a filter. When you know the filter input and output formats, as well as the filter internal formats, you can scale the inputs or outputs to stay within the format ranges. For more information about scaling filters, refer to "Working with Fixed-Point Direct-Form FIR Filters" on page 3-33.

Notice that overflows or saturation might occur at the filter input, filter output, or within the filter itself, such as during add or multiply or accumulate operations. Improper scaling at any point in the filter can result in numerical errors that dramatically change the performance of your fixed-point filter implementation.

CastBeforeSum

Setting the CastBeforeSum property determines how the filter handles the input values to sum operations in the filter. After you set your filter Arithmetic property value to fixed, you have the option of using CastBeforeSum to control the data type of some inputs (addends) to summations in your filter. To determine which addends reflect the CastBeforeSum property setting, refer to the reference page for the signal flow diagram for the filter structure.

CastBeforeSum specifies whether to cast selected addends to summations in the filter to the output format from the addition operation before performing the addition. When you specify true for the property value, the results of the affected sum operations match most closely the results found on most digital signal processors. Performing the cast operation before the summation adds one or two additional quantization operations that can add error sources to your filter results.

Specifying CastBeforeSum to be false prevents the addends from being cast to the output format before the addition operation. Choose this setting to get the most accurate results from summations without considering the hardware your filter might use.

Notice that the output format for every sum operation reflects the value of the output property specified in the filter structure diagram. Which input property is referenced by CastBeforeSum depends on the structure.

Property Value	Description
false	Configures filter summation operations to retain the addends in the format carried from the previous operation.
true	Configures filter summation operations to convert the input format of the addends to match the summation output format before performing the summation operation. Usually this generates results from the summation that more closely match those found from digital signal processors

Diagrams of CastBeforeSum Settings

When CastBeforeSum is false, sum elements in filter signal flow diagrams look like this:

showing that the input data to the sum operations (the addends) retain their format word length and fraction length from previous operations. The addition process uses the existing input formats and then casts the output to the format defined by AccumFormat. Thus the output data has the word length and fraction length defined by AccumWordLength and AccumFracLength or AccumMode and AccumWordLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look like this:

showing that the input data gets recast to the accumulator format word length and fraction length (AccumFormat) before the sum operation occurs. The data output by the addition operation has the word length and fraction length defined by AccumWordLength and AccumFracLength and AccumMode.

CoeffAutoScale

How the filter represents the filter coefficients depends on the property value of CoeffAutoScale. When you create a dfilt object, you use coefficients in double-precision format. Converting the dfilt object to fixed-point arithmetic forces the coefficients into a fixed-point representation. The representation the filter uses depends on whether the value of CoeffAutoScale is true or false.

- CoeffAutoScale = true means the filter chooses the fraction length to maintain the value of the coefficients as close to the double-precision values as possible. When you change the word length applied to the coefficients, the filter object changes the fraction length to try to accommodate the change. true is the default setting.
- CoeffAutoScale $=$ false removes the automatic scaling of the fraction length for the coefficients and exposes the property that controls the coefficient fraction length so you can change it. For example, if the filter is a direct form FIR filter, setting CoeffAutoScale = false exposes the NumFracLength property that specifies the fraction length applied to numerator coefficients. If the filter is an IIR filter, setting

CoeffAutoScale = false exposes both the NumFracLength and DenFracLength properties.

Here is an example of using CoeffAutoScale with a direct form filter. hd2=dfilt.dffir([0.3 0.6 0.3])
hd2 =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [0.3000 0.60000 .3000]
PersistentMemory: false
States: [2x1 double]
NumSamplesProcessed: 0
hd2.arithmetic='fixed'
hd2 =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]
PersistentMemory: false
States: [1x1 embedded.fi]
NumSamplesProcessed: 0
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: 40

```
CastBeforeSum: true
    RoundMode: 'convergent'
OverflowMode: 'wrap'
```

To this point, the filter coefficients retain the original values from when you created the filter as shown in the Numerator property. Now change the CoeffAutoScale property value from true to false.

```
hd2.coeffautoScale=false
hd2 =
            FilterStructure: 'Direct-Form FIR'
                    Arithmetic: 'fixed'
                    Numerator: [0.3000 0.6000 0.3000]
                    PersistentMemory: false
                    States: [1x1 embedded.fi]
NumSamplesProcessed: 0
    CoeffWordLength: 16
            CoeffAutoScale: false
            NumFracLength: 15
                            Signed: true
                    InputWordLength: 16
                    InputFracLength: 15
                    OutputWordLength: 16
                    OutputMode: 'AvoidOverflow'
            ProductMode: 'FullPrecision'
                    AccumMode: 'KeepMSB'
            AccumWordLength: 40
            CastBeforeSum: true
                    RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

With the NumFracLength property now available, change the word length to 5 bits.

Notice the coefficient values. Setting CoeffAutoScale to false removes the automatic fraction length adjustment and the filter coefficients cannot be represented by the current format of [5 15]-a word length of 5 bits, fraction length of 15 bits.

```
hd2.coeffwordlength=5
hd2 =
            FilterStructure: 'Direct-Form FIR'
            Arithmetic: 'fixed'
            Numerator: [4.5776e-004 4.5776e-004 4.5776e-004]
            PersistentMemory: false
            States: [1x1 embedded.fi]
                NumSamplesProcessed: 0
                    CoeffWordLength: 5
            CoeffAutoScale: false
            NumFracLength: 15
                    Signed: true
                    InputWordLength: 16
                    InputFracLength: 15
                    OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
AccumWordLength: 40
            CastBeforeSum: true
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

Restoring CoeffAutoScale to true goes some way to fixing the coefficient values. Automatically scaling the coefficient fraction length results in setting the fraction length to 4 bits. You can check this with get (hd2) as shown below.

```
hd2.coeffautoScale=true
hd2 =
        FilterStructure: 'Direct-Form FIR'
            Arithmetic: 'fixed'
            Numerator: [0.3125 0.6250 0.3125]
            PersistentMemory: false
            States: [1x1 embedded.fi]
        NumSamplesProcessed: 0
            CoeffWordLength: 5
            CoeffAutoScale: true
                Signed: true
            InputWordLength: 16
            InputFracLength: 15
            OutputWordLength: 16
                    OutputMode: 'AvoidOverflow'
                ProductMode: 'FullPrecision'
                    AccumMode: 'KeepMSB'
            AccumWordLength: 40
                CastBeforeSum: true
                    RoundMode: 'convergent'
            OverflowMode: 'wrap'
get(hd2)
            PersistentMemory: false
        NumSamplesProcessed: O
            FilterStructure: 'Direct-Form FIR'
                    States: [1x1 embedded.fi]
                    Numerator: [0.3125 0.6250 0.3125]
```

```
    Arithmetic: 'fixed'
    CoeffWordLength: 5
    CoeffAutoScale: 1
                Signed: 1
            RoundMode: 'convergent'
        OverflowMode: 'wrap'
    InputWordLength: 16
    InputFracLength: 15
OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
        NumFracLength: 4
OutputFracLength: 12
ProductWordLength: 21
ProductFracLength: 19
    AccumWordLength: 40
    AccumFracLength: 19
        CastBeforeSum: 1
```

Clearly five bits is not enough to represent the coefficients accurately.

CoeffFracLength

Fixed-point scalar filters that you create using dfilt.scalar use this property to define the fraction length applied to the scalar filter coefficients. Like the coefficient-fraction-length-related properties for the FIR, lattice, and IIR filters, CoeffFracLength is not displayed for scalar filters until you set CoeffAutoScale to false. Once you change the automatic scaling you can set the fraction length for the coefficients to any value you require.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 14 bits, with the CoeffWordlength of 16 bits.

CoeffWordLength

One primary consideration in developing filters for hardware is the length of a data word. CoeffWordLength defines the word length for these data storage and arithmetic locations:

- Numerator and denominator filter coefficients
- Tap sum in dfilt.dfsymfir and dfilt.dfasymfir filter objects
- Section input, multiplicand, and state values in direct-form SOS filter objects such as dfilt.df1t and dfilt.df2
- Scale values in second-order filters
- Lattice and ladder coefficients in lattice filter objects, such as dfilt.latticearma and dfilt.latticemamax
- Gain in dfilt.scalar

Setting this property value controls the word length for the data listed. In most cases, the data words in this list have separate fraction length properties to define the associated fraction lengths.

Any positive, integer word length works here, limited by the machine you use to develop your filter and the hardware you use to deploy your filter.

DenAccumFracLength

Filter structures $d f 1$, $d f 1 t, d f 2$, and $d f 2 t$ that use fixed arithmetic have this property that defines the fraction length applied to denominator coefficients in the accumulator. In combination with AccumWordLength, the properties fully specify how the accumulator outputs data stored there.

As with all fraction length properties, DenAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers. To be able to change the property value for this property, you set AccumMode to SpecifyPrecision.

DenFracLength

Property DenFracLength contains the value that specifies the fraction length for the denominator coefficients for your filter. DenFracLength specifies the fraction length used to interpret the data stored in C. Used in combination with CoeffWordLength, these two properties define the interpretation of the coefficients stored in the vector that contains the denominator coefficients.
As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 15 bits, with the CoeffWordLength of 16 bits.

Denominator

The denominator coefficients for your IIR filter, taken from the prototype you start with, are stored in this property. Generally this is a 1-by-N array of data in double format, where N is the length of the filter.

All IIR filter objects include Denominator, except the lattice-based filters which store their coefficients in the Lattice property, and second-order section filters, such as dfilt.df1tsos, which use the SosMatrix property to hold the coefficients for the sections.

DenProdFracLength

A property of all of the direct form IIR dfilt objects, except the ones that implement second-order sections, DenProdFracLength specifies the fraction length applied to data output from product operations that the filter performs on denominator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you see that denominators and numerators are handled separately. When you set ProductMode to SpecifyPrecision, you can change the DenProdFracLength setting manually. Otherwise, for multiplication operations that use the denominator coefficients, the filter sets the fraction length as defined by the ProductMode setting.

DenStateFracLength

When you look at the flow diagram for the dfilt.df1sos filter object, the states associated with denominator coefficient operations take the fraction length from this property. In combination with the DenStateWordLength property, these properties fully specify how the filter interprets the states.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 15 bits, with the DenStateWordLength of 16 bits.

DenStateWordLength

When you look at the flow diagram for the dfilt.df1sos filter object, the states associated with the denominator coefficient operations take the data format
from this property and the DenStateFracLength property. In combination, these properties fully specify how the filter interprets the state it uses.

By default, the value is 16 bits, with the DenStateFracLength of 15 bits.

FilterInternals

Similar to the FilterInternals pane in FDATool, this property controls whether the filter sets the output word and fraction lengths automatically, and the accumulator word and fraction lengths automatically as well, to maintain the best precision results during filtering. The default value, FullPrecision, sets automatic word and fraction length determination by the filter. Setting FilterInternals to SpecifyPrecision exposes the output and accumulator related properties so you can set your own word and fraction lengths for them. Note that

FilterStructure

Every dfilt object has a FilterStructure property. This is a read-only property containing a string that declares the structure of the filter object you created.

When you construct filter objects, the FilterStructure property value is returned containing one of the strings shown in the following table. Property FilterStructure indicates the filter architecture and comes from the constructor you use to create the filter.

After you create a filter object, you cannot change the FilterStructure property value. To make filters that use different structures, you construct new filters using the appropriate methods, or use convert to switch to a new structure.

Default value: Since this depends on the constructor you use and the constructor includes the filter structure definition, there is no default value.

When you try to create a filter without specifying a structure, MATLAB returns an error.

Filter Constructor Name	FilterStructure Property String and Filter Type
'dfilt.df1'	Direct form I
'dfilt.df1sos'	Direct form I filter implemented using second-order sections
'dfilt.df1t'	Direct form I transposed
'dfilt.df2'	Direct form II
'dfilt.df2sos'	Direct form II filter implemented using second order sections
'dfilt.df2t'	Direct form II transposed
'dfilt.dfasymfir'	Antisymmetric finite impulse response (FIR). Even and odd forms.
'dfilt.dffir'	Direct form FIR
'dfilt.dffirt'	Direct form FIR transposed
'dfilt.latticeallpass'	Lattice allpass
'dfilt.latticear'	Lattice autoregressive (AR)
'dfilt.latticemamin'	Lattice moving average (MA) minimum phase
'dfilt.latticemamax'	Lattice moving average (MA) maximum phase
'dfilt.latticearma'	Lattice ARMA
'dfilt.dfsymfir'	Symmetric FIR. Even and odd forms
'dfilt.scalar'	Scalar

Filter Structures with Quantizations Shown in Place

To help you understand how and where the quantizations occur in filter structures in this toolbox, Figure 8-1 presents the structure for a Direct Form 2 filter, including the quantizations (fixed-point formats) that compose part of
the fixed-point filter. You see that one or more quantization processes, specified by the *format label, accompany each filter element, such as a delay, product, or summation element. The input to or output from each element reflects the result of applying the associated quantization as defined by the word length and fraction length format. Wherever a particular filter element appears in a filter structure, recall the quantization process that accompanies the element as it appears in this figure. Each filter reference page, such as the dfilt.df2 reference page, includes the signal flow diagram showing the formatting elements that define the quantizations that occur throughout the filter flow.

For example, a product quantization, either numerator or denominator, follows every product (gain) element and a sum quantization, also either numerator or denominator, follows each sum element. In this figure, we set the Arithmetic property value to fixed.

Figure 8-1: df2 IIR Filter Structure Including The Formatting Objects, With Arithmetic Property Value fixed

When your df2 filter uses the Arithmetic property set to fixed, the filter structure contains the formatting features shown in the diagram. The formats included in the structure are fixed-point objects that include properties to set various word and fraction length formats. For example, the NumFormat or DenFormat in the fixed-point arithmetic filter set the properties for quantizing numerator or denominator coefficients according to word and fraction length settings.

When the leading denominator coefficient a(1) in your filter is not 1 , choose it to be a power of two so that a shift replaces the multiply that would otherwise be used.

Fixed-Point Arithmetic Filter Structures

You choose among several filter structures when you create fixed-point filters. You can also specify filters with single or multiple cascaded sections of the same type. Because quantization is a nonlinear process, different fixed-point filter structures produce different results.

To specify the filter structure, you select the appropriate dfilt.structure method to construct your filter. Refer to the function reference information for dfilt and set for details on setting property values for quantized filters.

The figures in the following subsections of this section serve as aids to help you determine how to enter your filter coefficients for each filter structure. Each subsection contains an example for constructing a filter of the given structure.

Scale factors for the input and output for the filters do not appear in the block diagrams. The default filter structures do not include, nor assume, the scale factors. For filter scaling information, refer to scale in the Help system.

About the Filter Structure Diagrams

In the diagrams that accompany the following filter structure descriptions, you see the active operators that define the filter, such as sums and gains, and the formatting features that control the processing in the filter. Notice also that the coefficients are labeled in the figure. This tells you the order in which the filter processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the formats that form part of the filter are less clear. Each figure includes text in the form labelFormat that represents the existence of a formatting feature at that point in the structure. The Format stands for formatting object and the label specifies the data that the formatting object affects.

For example, in the dfilt.df2 filter shown on page 8-48, the entries InputFormat and OutputFormat are the formats applied, that is the word length and fraction length, to the filter input and output data. For example, filter properties like OutputWordLength and InputWordLength specify values that control filter operations at the input and output points in the structure
and are represented by the formatting objects InputFormat and OutputFormat shown in the filter structure diagrams.

Direct Form I Filter Structure

The following figure depicts the direct form I filter structure that directly realizes a transfer function with a second-order numerator and denominator. The numerator coefficients are numbered $b(i), \mathrm{i}=1,2,3$; the denominator coefficients are numbered $a(i), i=1,2,3$; and the states (used for initial and final state values in filtering) are labeled $z(i)$. In the figure, the Arithmetic property is set to fixed.

Example-Specifying a Direct Form I Filter. You can specify a second-order direct form I structure for a quantized filter hq with the following code.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1(b,a);
```

To create the fixed-point filter, set the Arithmetic property to fixed as shown here.

```
set(hq,'arithmetic','fixed');
```


Direct Form I Filter Structure With Second-Order Sections

The following figure depicts a direct form I filter structure that directly realizes a transfer function with a second-order numerator and denominator and second-order sections. The numerator coefficients are numbered $b(i), \mathrm{i}=1,2,3$; the denominator coefficients are numbered $a(i), i=1,2,3$; and the states (used for initial and final state values in filtering) are labeled $z(i)$. In the figure, the Arithmetic property is set to fixed to place the filter in fixed-point mode.

Example-Specifying a Direct Form I Filter with Second-Order Sections. You can specify an eighth-order direct form I structure for a quantized filter hq with the following code.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1sos(b,a);
```

To create the fixed-point filter, set the Arithmetic property to fixed, as shown here.

```
set(hq,'arithmetic','fixed');
```


Direct Form I Transposed Filter Structure

The next signal flow diagram depicts a direct form I transposed filter structure that directly realizes a transfer function with a second-order numerator and denominator. The numerator coefficients are $b(i), i=1,2,3$; the denominator
coefficients are $\alpha(i), i=1,2,3$; and the states (used for initial and final state values in filtering) are labeled $z(i)$. With the Arithmetic property value set to fixed, the figure shows the filter with the properties indicated.

Example-Specifying a Direct Form I Transposed Filter. You can specify a second-order direct form I transposed filter structure for a quantized filter hq with the following code.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1t(b,a);
set(hq,'arithmetic','fixed');
```


Direct Form II Filter Structure

The following graphic depicts a direct form II filter structure that directly realizes a transfer function with a second-order numerator and denominator. In the figure, the Arithmetic property value is fixed. Numerator coefficients
are named $b(i)$; denominator coefficients are named $a(i), i=1,2,3$; and the states (used for initial and final state values in filtering) are named $z(i)$.

Use the method dfilt.df2 to construct a quantized filter whose FilterStructure property is Direct-Form II.

Example-Specifying a Direct Form II Filter. You can specify a second-order direct form II filter structure for a quantized filter hq with the following code.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2({b,a});
hq.arithmetic = 'fixed'
```

To convert your initial double-precision filter hq to a quantized or fixed-point filter, set the Arithmetic property to fixed, as shown.

Direct Form II Filter Structure With Second-Order Sections

The following figure depicts direct form II filter structure using second-order sections that directly realizes a transfer function with a second-order numerator and denominator sections. In the figure, the Arithmetic property value is fixed. Numerator coefficients are labeled $b(i)$; denominator coefficients are labeled $a(i), i=1,2,3$; and the states (used for initial and final state values in filtering) are labeled $z(i)$.

Use the method dfilt.df2sos to construct a quantized filter whose FilterStructure property is Direct-Form II.

Example-Specifying a Direct Form II Filter with Second-Order Sections. You can specify a tenth-order direct form II filter structure that uses second-order sections for a quantized filter hq with the following code.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2sos({b,a});
hq.arithmetic = 'fixed'
```

To convert your prototype double-precision filter hq to a fixed-point filter, set the Arithmetic property to fixed, as shown.

Direct Form II Transposed Filter Structure

The following figure depicts the direct form II transposed filter structure that directly realizes transfer functions with a second-order numerator and denominator. The numerator coefficients are labeled $b(i)$, the denominator coefficients are labeled $a(i), i=1,2,3$, and the states (used for initial and final state values in filtering) are labeled $z(i)$. In the first figure, the Arithmetic property value is fixed.

Use the constructor dfilt.df2t to specify the value of the FilterStructure property for a filter with this structure that you can convert to fixed-point filtering.

Example-Specifying a Direct Form II Transposed Filter. Specifying or constructing a second-order direct form II transposed filter for a fixed-point filter hq starts with the following code to define the coefficients and construct the filter.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t({b,a});
```

Now create the fixed-point filtering version of the filter from hd, which is floating point.
hq = set(hd,'arithmetic','fixed');

Direct Form Antisymmetric FIR Filter Structure (Any Order)

The following figure depicts a direct form antisymmetric FIR filter structure that directly realizes a second-order antisymmetric FIR filter. The filter coefficients are labeled $b(i)$, and the initial and final state values in filtering are labeled $z(i)$. This structure reflects the Arithmetic property set to fixed.

Use the method dfilt.dfasymfir to construct the filter, and then set the Arithmetic property to fixed to convert to a fixed-point filter with this structure.

Example-Specifying an Odd-Order Direct Form Antisymmetric FIR Filter. Specify a fifth-order direct form antisymmetric FIR filter structure for a fixed-point filter hq with the following code.

```
b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hq = dfilt.dfasymfir(b);
set(hq,'arithmetic','fixed')
```

```
hq
hq =
            FilterStructure: 'Direct-Form Antisymmetric FIR'
                    Arithmetic: 'fixed'
                        Numerator: [ -0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
            PersistentMemory: false
            States: [1x1 fi object]
NumSamplesProcessed: 0
                    CoeffWordLength: 16
                    CoeffAutoScale: true
                    Signed: true
                    InputWordLength: 16
                    InputFracLength: 15
                    OutputWordLength: 16
                            OutputMode: 'AvoidOverflow'
                            TapSumMode: 'KeepMSB'
                    TapSumWordLength: 17
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
            AccumWordLength: 40
            CastBeforeSum: true
                    RoundMode: 'convergent'
                    OverflowMode: 'wrap'
                    InheritSettings: false
```

Example - Specifying an Even-Order Direct Form Antisymmetric FIR Filter. You can specify a fourth-order direct form antisymmetric FIR filter structure for a fixed-point filter hq with the following code.

```
b = [-0.01 0.1 0.0 -0.1 0.01];
```

```
hq = dfilt.dfasymfir(b);
hq.arithmetic='fixed'
hq =
    FilterStructure: 'Direct-Form Antisymmetric FIR'
    Arithmetic: 'fixed'
            Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
        PersistentMemory: false
            States: [1x1 fi object]
        NumSamplesProcessed: 0
        CoeffWordLength: 16
            CoeffAutoScale: true
            Signed: true
            InputWordLength: 16
            InputFracLength: 15
                OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            TapSumMode: 'KeepMSB'
                    TapSumWordLength: 17
            ProductMode: 'FullPrecision'
            AccumMode: 'KeepMSB'
            AccumWordLength: 40
        CastBeforeSum: true
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
            InheritSettings: false
```


Direct Form Finite Impulse Response (FIR) Filter Structure

In the next figure, you see the signal flow graph for a direct form finite impulse response (FIR) filter structure that directly realizes a second-order FIR filter. The filter coefficients are $b(i), i=1,2,3$, and the states (used for initial and final state values in filtering) are $z(i)$. To generate the figure, set the Arithmetic property to fixed after you create your prototype filter in double-precision arithmetic.

Use the dfilt.dffir method to generate a filter that uses this structure.
Example-Specifying a Direct Form FIR Filter. You can specify a second-order direct form FIR filter structure for a fixed-point filter hq with the following code.

```
b = [0.05 0.9 0.05];
hd = dfilt.dffir({b});
hq = set(hd,'arithmetic','fixed');
```


Direct Form FIR Transposed Filter Structure

This figure uses the filter coefficients labeled $b(i), i=1,2,3$, and states (used for initial and final state values in filtering) are labeled $z(i)$. These depict a direct form finite impulse response (FIR) transposed filter structure that directly realizes a second-order FIR filter.

With the Arithmetic property set to fixed, your filter matches the figure. Using the method dfilt.dffirt returns a double-precision filter that you convert to a fixed-point filter.

Example-Specifying a Direct Form FIR Transposed Filter. You can specify

 a second-order direct form FIR transposed filter structure for a fixed-point filter hq with the following code.```
b = [0.05 0.9 0.05];
hd=dfilt.dffirt({b});
hq = copy(hd);
hq.arithmetic = 'fixed';
```


## Lattice Allpass Filter Structure

The following figure depicts the lattice allpass filter structure. The pictured structure directly realizes third-order lattice allpass filters using fixed-point arithmetic. The filter reflection coefficients are labeled $k 1(i), i=1,2,3$. The states (used for initial and final state values in filtering) are labeled $z(i)$.


To create a quantized filter that uses the lattice allpass structure shown in the figure, use the dfilt.latticeallpass method and set the Arithmetic property to fixed.

Example-Specifying a Lattice Allpass Filter. You can create a third-order lattice allpass filter structure for a quantized filter hq with the following code.

```
k = [.66 .7 .44];
hd=dfilt.latticeallpass({k});
hq = copy(hd)
set(hq,'arithmetic','fixed');
```


## Lattice Moving Average Maximum Phase Filter Structure

In the next figure you see a lattice moving average maximum phase filter structure. This signal flow diagram directly realizes a third-order lattice moving average (MA) filter with the following phase form depending on the initial transfer function:

- When you start with a minimum phase transfer function, the upper branch of the resulting lattice structure returns a minimum phase filter. The lower branch returns a maximum phase filter.
- When your transfer function is neither minimum phase nor maximum phase, the lattice moving average maximum phase structure will not be maximum phase.
- When you start with a maximum phase filter, the resulting lattice filter is maximum phase also.

The filter reflection coefficients are labeled $k(i), i=1,2,3$. The states (used for initial and final state values in filtering) are labeled $z(i)$. In the figure, we set the Arithmetic property to fixed to reveal the fixed-point arithmetic format features that control such options as word length and fraction length.


Example-Constructing a Lattice Moving Average Maximum Phase Filter. Constructing a fourth-order lattice MA maximum phase filter structure for a quantized filter hq begins with the following code.

```
k = [.66 .7 .44 .33];
hd=dfilt.latticemamax({k});
```


## Lattice Autoregressive (AR) Filter Structure

The method dfilt. latticear directly realizes lattice autoregressive filters in the toolbox. The following figure depicts the third-order lattice autoregressive $(A R)$ filter structure-with the Arithmetic property equal to fixed. The filter reflection coefficients are labeled $k(i), i=1,2,3$, and the states (used for initial and final state values in filtering) are labeled $z(i)$.


Example-Specifying a Lattice AR Filter. You can specify a third-order lattice AR filter structure for a quantized filter hq with the following code.

```
k = [.66 .7 .44];
hd=dfilt.latticear({k});
hq = copy(hd);
hq.arithmetic = 'custom';
```


## Lattice Moving Average (MA) Filter Structure for Minimum Phase

The following figures depict lattice moving average (MA) filter structures that directly realize third-order lattice MA filters for minimum phase. The filter reflection coefficients are labeled $k(i), i=1,2,3$, and the states (used for initial and final state values in filtering) are labeled $z(i)$. Setting the Arithmetic property of the filter to fixed results in a fixed-point filter that matches the figure.

This signal flow diagram directly realizes a third-order lattice moving average (MA) filter with the following phase form depending on the initial transfer function:

- When you start with a minimum phase transfer function, the upper branch of the resulting lattice structure returns a minimum phase filter. The lower branch returns a minimum phase filter.
- When your transfer function is neither minimum phase nor maximum phase, the lattice moving average minimum phase structure will not be minimum phase.
- When you start with a minimum phase filter, the resulting lattice filter is minimum phase also.

The filter reflection coefficients are labeled $k(i), i=1,2,3$. The states (used for initial and final state values in filtering) are labeled $z(i)$. In the figure, we set the Arithmetic property to fixed to reveal the fixed-point arithmetic format features that control such options as word length and fraction length.


Example-Specifying a Minimum Phase Lattice MA Filter. You can specify a third-order lattice MA filter structure for minimum phase applications using variations of the following code.

```
k = [. 66 .7 .44];
hd=dfilt.latticemamin({k});
hq = copy(hd);
set(hq,'arithmetic','fixed');
```


## Lattice Autoregressive Moving Average (ARMA) Filter Structure

The figure below depicts a lattice autoregressive moving average (ARMA) filter structure that directly realizes a fourth-order lattice ARMA filter. The filter reflection coefficients are labeled $k(i), i=1, \ldots, 4$; the ladder coefficients are labeled $v(i), i=1,2,3$; and the states (used for initial and final state values in filtering) are labeled $z(i)$.


Example-Specifying an Lattice ARMA Filter. The following code specifies a fourth-order lattice ARMA filter structure for a quantized filter hq, starting from hd, a floating-point version of the filter.

```
k = [.66 .7 .44 .66];
v = [1 0 0];
hd=dfilt.latticearma({k,v});
hq = copy(hd);
hq.arithmetic = 'fixed';
```


## Direct Form Symmetric FIR Filter Structure (Any Order)

Shown in the next figure, you see signal flow that depicts a direct form symmetric FIR filter structure that directly realizes a fifth-order direct form symmetric FIR filter. Filter coefficients are labeled $b(i), i=1, \ldots, n$, and states (used for initial and final state values in filtering) are labeled $z(i)$. Showing the filter structure used when you select fixed for the Arithmetic property value, the first figure details the properties in the filter object.


Example-Specifying an Odd-Order Direct Form Symmetric FIR Filter. By using the following code in MATLAB, you can specify a fifth-order direct form symmetric FIR filter for a fixed-point filter hq:

```
b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd=dfilt.dfsymfir({b});
```

```
hq = copy(hd);
set(hq,'arithmetic','fixed');
```


## Assigning Filter Coefficients

The syntax you use to assign filter coefficients for your floating-point or fixed-point filter depends on the structure you select for your filter.

## Converting Filters Between Representations

Filter conversion functions in this toolbox and in the Signal Processing Toolbox let you convert filter transfer functions to other filter forms, and from other filter forms to transfer function form. Relevant conversion functions include the following functions.

| Conversion Function | Description |
| :--- | :--- |
| ca2tf | Converts from a coupled allpass filter to a <br> transfer function. |
| cl2tf | Converts from a lattice coupled allpass filter to <br> a transfer function. |
| convert | Convert a discrete-time filter from one filter <br> structure to another. |
| sos | Converts quantized filters to create <br> second-order sections. We recommend this <br> method for converting quantized filters to <br> second-order sections. |
| tf2ca | Converts from a transfer function to a coupled <br> allpass filter. |
| tf2cl | Converts from a transfer function to a lattice <br> coupled allpass filter. |
| tf2latc | Converts from a transfer function to a lattice <br> filter. |
| tf2sos | Converts from a transfer function to a <br> second-order section form. |


| Conversion Function | Description |
| :--- | :--- |
| tf2ss | Converts from a transfer function to <br> state-space form. |
| tf2zp | Converts from a rational transfer function to <br> its factored (single section) form <br> (zero-pole-gain form). |
| zp2sos | Converts a zero-pole-gain form to a <br> second-order section form. |
| zp2ss | Conversion of zero-pole-gain form to a <br> state-space form. |
| zp2tf | Conversion of zero-pole-gain form to transfer <br> functions of multiple order sections. |

Note that these conversion routines do not apply to dfilt objects.
Function convert is a special case-when you use convert to change the filter structure of a fixed-point filter, you lose all of the filter states and settings. Your new filter has default values for all properties, and it in not fixed-point.

To demonstrate the changes that occur, convert a fixed-point direct form I transposed filter to direct form II structure.

```
hd=dfilt.df1t
hd =
 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1
 PersistentMemory: false
 States: Numerator: [0xO double]
 Denominator:[0x0 double]
 NumSamplesProcessed: 0
hd.arithmetic='fixed'
```

```
hd =
 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1
 PersistentMemory: false
 States: Numerator: [0x0 fi]
 Denominator:[0x0 fi]
 NumSamplesProcessed: 0
convert(hd,'df2')
Warning: Using reference filter for structure conversion.
Fixed-point attributes will not be converted.
ans =
 FilterStructure: 'Direct-Form II'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1
 PersistentMemory: false
 States: [0x1 double]
NumSamplesProcessed: 0
```

You can specify a filter with $L$ sections of arbitrary order by
1 Factoring your entire transfer function with tf2zp. This converts your transfer function to zero-pole-gain form.

2 Using zp2tf to compose the transfer function for each section from the selected first-order factors obtained in step 1.

Note You are not required to normalize the leading coefficients of each section's denominator polynomial when you specify second-order sections, though tf2sos does.

## Gain

dfilt.scalar filters have a gain value stored in the gain property. By default the gain value is one-the filter acts as a wire.

## InputFracLength

InputFracLength defines the fraction length assigned to the input data for your filter. Used in tandem with InputWordLength, the pair defines the data format for input data you provide for filtering.

As with all fraction length properties in dfilt objects, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, in this case InputWordLength, as well.

## InputWordLength

Specifies the number of bits your filter uses to represent your input data. Your word length option is limited by the arithmetic you choose-up to 32 bits for double, float, and fixed. Setting Arithmetic to single (single-precision floating-point) limits word length to 16 bits. The default value is 16 bits.

## Ladder

Included as a property in dfilt.latticearma filter objects, Ladder contains the denominator coefficients that form an IIR lattice filter object. For instance, the following code creates a high pass filter object that uses the lattice ARMA structure.

```
[b,a]=cheby1(5,.5,.5,'high')
b =
 0.0282 -0.1409 0.2817 -0.2817 0.1409 -0.0282
```

```
a =
 1.0000 0.9437 1.4400 0.9629 0.5301 0.1620
hd=dfilt.latticearma(b,a)
hd =
 FilterStructure: [1x44 char]
 Arithmetic: 'double'
 Lattice: [1x6 double]
 Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]
 PersistentMemory: false
 States: [6x1 double]
 NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =
 FilterStructure: [1x44 char]
 Arithmetic: 'fixed'
 Lattice: [1x6 double]
 Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 StateWordLength: 16
 StateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
```


## LadderAccumFracLength

Autoregressive, moving average lattice filter objects (lattticearma) use ladder coefficients to define the filter. In combination with LadderFracLength and CoeffWordLength, these three properties specify or reflect how the accumulator outputs data stored there. As with all fraction length properties, LadderAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers. The default value is 29 bits.

## LadderFracLength

To let you control the way your latticearma filter interprets the denominator coefficients, LadderFracLength sets the fraction length applied to the ladder coefficients for your filter. The default value is 14 bits.

As with all fraction length properties, LadderFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers.

## Lattice

When you create a lattice-based IIR filter, your numerator coefficients (from your IIR prototype filter or the default dfilt lattice filter function) get stored in the Lattice property of the dfilt object. The properties CoeffWordLength and LatticeFracLength define the data format the object uses to represent the lattice coefficients. By default, lattice coefficients are in double-precision format.

## LatticeAccumFracLength

Lattice filter objects (latticeallpass, latticearma, latticemamax, and latticemamin) use lattice coefficients to define the filter. In combination with LatticeFracLength and CoeffWordLength, these three properties specify how the accumulator outputs lattice coefficient-related data stored there. As with all fraction length properties, LatticeAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers. By default, the property is set to 31 bits.

## LatticeFracLength

To let you control the way your filter interprets the denominator coefficients, LatticeFracLength sets the fraction length applied to the lattice coefficients for your lattice filter. When you create the default lattice filter, LatticeFracLength is 16 bits.

As with all fraction length properties, LatticeFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers.

## MultiplicandFracLength

Each input data element for a multiply operation has both word length and fraction length to define its representation. MultiplicandFracLength sets the fraction length to use when the filter object performs any multiply operation during filtering. For default filters, this is set to 15 bits.

As with all word and fraction length properties, MultiplicandFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers.

## MultiplicandWordLength

Each input data element for a multiply operation has both word length and fraction length to define its representation. MultiplicandWordLength sets the word length to use when the filter performs any multiply operation during filtering. For default filters, this is set to 16 bits. Only the df1t and df1tsos filter objects include the MultiplicandFracLength property.

Only the df1t and df1tsos filter objects include the MultiplicandWordLength property.

## NumAccumFracLength

Filter structures $d f 1$, $d f 1 t, d f 2$, and $d f 2 t$ that use fixed arithmetic have this property that defines the fraction length applied to numerator coefficients in output from the accumulator. In combination with AccumWordLength, the NumAccumFracLength property fully specifies how the accumulator outputs numerator-related data stored there.

As with all fraction length properties, NumAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative
integers. 30 bits is the default value when you create the filter object. To be able to change the value for this property, set AccumMode for the filter to SpecifyPrecision.

## Numerator

The numerator coefficients for your filter, taken from the prototype you start with or from the default filter, are stored in this property. Generally this is a 1-by- N array of data in double format, where N is the length of the filter.

All of the filter objects include Numerator, except the lattice-based and second-order section filters, such as dfilt.latticema and dfilt.df1tsos.

## NumFracLength

Property NumFracLength contains the value that specifies the fraction length for the numerator coefficients for your filter. NumFracLength specifies the fraction length used to interpret the numerator coefficients. Used in combination with CoeffWordLength, these two properties define the interpretation of the coefficients stored in the vector that contains the numerator coefficients.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 15 bits, with the CoeffWordLength of 16 bits.

## NumProdFracLength

A property of all of the direct form IIR dfilt objects, except the ones that implement second-order sections, NumProdFracLength specifies the fraction length applied to data output from product operations the filter performs on numerator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you see that denominators and numerators are handled separately. When you set ProductMode to SpecifyPrecision, you can change the NumProdFracLength setting manually. Otherwise, for multiplication operations that use the numerator coefficients, the filter sets the word length as defined by the ProductMode setting.

## NumSamplesProcessed

Contains the count of the samples processed by the filter, for each iteration or the total for all iterations. How the filter counts the number of processed samples depends on the property value you set for PersistentMemory. When you set PersistentMemory to false, the number of samples processed resets to zero for each filtering process. For example, in a loop, NumSamplesProcessed reports the number of samples for each loop iteration, resetting to zero each time the loop start again. Starting at zero for each pass through the loop, this value lets you know how many samples the filter actually processed during each run.

When you set ResetBeforFiltering to off, NumSamplesProcessed does not reset to zero for each loop iteration in your test or program, thus it contains the total count of the samples processed during all filtering.

## NumStateFracLength

All the variants of the direct form I structure include the property NumStateFracLength to store the fraction length applied to the numerator states for your filter object. By default, this property has the value 15 bits, with the CoeffWordLength of 16 bits, which you can change after you create the filter object.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well.

## NumStateWordLength

When you look at the flow diagram for the df1sos filter object, the states associated with the numerator coefficient operations take the data format from this property and the NumStateFracLength property. In combination, these properties fully specify how the filter interprets the state it uses.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 16 bits, with the NumStateFracLength of 11 bits.

## OutputFracLength

To define the output from your filter object, you need both the word and fraction lengths. OutputFracLength determines the fraction length applied to interpret the output data. Combining this with OutputWordLength fully specifies the format of the output.

Your fraction length can be any negative or positive integer, or zero. In addition, the fraction length you specify can be larger than the associated word length. Generally, the default value is 11 bits.

## OutputMode

Sets the mode the filter uses to scale the filtered (output) data. You have the following choices:

- AvoidOverflow-directs the filter to set the property that controls the output data fraction length to avoid causing the data to overflow. In a df2 filter, this would be the OutputFracLength property.
- BestPrecision-directs the filter to set the property that controls the output data fraction length to maximize the precision in the output data. For df1t filters, this is the OutputFracLength property. When you change the word length (OutputWordLength), the filter adjusts the fraction length to maintain the best precision for the new word size.
- SpecifyPrecision-lets you set the fraction length used by the filtered data. When you select this choice, you can set the output fraction length using the OutputFracLength property to define the output precision.

All filters include this property except the direct form I filter which takes the output format from the filter states.

Here is an example that changes the mode setting to bestprecision, and then adjusts the word length for the output.

```
hd=dfilt.df2
hd =
```

```
FilterStructure: 'Direct-Form II'
```

FilterStructure: 'Direct-Form II'
Arithmetic: 'double'
Arithmetic: 'double'
Numerator: 1
Numerator: 1
Denominator: 1

```
 Denominator: 1
```

```
 PersistentMemory: false
 States: [0x1 double]
 NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form II'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 StateWordLength: 16
 StateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
get(hd)
 PersistentMemory: false
```

```
 NumSamplesProcessed: 0
 FilterStructure: 'Direct-Form II'
 States: [1x1 embedded.fi]
 Numerator: 1
 Denominator: 1
 Arithmetic: 'fixed'
 CoeffWordLength: 16
 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 StateWordLength: 16
 StateFracLength: 15
 NumFracLength: 14
 DenFracLength: 14
 OutputFracLength: 13
 ProductWordLength: 32
 NumProdFracLength: 29
 DenProdFracLength: 29
 AccumWordLength: 40
 NumAccumFracLength: 29
 DenAccumFracLength: 29
 CastBeforeSum: 1
hd.outputMode='bestprecision'
hd =
 FilterStructure: 'Direct-Form II'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1
PersistentMemory: false
 States: [1x1 embedded.fi]
```

```
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'BestPrecision'
 StateWordLength: 16
 StateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
hd.outputWordLength=8;
get(hd)
 PersistentMemory: false
 NumSamplesProcessed: 0
 FilterStructure: 'Direct-Form II'
 States: [1x1 embedded.fi]
 Numerator: 1
 Denominator: 1
 Arithmetic: 'fixed'
 CoeffWordLength: 16
 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
```

InputFracLength: ..... 15
OutputWordLength: 8

```OutputMode: 'BestPrecision'ProductMode: 'FullPrecision'
```

AccumMode: 'KeepMSB'
StateWordLength: ..... 16
StateFracLength: ..... 15
NumFracLength: ..... 14
DenFracLength: ..... 14
OutputFracLength: ..... 5
ProductWordLength: ..... 32
NumProdFracLength: ..... 29
DenProdFracLength: ..... 29
AccumWordLength: ..... 40
NumAccumFracLength: ..... 29
DenAccumFracLength: ..... 29
CastBeforeSum: ..... 1

Changing the OutputWordLength to 8 bits caused the filter to change the OutputFracLength to 5 bits to keep the best precision for the output data.

## OutputWordLength

Use the property OutputWordLength to set the word length used by the output from your filter. Set this property to a value that matches your intended hardware. For example, some digital signal processors use 32-bit output so you would set OutputWordLength to 32.

```
[b,a] = butter(6,.5);
hd=dfilt.df1t(b,a);
set(hd,'arithmetic','fixed')
hd
hd =
```

```
 FilterStructure: 'Direct-Form I Transposed'
```

        FilterStructure: 'Direct-Form I Transposed'
            Arithmetic: 'fixed'
            Arithmetic: 'fixed'
                Numerator: [1x7 double]
                Numerator: [1x7 double]
            Denominator: [11 0 0.7777 0 0.1142 0 0.0018]
            Denominator: [11 0 0.7777 0 0.1142 0 0.0018]
    PersistentMemory: false
PersistentMemory: false
States: Numerator: [6x1 fi]

```
 States: Numerator: [6x1 fi]
```

```
 Denominator:[6x1 fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 MultiplicandWordLength: 16
MultiplicandFracLength: 15
 StateWordLength: 16
 StateAutoScale: true
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
hd.outputwordLength=32
hd =
 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'fixed'
 Numerator: [1x7 double]
 Denominator: [1 0 0.7777 0 0.1142 0 0.0018]
 PersistentMemory: false
 States: Numerator: [6x1 fi]
 Denominator:[6x1 fi]
NumSamplesProcessed: O
```

CoeffWordLength: 16

```
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 32
 OutputMode: 'AvoidOverflow'
 MultiplicandWordLength: 16
 MultiplicandFracLength: 15
 StateWordLength: 16
 StateAutoScale: true
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
```

When you create a filter object, this property starts with the value 16 .

## OverflowMode

The OverflowMode property is specified as one of the following two strings indicating how to respond to overflows in fixed-point arithmetic:

- 'saturate '-saturate overflows.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the applicable word length and fraction length properties), these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'wrap '-wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular arithmetic relative to the smallest representable number. You can learn more about modular arithmetic in the Fixed-Point Toolbox.

These rules apply to the OverflowMode property.

- Applies to the accumulator and output data only.
- Does not apply to coefficients or input data. These always saturate the results.
- Does not apply to products. Products maintain full precision at all times. Your filters do not lose precision in the products.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic range overflow to $\pm i n f$.

## ProductFracLength

After you set ProductMode for a fixed-point filter to SpecifyPrecision, this property becomes available for you to change. ProductFracLength sets the fraction length the filter uses for the results of multiplication operations. Only the FIR filters such as asymmetric FIRs or lattice autoregressive filters include this dynamic property.

Your fraction length can be any negative or positive integer, or zero. In addition, the fraction length you specify can be larger than the associated word length. Generally, the default value is 11 bits.

## ProductMode

This property, available when your filter is in fixed-point arithmetic mode, specifies how the filter outputs the results of multiplication operations. All dfilt objects include this property when they use fixed-point arithmetic.

When available, you select from one of the following values for ProductMode:

- FullPrecision-means the filter automatically chooses the word length and fraction length it uses to represent the results of multiplication operations.

The setting allow the product to retain the precision provided by the inputs (multiplicands) to the operation.

- KeepMSB—means you specify the word length for representing product operation results. The filter sets the fraction length to discard the LSBs, keep the higher order bits in the data, and maintain the precision.
- KeepLSB-means you specify the word length for representing the product operation results. The filter sets the fraction length to discard the MSBs, keep the lower order bits, and maintain the precision. Compare to the KeepMSB option.
- SpecifyPrecision-means you specify the word length and the fraction length to apply to data output from product operations.

When you switch to fixed-point filtering from floating-point, you are most likely going to throw away some data bits after product operations in your filter, perhaps because you have limited resources. When you have to discard some bits, you might choose to discard the least significant bits (LSB) from a result since the resulting quantization error would be small as the LSBs carry less weight. Or you might choose to keep the LSBs because the results have MSBs that are mostly zero, such as when your values are small relative to the range of the format in which they are represented. So the options for ProductMode let you choose how to maintain the information you need from the accumulator.

For more information about data formats, word length, and fraction length in fixed-point arithmetic, refer to "Notes About Fraction Length, Word Length, and Precision" on page 8-32.

## ProductWordLength

You use ProductWordLength to define the data word length used by the output from multiplication operations. Set this property to a value that matches your intended application. For example, the default value is 32 bits, but you can set any word length.

```
set(hq,'arithmetic','fixed');
set(hq,'ProductWordLength',64);
```

Note that ProductWordLength applies only to filters whose Arithmetic property value is fixed.

## PersistentMemory

Note that PersistentMemory affects the reported number of samples processed by the filter and stored in the property NumSamplesProcessed.

Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter object. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false-the filter does not retain memory about filtering operations from one to the next. Maintaining memory (setting PersistentMemory to true) lets you filter large data sets as collections of smaller subsets and get the same result.

In this example, filter hd first filters data xtot in one pass. Then we use hd to filter $x$ as two separate data sets. The results ytot and ysec are the same in both cases.

```
xtot=[x,x];
ytot=filter(hd,xtot)
ytot =
```



```
ysec =
 0
```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

## RoundMode

The RoundMode property value specifies the rounding method used for quantizing numerical values. Specify the RoundMode property values as one of the following five strings.

RoundMode String	Description of Rounding Algorithm
'ceil'	Round up to the next representable quantized   value.
'convergent'	Round to the nearest representable quantized   value. Numbers that are exactly halfway   between the two nearest representable   quantized values are rounded up when the least   significant bit would be set to 1 after rounding.   Otherwise, the number is rounded down. Filter   objects use convergent rounding by default.
'fix'	Round negative numbers up and positive   numbers down to the next representable   quantized value.
'floor'	Round down to the next representable quantized   value.
'round'	Round to the nearest representable quantized   value. Numbers that are halfway between the   two nearest representable quantized values are   rounded up.

Default value: ' convergent'
The choice you make affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.

## ScaleValueFracLength

Filter structures $d f 1$ sos, $d f 1 t s o s, d f 2 s o s$, and df2tsos that use fixed arithmetic have this property that defines the fraction length applied to the
scale values the filter uses between sections. In combination with CoeffWordLength, these two properties fully specify how the filter interprets and uses the scale values stored in the property ScaleValues. As with fraction length properties, ScaleValueFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter.

## ScaleValues

The ScaleValues property values are specified as a scalar (or vector) that introduces scaling for inputs (and the outputs from cascaded sections in the vector case) during filtering:

- When you only have a single section in your filter:
- Specify the ScaleValues property value as a scalar if you only want to scale the input to your filter.
- Specify the ScaleValues property as a vector of length 2 if you want to specify scaling to the input (scaled with the first entry in the vector) and the output (scaled with the last entry in the vector).
- When you have $L$ cascaded sections in your filter:
- Specify the ScaleValues property value as a scalar if you only want to scale the input to your filter.
- Specify the value for the ScaleValues property as a vector of length $L+1$ if you want to scale the inputs to every section in your filter, along with the output:
-The first entry of your vector specifies the input scaling
- Each successive entry specifies the scaling at the output of the next section
- The final entry specifies the scaling for the filter output.

The interpretation of this property is described below with diagrams in "Interpreting the ScaleValues Property".
Default value: 0
Remarks: The value of the ScaleValues property is not quantized. Data affected by the presence of a scaling factor in the filter is quantized according to the appropriate data format.

When you apply normalize to a fixed-point filter, the value for the ScaleValues property is changed accordingly.

It is good practice to choose values for this property that are either positive or negative powers of two.

## Interpreting the ScaleValues Property

When you specify the values of the ScaleValues property of a quantized filter, the values are entered as a vector, the length of which is determined by the number of cascaded sections in your filter:

- When you have only one section, the value of the Scalevalues property can be a a scalar or a two-element vector.
- When you have $L$ cascaded sections in your filter, the value of the Scalevalues property can be a scalar or an $L+1$-element vector.

The following diagram shows how the ScaleValues property values are applied to a quantized filter with only one section.

## Application of ScaleValues to a Single Section



The following diagram shows how the ScaleValues property values are applied to a quantized filter with two sections.

## Application of ScaleValues to Multiple Sections



## Signed

When you create a dfilt object for fixed-point filtering (you set the property Arithmetic to fixed, the property Signed specifies whether the filter interprets coefficients as signed or unsigned. This setting applies only to the coefficients. While the default setting is true, meaning that all coefficients are assumed to be signed, you can change the setting to false after you create the fixed-point filter.

For example, create a fixed-point direct-form II transposed filter with both negative and positive coefficients, and then change the property value for Signed from true to false to see what happens to the negative coefficient values.

```
hd=dfilt.df2t(-5:5)
hd =
 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [-5 -4 -3 -2 -1 0 1 2 3 4 5]
 Denominator: 1
 PersistentMemory: false
 States: [10x1 double]
 NumSamplesProcessed: 0
set(hd,'arithmetic','fixed')
hd.numerator
```

```
ans =
 lllllllllll
set(hd,'signed',false)
hd.numerator
ans =
\begin{tabular}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 3 & 4 & 5
\end{tabular}
```

Using unsigned coefficients limits you to using only positive coefficients in your filter. Signed is a dynamic property-you cannot set or change it until you switch the setting for the Arithmetic property to fixed.

## SosMatrix

When you convert a dfilt object to second-order section form, or create a second-order section filter, sosMatrix holds the filter coefficients as property values. Using the double data type by default, the matrix is in [sections coefficients per section] form, displayed as [15-x-6] for filters with 6 coefficients per section and 15 sections, [15 6].

To demonstrate, the following code creates an order 30 filter using second-order sections in the direct-form II transposed configuration. Notice the sosMatrix property contains the coefficients for all the sections.

```
d = fdesign.lowpass('n,fc',30,0.5);
hd = butter(d);
hd =
```

```
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 double]
 NumSamplesProcessed: 0
```

```
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 SectionInputWordLength: 16
 SectionInputAutoScale: true
SectionOutputWordLength: 16
 SectionOutputAutoScale: true
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
```

StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

hd. sosMatrix					
ans $=$					
1.0000	2.0000	1.0000	1.0000	0	0.9005
1.0000	2.0000	1.0000	1.0000	0	0.7294
1.0000	2.0000	1.0000	1.0000	0	0.5888
1.0000	2.0000	1.0000	1.0000	0	0.4724
1.0000	2.0000	1.0000	1.0000	0	0.3755
1.0000	2.0000	1.0000	1.0000	0	0.2948
1.0000	2.0000	1.0000	1.0000	0	0.2275
1.0000	2.0000	1.0000	1.0000	0	0.1716
1.0000	2.0000	1.0000	1.0000	0	0.1254
1.0000	2.0000	1.0000	1.0000	0	0.0878
1.0000	2.0000	1.0000	1.0000	0	0.0576
1.0000	2.0000	1.0000	1.0000	0	0.0344
1.0000	2.0000	1.0000	1.0000	0	0.0173
1.0000	2.0000	1.0000	1.0000	0	0.0062
1.0000	2.0000	1.0000	1.0000	0	0.0007

The SOS matrix is an M-by-6 matrix, where M is the number of sections in the second-order section filter. Filter hd has M equal to 15 as shown above ( 15 rows). Each row of the SOS matrix contains the numerator and denominator coefficients (b's and a's) and the scale factors of the corresponding section in the filter.

## SectionInputAutoScale

Second-order section filters include this property that determines who the filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends on the property value of SectionInputAutoScale. The representation the filter uses between the filter sections depends on whether the value of SectionInputAutoScale is true or false.

- SectionInputAutoScale = true means the filter chooses the fraction length to maintain the value of the data between sections as close to the output values from the previous section as possible. true is the default setting.
- SectionInputAutoScale = false removes the automatic scaling of the fraction length for the intersection data and exposes the property that
controls the coefficient fraction length (SectionInputFracLength) so you can change it. For example, if the filter is a second-order, direct form FIR filter, setting SectionInputAutoScale = false exposes the
SectionInputFracLength property that specifies the fraction length applied to data between the sections.


## SectionInputFracLength

Second-order section filters use quantizers at the input to each section of the filter. The quantizers apply to the input data entering each filter section. Note that the quantizers for each section are the same. To set the fraction length for interpreting the input values, use the property value in SectionInputFracLength.

In combination with CoeffWordLength, SectionInputFracLength fully determines how the filter interprets and uses the state values stored in the property States. As with all word and fraction length properties, SectionInputFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

## SectionInputWordLength

SOS filters are composed of sections, each one a second-order filter. Filtering data input to the filter involves passing the data through each filter section. SectionInputWordLength specifies the word length applied to data as it enters one filter section from the previous section. Only second-order implementations of direct-form I transposed and direct-form II transposed filters include this property.

By looking at one of the SOS transposed filter structures, such as this one for the transposed direct-form I filter implemented using second-order sections, you see the filter sections at the bottom of the figure.


SectionInputWordLength defaults to 16 bits.

## SectionOutputAutoScale

Second-order section filters include this property that determines who the filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends on the property value of SectionOutputAutoScale. The representation the filter uses between the filter sections depends on whether the value of SectionOutputAutoScale is true or false.

- SectionOutputAutoScale = true means the filter chooses the fraction length to maintain the value of the data between sections as close to the output values from the previous section as possible. true is the default setting.
- SectionOutputAutoScale = false removes the automatic scaling of the fraction length for the intersection data and exposes the property that controls the coefficient fraction length (SectionOutputFracLength) so you can change it. For example, if the filter is a second-order, direct form FIR filter, setting SectionOutputAutoScale = false exposes the SectionOutputFracLength property that specifies the fraction length applied to data between the sections.


## SectionOutputFracLength

Second-order section filters use quantizers at the output from each section of the filter. The quantizers apply to the output data leaving each filter section. Note that the quantizers for each section are the same. To set the fraction length for interpreting the output values, use the property value in SectionOutputFracLength.

In combination with CoeffWordLength, SectionOutputFracLength determines how the filter interprets and uses the state values stored in the property States. As with all fraction length properties, SectionOutputFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

## SectionOutputWordLength

SOS filters are composed of sections, each one a second-order filter. Filtering data input to the filter involves passing the data through each filter section. SectionOutputWordLength specifies the word length applied to data as it leaves one filter section to go to the next. Only second-order implementations direct-form I transposed and direct-form II transposed filters include this property.

By looking at one of the SOS transposed filter structures, such as this one for the transposed direct-form I filter implemented using second-order sections, you see the filter sections at the bottom of the figure.


SectionOutputWordLength defaults to 16 bits.

## StateAutoScale

Although all filters use states, some do not allow you to choose whether the filter automatically scales the state values to prevent overruns or bad arithmetic errors. You select either of the following settings:

- StateAutoScale = true means the filter chooses the fraction length to maintain the value of the states as close to the double-precision values as possible. When you change the word length applied to the states (where allowed by the filter structure), the filter object changes the fraction length to try to accommodate the change. true is the default setting.
- StateAutoScale $=$ false removes the automatic scaling of the fraction length for the states and exposes the property that controls the coefficient fraction length so you can change it. For example, in a direct form I
transposed SOS FIR filter, setting StateAutoScale = false exposes the NumStateFracLength and DenStateFracLength properties that specify the fraction length applied to states.

Each of the following filter structures provides the StateAutoScale property:

- df1t
- df1tsos
- df2t
- df2tsos
- dffirt

Other filter structures do not include this property.

## StateFracLength

Filter states stored in the property States have both word length and fraction length. To set the fraction length for interpreting the stored filter object state values, use the property value in StateFracLength.
In combination with CoeffWordLength, StateFracLength fully determines how the filter interprets and uses the state values stored in the property States.

As with all fraction length properties, StateFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

## States

Digital filters are dynamic systems. The behavior of dynamic systems (their response) depends on the input (stimulus) to the system and the current or previous state of the system. You can say the system has memory or inertia. All fixed- or floating-point digital filters (as well as analog filters) have states.

Filters use the states to compute the filter output for each input sample, as well using them while filtering in loops to maintain the filter state between loop iterations. In the toolbox we assume zero-valued initial conditions (the dynamic system is at rest) by default when we filter the first input sample. Assuming the states are zero initially does not mean the states are not used; they are, but arithmetically they do not have any effect.

Filter objects store the state values in the property States. The number of stored states depends on the filter implementation, since the states represent the delays in the filter implementation.

When you review the display for a filter object with fixed arithmetic, notice that the states return an embedded fi object, as you see here.

```
b = ellip(6,3,50,300/500);
hd=dfilt.dffir(b)
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]
 PersistentMemory: false
 States: [6x1 double]
 NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: 'on'
 Signed: 'on'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: 'on'
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InheritSettings: 'off'
```

fi objects provide fixed-point support for the filters. To learn more about the details about fi objects, refer to your Fixed-Point Toolbox documentation.

The property States lets you use a fi object to define how the filter interprets the filter states. For example, you can create a fi object in MATLAB, then assign the object to States, as follows:

```
statefi=fi([],16,12)
statefi =
[]
```

```
 DataTypeMode = Fixed-point: binary point scaling
```

    DataTypeMode = Fixed-point: binary point scaling
                        Signed = true
                        Signed = true
                            Wordlength \(=16\)
                            Wordlength \(=16\)
    Fractionlength $=12$

```
Fractionlength \(=12\)
```

This fi object does not have a value associated (notice the [] input argument to fi for the value), and it has word length of 16 bits and fraction length of 12 bit. Now you can apply statefi to the States property of the filter hd.

```
set(hd,'States',statefi);
Warning: The 'States' property will be reset to the value
specified at construction before filtering.
Set the 'PersistentMemory' flag to 'True' to avoid changing this
property value.
hd
hd =
```

```
 FilterStructure: 'Direct-Form FIR'
```

            FilterStructure: 'Direct-Form FIR'
                Arithmetic: 'fixed'
                Arithmetic: 'fixed'
                                Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858
                                Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858
                        0.2938 0.0773]
                        0.2938 0.0773]
            PersistentMemory: false
            PersistentMemory: false
            States: [1x1 embedded.fi]
            States: [1x1 embedded.fi]
                NumSamplesProcessed: 0
                NumSamplesProcessed: 0
                    CoeffWordLength: 16
                    CoeffWordLength: 16
                    CoeffAutoScale: 'on'
                    CoeffAutoScale: 'on'
                            Signed: 'on'
                            Signed: 'on'
                    InputWordLength: 16
                    InputWordLength: 16
                    InputFracLength: 15
    ```
 InputFracLength: 15
```

```
OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
AccumWordLength: 40
 CastBeforeSum: 'on'
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
```


## StateWordLength

While all filters use states, some do not allow you to directly change the state representation - the word length and fraction lengths-independently. For the others, StateWordLength specifies the word length, in bits, the filter uses to represent the states. Filters that do not provide direct state word length control include:

- df1
- dfasymfir
- dffir
- dfsymfir

For these structures, the filter derives the state format from the input format you choose for the filter-except for the df1 IIR filter. In this case, the numerator state format comes from the input format and the denominator state format comes from the output format. All other filter structures provide control of the state format directly.

## TapSumFracLength

Direct-form FIR filter objects, both symmetric and antisymmetric, use this property. To set the fraction length for output from the sum operations that involve the filter tap weights, use the property value in TapSumFracLength. To enable this property, set the TapSumMode to SpecifyPrecision in your filter.

As you can see in this code example that creates a fixed-point asymmetric FIR filter, the TapSumFracLength property becomes available after you change the TapSumMode property value.

```
hd=dfilt.dfasymfir
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: 1
 PersistentMemory: false
 States: [0x1 double]
 NumSamplesProcessed: 0
set(hd,'arithmetic','fixed');
hd
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: 1
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 TapSumMode: 'KeepMSB'
 TapSumWordLength: 17
```

```
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
AccumWordLength: 40
CastBeforeSum: true
 RoundMode: 'convergent'
OverflowMode: 'wrap'
```

With the filter now in fixed-point mode, you can change the TapSumMode property value to SpecifyPrecision, which gives you access to the TapSumFracLength property.

```
set(hd,'TapSumMode','SpecifyPrecision');
hd
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: 1
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 TapSumMode: 'SpecifyPrecision'
 TapSumWordLength: 17
 TapSumFracLength: 15
 ProductMode: 'FullPrecision'
```

```
 AccumMode: 'KeepMSB'
AccumWordLength: 40
CastBeforeSum: true
 RoundMode: 'convergent'
OverflowMode: 'wrap'
```

In combination with TapSumWordLength, TapSumFracLength fully determines how the filter interprets and uses the state values stored in the property States.

As with all fraction length properties, TapSumFracLength can be any integer, including integers larger than TapSumWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

## TapSumMode

This property, available only after your filter is in fixed-point mode, specifies how the filter outputs the results of summation operations that involve the filter tap weights. Only symmetric (dfilt.dfsymfir) and antisymmetric (dfilt.dfasymfir) FIR filters use this property.

When available, you select from one of the following values:

- Fullprecision-means the filter automatically chooses the word length and fraction length to represent the results of the sum operation so they retain all of the precision provided by the inputs (addends).
- KeepMSB-means you specify the word length for representing tap sum summation results to keep the higher order bits in the data. The filter sets the fraction length to discard the LSBs from the sum operation. This is the default property value.
- KeepLSB—means you specify the word length for representing tap sum summation results to keep the lower order bits in the data. The filter sets the fraction length to discard the MSBs from the sum operation. Compare to the KeepMSB option.
- SpecifyPrecision-means you specify the word and fraction lengths to apply to data output from the tap sum operations.


## TapSumWordLength

Specifies the word length the filter uses to represent the output from tap sum operations. The default value is 17 bits. Only dfasymfir and dfsymfir filters include this property.

## Adaptive Filter Properties

The following table summarizes the adaptive filter properties and provides a brief description of each. Full descriptions of each property, in alphabetical order, follow the table.
$\left.\begin{array}{ll}\hline \text { Property } & \text { Description } \\ \hline \text { Algorithm } & \begin{array}{l}\text { Reports the algorithm the object } \\ \text { uses for adaptation. When you } \\ \text { construct your adaptive filter object, } \\ \text { this property is set automatically by } \\ \text { the constructor, such as } \\ \text { adaptfilt. nlms creating an } \\ \text { adaptive filter that uses the } \\ \text { normalized LMS algorithm. You } \\ \text { cannot change the value-it is read } \\ \text { only. }\end{array} \\ \hline \text { AvgFactor } & \begin{array}{l}\text { Averaging factor used to compute } \\ \text { the exponentially-windowed } \\ \text { estimates of the powers in the } \\ \text { transformed signal bins for the } \\ \text { coefficient updates. AvgFactor } \\ \text { should lie between zero and one. For } \\ \text { default filter objects, AvgFactor } \\ \text { equals (1 - step). lambda is the input } \\ \text { argument that represents AvgFactor }\end{array} \\ \hline \text { BkwdPredErrorPower } & \begin{array}{l}\text { Returns the minimum } \\ \text { mean-squared prediction error. Refer }\end{array} \\ \text { to [12] in the bibliography for details } \\ \text { about linear prediction. }\end{array}\right\}$

| Property (Continued) | Description |
| :--- | :--- |
| Blocklength | Block length for the coefficient <br> updates. This must be a positive <br> integer such that (l/blocklength) is <br> also an integer. For faster execution, <br> blocklength should be a power of <br> two. blocklength defaults to two. |
| Coefficients | Vector containing the initial filter <br> coefficients. It must be a length 1 <br> vector where l is the number of filter <br> coefficients. coeffs defaults to <br> length l vector of zeros when you do <br> not provide the argument for input. |
| ConversionFactor | Conversion factor defaults to the <br> matrix [1-1] that specifies <br> soft-constrained initialization. This <br> is the gamma input argument for <br> some of the fast transversal <br> algorithms. |
| Delay | Update delay given in time samples. <br> This scalar should be a positive <br> integer-negative delays do not <br> work. delay defaults to 1 for most <br> algorithms. |
| EpsilonStates | Desired signal states of the adaptive <br> filter. dstates defaults to a zero <br> vector with length equal to <br> (blocklen - 1) or (swblocklen - 1) <br> depending on the algorithm. |
| DesiredSignalStates | Vector of the epsilon values of the <br> adaptive filter. EpsilonStates <br> defaults to a vector of zeros with <br> (projectord - 1) elements. |


| Property (Continued) | Description |
| :--- | :--- |
| ErrorStates | Vector of the adaptive filter error <br> states. ErrorStates defaults to a <br> zero vector with length equal to <br> (projectord - 1). |
| FFTCoefficients | Stores the discrete Fourier <br> transform of the filter coefficients in <br> coeffs. |
| FFTStates | Stores the states of the FFT of the <br> filter coefficients during adaptation. |
| FilteredInputStates | Vector of filtered input states with <br> length equal to l - 1. |
| ForgettingFactor | Contains the length of the filter. <br> Note that this is not the filter order. <br> Filter length is 1 greater than filter <br> order. Thus a filter with length equal <br> to 10 has filter order equal to 9. |
| FwdPredErrorPower | Determines how the RLS adaptive <br> filter uses past data in each <br> iteration. You use the forgetting <br> factor to specify whether old data <br> carries the same weight in the <br> algorithm as more recent data. |
| FwdPrediction | Returns the minimum <br> mean-squared prediction error in the <br> forward direction. Refer to [12] in <br> the bibliography for details about <br> linear prediction. |
|  | Contains the predicted values for <br> samples during adaptation. <br> Compare these to the actual samples <br> to get the error and power. |


| Property (Continued) | Description <br> InitFactor <br> InvCov <br> This scalar should be positive and <br> sufficiently large to prevent an <br> excessive number of Kalman gain <br> rescues. Called delta as an input <br> argument, this defaults to one. |
| :--- | :--- |
|  | Upper-triangular Cholesky (square <br> root) factor of the input covariance <br> matrix. Initialize this matrix with a <br> positive definite upper triangular <br> matrix. Dimensions are l-by-l, <br> where l is the filter length. |
| KalmanGain | Empty when you construct the <br> object, this gets populated after you <br> run the filter. |
| KalmanGainStates | Contains the states of the Kalman <br> gain updates during adaptation. |
| Leakage | Contains the setting for leakage in <br> the adaptive filter algorithm. Using <br> a leakage factor that is not 1 forces <br> the weights to adapt even when they <br> have found the minimum error <br> solution. Forcing the adaptation can <br> improve the numerical performance <br> of the LMS algorithm. |
| NumSamplesProcessed | Reports the number of samples <br> actually processed by the filter. |
| OffsetCov | Contains the offset covariance <br> matrix. |


| Property (Continued) | Description |
| :--- | :--- |
| Offset | Specifies an optional offset for the <br> denominator of the step size <br> normalization term. You must <br> specify offset to be a scalar greater <br> than or equal to zero. Nonzero <br> offsets can help avoid a <br> divide-by-near-zero condition that <br> causes errors. |
| Power | A vector of 2*1 elements, each <br> initialized with the value delta from <br> the input arguments. As you filter <br> data, Power gets updated by the <br> filter process. |
| ProjectionOrder | Projection order of the affine <br> projection algorithm. projectord <br> defines the size of the input signal <br> covariance matrix and defaults to <br> two. |
| ReflectionCoeffs | Coefficients determined for the <br> reflection portion of the filter during <br> adaptation. |
| ReflectionCoeffsStep | Size of the steps used to determine <br> the reflection coefficients. |
| PersistentMemory | Specifies whether to reset the filter <br> states and memory before each <br> filtering operation. Lets you decide <br> whether your filter retains states <br> and coefficients from previous <br> filtering runs. |


| Property (Continued) | Description |
| :--- | :--- |
| SecondaryPathCoeffs | A vector that contains the coefficient <br> values of your secondary path from <br> the output actuator to the error <br> sensor. |
| SecondaryPathEstimate | An estimate of the secondary path <br> filter model. |
| SecondaryPathStates | The states of the secondary path <br> filter, the unknown system. |
| SqrtCov | Upper-triangular Cholesky (square <br> root) factor of the input covariance <br> matrix. Initialize this matrix with a <br> positive definite upper triangular <br> matrix. |
| SqrtlnvCov | Square root of the inverse of the <br> sliding window input signal <br> covariance matrix. This square <br> matrix should be full-ranked. |
| States | Vector of the adaptive filter states. <br> states defaults to a vector of zeros <br> whose length depends on the chosen <br> algorithm. Usually the length is a <br> function of the filter length l and <br> another input argument to the filter <br> object, such as projectord. |


| Property (Continued) | Description |
| :--- | :--- |
| StepSize | Reports the size of the step taken <br> between iterations of the adaptive <br> filter process. Each adaptfilt object <br> has a default value that best meets <br> the needs of the algorithm. |
| SwBlockLength | Block length of the sliding window. <br> This integer must be at least as <br> large as the filter length. <br> swblocklen defaults to 16. |

Like dfilt objects, adaptfilt objects have properties that govern their behavior and store some of the results of filtering operations. The following pages list, in alphabetical order, the name of every property associated with adaptfilt objects. Note that not all adaptfilt objects have all of these properties. To view the properties of a particular adaptive filter, such as an adaptfilt. bap filter, use get with the object handle, like this:

```
ha = adaptfilt.bap(32,0.5,4,1.0);
get(ha)
 PersistentMemory: false
 NumSamplesProcessed: 0
 Algorithm: 'Block Affine Projection FIR Adaptive Filter'
 FilterLength: 32
 Coefficients: [1x32 double]
 States: [35x1 double]
 StepSize: 0.5000
 ProjectionOrder: 4
 OffsetCov: [4x4 double]
```

get shows you the properties for ha and the values for the properties. Entering the object handle returns the same values and properties without the formatting of the list and the more familiar property names.

## Algorithm

Reports the algorithm the object uses for adaptation. When you construct you adaptive filter object, this property is set automatically. You cannot change the value-it is read only.

## AvgFactor

Averaging factor used to compute the exponentially-windowed estimates of the powers in the transformed signal bins for the coefficient updates. AvgFactor should lie between zero and one. For default filter objects, AvgFactor equals (1 - step). lambda is the input argument that represent AvgFactor

## BkwdPredErrorPower

## BkwdPrediction

When you use an adaptive filter that does backward prediction, such as adaptfilt.ftf, one property of the filter contains the backward prediction coefficients for the adapted filter. With these coefficient, the forward
coefficients, and the system under test, you have the full set of knowledge of how the adaptation occurred. Two values stored in properties compose the BkwdPrediction property:

- Coefficients, which contains the coefficients of the system under test, as determined using backward predictions process.
- Error, which is the difference between the filter coefficients determined by backward prediction and the actual coefficients of the sample filter. In this example, adaptfilt.ftf identifies the coefficients of an unknown FIR system.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); %FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
ha
ha =
```


Columns 25 through 32

```
 0.0231 0.0026 -0.0063 -0.0079 0.0032
ha.bkwdprediction
ans =
 Coeffs: [1x32 double]
 Error: 82.3394
>> ha.bkwdprediction.coeffs
ans =
 Columns 1 through 8
 0.0067 0.0186 0.1114 -0.0150 -0.0239 -0.0610 -0.1120 -0.1026
 Columns 9 through 16
 0.0093 -0.0399 -0.0045 0.0622 0.0997 0.0778 0.0646 -0.0564
 Columns 17 through 24
\begin{tabular}{llllllll}
0.0775 & 0.0814 & 0.0057 & 0.0078 & 0.1271 & -0.0576 & 0.0037 & -0.0200
\end{tabular}
 Columns 25 through 32
\begin{tabular}{llllllll}
-0.0246 & 0.0180 & -0.0033 & 0.1222 & 0.0302 & -0.0197 & -0.1162 & 0.0285
\end{tabular}
```


## Blocklength

Block length for the coefficient updates. This must be a positive integer such that (l/blocklen) is also an integer. For faster execution, blocklen should be a power of two. blocklen defaults to two.

## Coefficients

Vector containing the initial filter coefficients. It must be a length 1 vector where $l$ is the number of filter coefficients. coeffs defaults to length $l$ vector of zeros when you do not provide the argument for input.

## ConversionFactor

Conversion factor defaults to the matrix [1-1] that specifies soft-constrained initialization. This is the gamma input argument for some of the fast transversal algorithms.

## Delay

Update delay given in time samples. This scalar should be a positive integernegative delays do not work. delay defaults to 1 for most algorithms.

## DesiredSignalStates

Desired signal states of the adaptive filter. dstates defaults to a zero vector with length equal to (blocklen-1) or (swblocklen-1) depending on the algorithm.

## EpsilonStates

Vector of the epsilon values of the adaptive filter. EpsilonStates defaults to a vector of zeros with (projectord-1) elements.

## ErrorStates

Vector of the adaptive filter error states. ErrorStates defaults to a zero vector with length equal to (projectord - 1).

## FFTCoefficients

Stores the discrete Fourier transform of the filter coefficients in coeffs.

## FFTStates

Stores the states of the FFT of the filter coefficients during adaptation.

## FilteredInputStates

Vector of filtered input states with length equal to l-1.

## FilterLength

Contains the length of the filter. Note that this is not the filter order. Filter length is 1 greater than filter order. Thus a filter with length equal to 10 has filter order equal to 9 .

## ForgettingFactor

Determines how the RLS adaptive filter uses past data in each iteration. You use the forgetting factor to specify whether old data carries the same weight in the algorithm as more recent data.

This is a scalar and should lie in the range ( 0,1 ]. It defaults to 1 . Setting forgetting factor $=1$ denotes infinite memory while adapting to find the new filter. Note that this is the lambda input argument.

## FwdPredErrorPower

Returns the minimum mean-squared prediction error in the forward direction. Refer to [12] in the bibliography for details about linear prediction.

## FwdPrediction

Contains the predicted values for samples during adaptation. Compare these to the actual samples to get the error and power.

## InitFactor

Returns the soft-constrained initialization factor. This scalar should be positive and sufficiently large to prevent an excessive number of Kalman gain rescues. delta defaults to one.

## InvCov

Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix.
Dimensions are l-by-l, where 1 is the filter length.

## KalmanGain

Empty when you construct the object, this gets populated after you run the filter.

## KalmanGainStates

Contains the states of the Kalman gain updates during adaptation.

## Leakage

Contains the setting for leakage in the adaptive filter algorithm. Using a leakage factor that is not 1 forces the weights to adapt even when they have found the minimum error solution. Forcing the adaptation can improve the numerical performance of the LMS algorithm.

## NumSamplesProcessed

Reports the number of input samples processed by your adaptfilt object when you filter a data set. When you set the PersistentMemory property to false, NumSamplesProcessed reports the number of processed input samples for your most recent filtering operation with the object.

With PersistentMemory set to true, NumSamplesProcessed accumulates the total number of samples processed for all preceding filtering operations.

## OffsetCov

Contains the offset covariance matrix.

## Offset

Specifies an optional offset for the denominator of the step size normalization term. You must specify offset to be a scalar greater than or equal to zero. Nonzero offsets can help avoid a divide-by-near-zero condition that causes errors.
Use this to avoid dividing by zero or by very small numbers when input signal amplitude becomes very small, or dividing by very small numbers when any of the FFT input signal powers become very small. offset defaults to one.

## Power

A vector of 2*1 elements, each initialized with the value delta from the input arguments. As you filter data, Power gets updated by the filter process.

## ProjectionOrder

Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two.

## ReflectionCoeffs

For adaptive filters that use reflection coefficients, this property stores them.

## ReflectionCoeffsStep

As the adaptive filter changes coefficient values during adaptation, the step size used between runs is stored here.

## PersistentMemory

Determines whether the filter states and coefficients get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter.

PersistentMemory returns to zero any property value that the filter changes during processing. Property values that the filter does not change are not affected. Defaults to false.

## SecondaryPathCoeffs

A vector that contains the coefficient values of your secondary path from the output actuator to the error sensor.

## SecondaryPathEstimate

An estimate of the secondary path filter model.

## SecondaryPathStates

The states of the secondary path filter, the unknown system.

## SqrtCov

Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix.

## SqrilnvCov

Square root of the inverse of the sliding window input signal covariance matrix. This square matrix should be full-ranked.

## States

Vector of the adaptive filter states. states defaults to a vector of zeros whose length depends on the chosen algorithm. Usually the length is a function of the filter length 1 and another input argument to the filter object, such as projectord.

## StepSize

Reports the size of the step taken between iterations of the adaptive filter process. Each adaptfilt object has a default value that best meets the needs of the algorithm.

## SwBlockLength

Block length of the sliding window. This integer must be at least as large as the filter length. swblocklength defaults to 16 .

## Multirate Filter Properties

The following table summarizes the multirate filter properties and provides a brief description of each. Full descriptions of each property follow in the next section.

| Name | Values | Default | Description |
| :--- | :--- | :--- | :--- |
| BlockLength | Positive integers | 100 | Length of each block of data input <br> to the FFT used in the filtering. <br> fftfirinterp multirate filters <br> include this property. |
| DecimationFactor | Any positive <br> integer | 2 |  |
| DifferentialDelay | Any integer | A | Amount to reduce the input <br> sampling rate. |
| FilterInternals | Fullprecision, <br> SpecifyPrecision | FullPrecision | Sets the differential delay for the <br> filter. Usually a value of one or <br> two is appropriate. |
| Controls whether the filter sets <br> the output word and fraction <br> lengths, and the accumulator <br> word and fraction lengths <br> automatically to maintain the <br> best precision results during <br> filtering. The default value, |  |  |  |
| FullPrecision, sets automatic |  |  |  |
| word and fraction length |  |  |  |
| determination by the filter. |  |  |  |
| SpecifyPrecision exposes the |  |  |  |
| output and accumulator related |  |  |  |
| properties so you can set your own |  |  |  |
| word and fraction lengths for |  |  |  |
| them. |  |  |  |


| Name | Values | Default | Description | | |
|---|---|---|---|---|---|
| FilterStructure | mfilt structure <br> string | None | Describes the signal flow for the <br> filter object, including all of the <br> active elements that perform <br> operations during filtering- <br> gains, delays, sums, products, and <br> input/output. You cannot set this <br> property-it is always read only <br> and results from your choice of <br> mfilt object. |
| InputBitWidth | $8,16,32$ | 16 | Word length of the input samples. |
| InputOffset | Integers | 0 | Contains the number of input <br> data samples processed without <br> generating an output sample. |
| InterpolationFactor | Positive integers | 2 | Interpolation factor for the filter. <br> l specifies the amount to increase <br> the input sampling rate. |
| NumberOfSections | Any positive | 2 | Number of sections used in the <br> integer |
| decimator, or in the comb and |  |  |  |
| integrator portions of CIC filters. |  |  |  |$⿻$| Array of double |
| :--- |
| values |


| Name | Values | Default |
| :--- | :--- | :--- |
| OverflowMode | saturate, <br> [wrap] | wrap |
|  | Description |  |


| Name | Values | Default |
| :--- | :--- | :--- |
| PersistentMemory | false or true | false |
| RateChangeFactors | [1,m] | Description <br> states get restored to their <br> starting values for each filtering <br> operation. The starting values are <br> the values in place when you <br> create the filter if you have not <br> changed the filter since you <br> constructed it. |
| States |  | [2,3] or [3,2] |


| Name | Values | Default | Description |
| :---: | :---: | :---: | :---: |
| SectionWordLengthMode | MinWordLengths or <br> SpecifyWordLengths | MinWordLength | Determines whether the filter object sets the section word lengths or you provide the word lengths explicitly. By default, the filter uses the input and output word lengths in the command to determine the proper word lengths for each section, according to the information in [1]. When you choose SpecifyWordLengths, you provide the word length for each section. In addition, choosing SpecifyWordLengths exposes the SectionWordLengths property for you to modify as needed. |
| SpecifyWordLengths | Vector of integers | $\begin{array}{lll} {\left[\begin{array}{lll} 16 & 16 & 16 \\ 16] & \text { bits } \end{array}\right.} \end{array}$ |  |
| WordLengthPerSection | Any integer or a vector of length $2 * n$ | 16 | Defines the word length used in each section while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using 'wrap' arithmetic). Enter WordLengthPerSection as a scalar or vector of length $2 * n$, where n is the number of sections. When WordLengthPerSection is a scalar, the scalar value is applied to each filter section. The default is 16 for each section in the decimator. |

The following sections provide details about the properties that govern the way multirate filter work. Creating any multirate filter object puts in place a number of these properties. On the next pages, we list the mfilt object properties in alphabetical order.

## BitsPerSection

Any integer or a vector of length $2 * n$.
Defines the bits per section used while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using wrap arithmetic). Enter bps as a scalar or vector of length $2 * n$, where $n$ is the number of sections. When bps is a scalar, the scalar value is applied to each filter section. The default is 16 for each section in the decimator.

## BlockLength

Length of each block of input data used in the filtering.
mfilt.fftfirinterp objects process data in blocks whose length is determined by the value you set for the BlockLength property. By default the property value is 100 . When you set the BlockLength value, try choosing a value so that [BlockLength + length(filter order)] is a power of two.

Larger block lengths generally reduce the computation time.

## DecimationFactor

Decimation factor for the filter. $m$ specifies the amount to reduce the sampling rate of the input signal. It must be an integer. You can enter any integer value. The default value is 2 .

## DifferentialDelay

Sets the differential delay for the filter. Usually a value of one or two is appropriate. While you can set any value, the default is one and the maximum is usually two.

## FilterInternals

Similar to the FilterInternals pane in FDATool, this property controls whether the filter sets the output word and fraction lengths automatically, and the accumulator word and fraction lengths automatically as well, to maintain the best precision results during filtering. The default value, FullPrecision, sets
automatic word and fraction length determination by the filter. Setting FilterInternals to SpecifyPrecision exposes the output and accumulator related properties so you can set your own word and fraction lengths for them.

## FilterStructure

Reports the type of filter object, such as a decimator or fractional integrator. You cannot set this property-it is always read only and results from your choice of mfilt object. Because of the length of the names of multirate filters, FilterStructure often returns a vector specification for the string. For example, when you use mfilt.firfracinterp to design a filter, FilterStructure returns as [1x49 char].

```
hm=mfilt.firfracinterp
hm =
 FilterStructure: [1x49 char]
 Numerator: [1x72 double]
 RateChangeFactors: [3 2]
 PersistentMemory: false
 States: [24x1 double]
 NumSamplesProcessed: 0
```


## InputBitWidth

Word length of the input samples. The default is 16 bits and the accepted values are 8,16 , and 32 bits. CIC filters use this property.

## InputOffset

When you decimate signals whose length is not a multiple of the decimation factor $M$, the last samples- $(n M+1)$ to $[(n+1)(M)-1]$, where $n$ is an integerare processed and used to track where the filter stopped processing input data and when to expect the next output sample. If you think of the filtering process as generating an output for a block of input data, InputOffset contains a count of the number of samples in the last incomplete block of input data.

Note InputOffset applies only when you set PersistentMemory to true. Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:
1 The input signal is a multiple of the filter decimation factor. In this case, the filter processes the input samples and generates output samples for all inputs as determined by the decimation factor. For example, processing 99 input samples with a filter that decimates by three returns 33 output samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, the filter processes all of the input samples, generates output samples as determined by the decimation factor, and has one or more input samples that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has decimation factor of 3 , you get 33 output samples, and 1 sample that did not generate an output. In this case, InputOffset stores the value 1 after the filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into blocks of data with length equal to your filter decimation factor, the filter processed one sample from a new (incomplete) block of data. Subsequent inputs to the filter are concatenated with this single sample to form the next block of length $m$.

One way to define the value stored in InputOffset is
InputOffset $=\bmod ($ length $(n x), m)$
where $n x$ is the number of input samples in the data set and $m$ is the decimation factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any point and start over from there, provided that the PersistentMemory property is set to true. Being able to resume filtering after stopping a signal lets you break large data sets in to smalller pieces for filtering. With PersistentMemory set to true and the InputOffset property in the filter, breaking a signal into sections of arbitrary length and filtering the sections is equivalent to filtering the entire signal at once.

```
xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =
```

```
00-0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
ysec =
 0
```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

## InterpolationFactor

Amount to increase the sampling rate. Interpolation factor for the filter. It specifies the amount to increase the input sampling rate. It must be an integer. Two is the default value. You may use any positive value.

## NumberOfSections

Number of sections used in the multirate filter. By default multirate filters use two sections, but any positive integer works.

## OutputBitWidth

Word length of the output samples. While 16 bits is the default value, you can enter any integer from 1 to 32 bits. Compare to InputBitWidth.

## OverflowMode

The OverflowMode property is specified as one of the following two strings indicating how to respond to overflows in fixed-point arithmetic:

- 'saturate'-saturate overflows.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the applicable word length and fraction length properties), these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'wrap '-wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the data format properties), these values are wrapped back into that range using modular arithmetic relative to the smallest representable number. You can learn more about modular arithmetic in the Fixed-Point Toolbox.

These rules apply to the OverflowMode property.

- Applies to the accumulator and output data only.
- Does not apply to coefficients or input data. These always saturate the results.
- Does not apply to products. Products maintain full precision at all times. Your filters do not lose precision in the products.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic range overflow to $\pm$ inf.

## PolyphaseAccum

The idea behind PolyphaseAccum and AccumWordLength/AccumFracLength is to distinguish between the adders that always work in full precision (PolyphaseAccum) from the others [the adders that are controlled by the user (through AccumWordLength and AccumFracLength) and that may introduce quantization effects when you set property FilterInternals to SpecifyPrecision].

Given a product format determined by the input word and fraction lengths, and the coefficients word and fraction lengths, doing full precision accumulation means allowing enough guard bits to avoid overflows and underflows.

Property PolyphaseAccum stores the value that was in the accumulator the last time your filter ran out of input samples to process. The default value for PolyphaseAccum affects the next output only if PersistentMemory is true and InputOffset is not equal to 0 .

PolyphaseAccum stores data in the format for the filter arithmetic. Double-precision filters store doubles in PolyphaseAccum. Single-precision filter store singles in PolyphaseAccum. Fixed-point filters store fi objects in PolyphaseAccum.

## PersistentMemory

Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected.

Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter object. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to true-the filter retains memory about filtering operations from one to the next. Maintaining memory lets you filter large data sets as collections of smaller subsets and get the same result.

```
xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =
```



```
ysec =
 0
```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

## RateChangeFactors

Reports the decimation ( m ) and interpolation (1) factors for the filter object when you create fractional integrators and decimators, although $m$ and $l$ are used as arguments to both decimators and integrators, applying the same
meaning. Combining these factors as input arguments to the fractional decimator or integrator results in the final rate change for the signal.

For decimating filters, the default is [2,3]. For integrators, [3,2].

## States

Stored conditions for the filter, including values for the integrator and comb sections. $m$ is the differential delay and $n$ is the number of sections in the filter.

## About the States of Multirate Filters

In the states property you find the states for both the integrator and comb portions of the filter, stored in a filtstates object. states is a matrix of dimensions $\mathrm{m}+1$-by-n, with the states in CIC filters apportioned as follows:

- States for the integrator portion of the filter are stored in the first row of the state matrix.
- States for the comb portion fill the remaining rows in the state matrix.

In the state matrix, state values are specified and stored in double format.
States stores conditions for the delays between each interpolator phase, the filter states, and the states at the output of each phase in the filter, including values for the interpolator and comb states.
The number of states is $(\mathrm{lh}-1)^{*} \mathrm{~m}+(\mathrm{l}-1)^{*}(10+\mathrm{mo})$ where 1 h is the length of each subfilter, and l and m are the interpolation and decimation factors. 10 and mo, the input and output delays between each interpolation phase, are integers from Euclid's theorem such that $10 * 1-m o{ }^{*} \mathrm{~m}=-1$ (refer to the reference for more details). Use euclidfactors to get lo and mo for an mfilt.firfracdecim object.
States defaults to a vector of zeros that has length equal to nstates(hm)

## Function Reference

| Functions-Categorical List (p. 9-2) | Lists the functions in the toolbox, by category, such as <br> object constructors or analysis functions |
| :--- | :--- |
| Adaptive Filter Constructors (p. 9-2) | Lists all for the functions for designing adaptive filters |
| Discrete-Time Filter Constructors <br> (p. 9-7) | Lists all of the functions for designing discrete-time <br> filters |
| Multirate Filter Constructors (p. 9-11) | Lists the multirate filter design functions |
| Methods For Analyzing Filters (p. 9-13) | Lists the analysis functions provided for working with <br> adaptive, discrete-time, and multirate filters |
| Functions Operating on Discrete-Time | Lists the functions used on filters of all kinds |
| Filters (p. 9-20) |  |
| Functions for Designing Discrete-Time | Lists the filter design functions including adaptive filters, <br> multirate filters, and discrete-time filters, as well as filter |
| Filters (p. 9-23) | transformation functions |

## Functions-Categorical List

With the Filter Design (FD) Toolbox, you can create, apply, and analyze quantized filters, adaptive filters, and multirate filters.

This chapter contains brief descriptions of all FD Toolbox functions grouped by subject area, and continues with the detailed reference entries listed alphabetically.

In addition to the constructors for discrete time filters, you find listed here the constructors for adaptive filter and multirate filter preferences objects, which look like functions but return objects when you use them.

The following tables list the functions and constructors in the FD Toolbox, separated by application-adaptive filter, discrete-time filter, multirate filter, and filter analysis. In many instances, you can apply a function to more than one application; those functions are called overloaded functions and they appear in more than one table.

## Adaptive Filter Constructors

For adaptive filter (adaptfilt) objects, the algorithm string determines which adaptive filter algorithm your adaptfilt object implements. Each available algorithm entry appears in one of the following tables along with a brief description of the algorithm. Click on the algorithm in the first column to get more information about the associated adaptive filter technique.

- "Least Mean Squares (LMS) Based FIR Adaptive Filters" on page 9-3
- "Recursive Least Squares (RLS) Based FIR Adaptive Filters" on page 9-4
- "Affine Projection (AP) FIR Adaptive Filters" on page 9-5
- "FIR Adaptive Filters in the Frequency Domain (FD)" on page 9-6
- "Lattice Based (L) FIR Adaptive Filters" on page 9-7


## Least Mean Squares (LMS) Based FIR Adaptive Filters

| adapffilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.adjlms | Use the adjoint LMS FIR adaptive filter <br> algorithm |
| adaptfilt.blms | Use the block LMS FIR adaptive filter algorithm |
| adaptfilt.blmsfft | Use the FFT-based block LMS FIR adaptive filter <br> algorithm |
| adaptfilt.dlms | Use the delayed LMS FIR adaptive filter <br> algorithm |
| adaptfilt.filtxlms | Use the filtered-x LMS FIR adaptive filter <br> algorithm |
| adaptfilt.lms | Use the LMS FIR adaptive filter algorithm |
| adaptfilt.nlms | Use the normalized LMS FIR adaptive filter <br> algorithm |
| adaptfilt.sd | Use the sign-data LMS FIR adaptive filter <br> algorithm |
| adaptfilt.se | Use the sign-error LMS FIR adaptive filter <br> algorithm |
| adaptfilt.ss | Use the sign-sign LMS FIR adaptive filter <br> algorithm |

For further information about an adapting algorithm, refer to the reference page for the algorithm.

## Recursive Least Squares (RLS) Based FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.ftf | Use the fast transversal least squares adaptation <br> algorithm |
| adaptfilt.qrdrls | Use the QR-decomposition RLS adaptation <br> algorithm |
| adaptfilt.hrls | Use the householder RLS adaptation algorithm |
| adaptfilt.hswrls | Use the householder sliding window SWRLS <br> adaptation algorithm |
| adaptfilt.rls | Use the recursive least squares (RLS) adaptation <br> algorithm |
| adaptfilt.swrls | Use the sliding window (SW) RLS adaptation <br> algorithm |
| adaptfilt.swftf | Use the sliding window FTF adaptation <br> algorithm |

For more complete information about an adapting algorithm, refer to the reference page for the algorithm.

## Affine Projection (AP) FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.ap | Use the affine projection (AP) algorithm that <br> uses direct matrix inversion |
| adaptfilt.apru | Use the affine projection (AP) algorithm that <br> uses recursive matrix updating |
| adaptfilt.bap | Use the block affine projection (AP) adaptation <br> algorithm |

To find more information about an adapting algorithm, refer to the reference page for the algorithm.

FIR Adaptive Filters in the Frequency Domain (FD)

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.fdaf | Use the frequency domain (FD) adaptation <br> algorithm |
| adaptfilt.pbfdaf | Use the partition block version of the FDAF <br> algorithm |
| adaptfilt.pbufdaf | Use the partition block unconstrained version of <br> the FDAF algorithm |
| adaptfilt.tdafdct | Use the transform domain adaptation algorithm <br> using DCT |
| adaptfilt.tdafdft | Use the transform domain adaptation algorithm <br> using DFT |
| adaptfilt.ufdaf | Use the unconstrained FDAF algorithm for <br> adaptation |

For more information about an adapting algorithm, refer to the reference page for the algorithm.

## Lattice Based (L) FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.gal | Use the gradient adaptive lattice filter <br> adaptation algorithm |
| adaptfilt.lsl | Use the least squares lattice adaptation <br> algorithm |
| adaptfilt.qrdlsl | Use the QR decomposition LSL adaptation <br> algorithm |

For more information about an adapting algorithm, refer to the reference page for the algorithm.

## Discrete-Time Filter Constructors

For discrete-time filter (dfilt) objects, the structure string determines which filter structure your dfilt object implements. Each available structure entry appears in the following table along with a brief description of the structure. Click on the structure in the first column to get more information about the associated filter implementation.

| Filter Structure | Description |
| :--- | :--- |
| dfilt.cascade | Construct and cascade filter object |
| dfilt.df1 | Construct a direct-form I IIR filter object |
| dfilt.df1sos | Construct a direct-form I IIR filter object <br> that uses second-order sections |
| dfilt.df1t | Construct a transposed direct-form I IIR <br> filter object |
| dfilt.df1tsos | Construct a transposed direct-form I IIR <br> filter object that uses second-order sections |
| dfilt.df2 | Construct a direct-form II IIR filter object |


| Filter Structure | Description |
| :--- | :--- |
| dfilt.df2sos | Construct a direct-form II IIR filter object <br> that uses second-order sections |
| dfilt.df2t | Construct a transposed direct-form II IIR <br> filter object |
| dfilt.df2tsos | Construct a transposed direct-form II IIR <br> filter object that uses second-order sections |
| dfilt.dfasymfir | Construct an antisymmetric FIR filter <br> object |
| dfilt.dffir | Construct a direct-form FIR filter object |
| dfilt.dffirt | Construct a transposed direct-form FIR <br> filter object |
| dfilt.dfsymfir | Construct a symmetric FIR filter object |
| dfilt.latticeallpass | Construct an allpass lattice filter object |
| dfilt.latticear | Construct an autoregressive lattice filter <br> object |
| dfilt.latticearma | Construct a moving average, autoregressive <br> lattice filter object |
| dfilt.latticemamax | Construct a moving average, maximum <br> phase lattice filter object |
| dfilt.latticemamin | Construct a moving average, minimum <br> phase lattice filter object |
| dfilt.parallel | Construct a parallel filter object |
| dfilt.scalar | Construct a scalar FIR filter object |

## Discrete-Time Filter Design Objects - Response Types

Rather than choosing the filter structure when you create a discrete-time filter, you have the option of selecting the filter specifications and magnitude response to use to describe your filter, and then selecting the design method to
implement your filter. The next two table list the kind of filter responses you can choose from and the methods the toolbox provides to implement the filters.

| Magnitude Response Shape | Description of the Design Object |
| :--- | :--- |
| fdesign. bandpass | Design a bandpass filter |
| fdesign.bandstop | Design a bandstop filter |
| fdesign.decim | Design a decimating filter |
| fdesign. halfband | Design a halfband filter |
| fdesign. highpass | Design a highpass filter |
| fdesign.interp | Design an interpolating filter |
| fdesign.lowpass | Design a lowpass filter |
| fdesign. nyquist | Design a Nyquist filter |
| fdesign.src | Design a sample rate change filter |

Filter Design Objects-Methods

| Design Method | Description |
| :--- | :--- |
| butter | Use the Butterworth design method to <br> construct a filter from a design object |
| cheby1 | Use the Chebyshev I design method to <br> construct a filter from a design object |
| cheby2 | Use the Chebyshev II design method to <br> construct a filter from a design object |
| ellip | Use the elliptic design method to construct <br> a filter from a design object |
| equiripple | Use the equiripple design method to <br> construct a filter from a design object |


| Design Method | Description |
| :--- | :--- |
| firls | Use a least-squares technique to construct <br> a filter from a design object |
| kaiserwin | Use the Kaiser window design method to <br> construct a filter from a design object |
| window | Use the window design method to <br> construct a filter from a design object |

## Multirate Filter Constructors

Filter Design Toolbox includes functions that create multirate filtering objects, as shown in this table.

| Multirate Filter Object | Filter Object Description |
| :--- | :--- |
| mfilt.cicdecim | Construct a fixed-point cascaded <br> integrator-comb decimation filter object |
| mfilt.cicinterp | Construct a fixed-point cascaded <br> integrator-comb interpolation filter object |
| mfilt.fftfirinterp | Construct an overlap-add FIR polyphase <br> interpolation filter object |
| mfilt.firdecim | Construct a direct-form FIR polyphase <br> decimation filter object |
| mfilt.firfracdecim | Construct a direct-form FIR polyphase <br> fractional decimation filter object |
| mfilt.firfracinterp | Construct a direct-form FIR polyphase <br> fractional interpolation filter object |
| mfilt.firinterp | Construct a direct-form FIR polyphase <br> interpolation filter object |
| mfilt.firsrc | Construct a direct-form FIR polyphase <br> sample rate conversion filter object |
| mfilt.firtdecim | Construct a direct-form, transposed FIR <br> polyphase decimation filter object |
| mfilt.holdinterp | Construct an FIR interpolation filter object <br> that uses "hold" interpolation between input <br> samples |
| mfilt.linearinterp | Construct an FIR linear interpolation filter <br> object that applies linear interpolation <br> between input samples |

For more information about a multirate filter object, refer to the reference page for the object.

## Methods For Analyzing Filters

The following methods support the filter objects-either adaptive filters (adaptfilt objects), discrete-time filters (dfilt objects), or multirate filters (mfilt objects). Many of the functions support more than one type of object. In addition, existing filter analysis methods such as freqz work with the objects just as they do for most filter objects.

| Method Name | Supported Objects | Description | | |
|---|---|---|---|---|
| block | Multirate (some) | Generate a Signal Processing <br> Blockset block that duplicates <br> the filter object. Works only <br> when Signal Processing <br> Blockset is installed. Some <br> multirate objects cannot be <br> modelled as blocks since the <br> blockset does not provide <br> blocks for all the multirate <br> filters in the toolbox. |
| coefficients | Multirate | Return the multirate filter <br> objects coefficients. |
| cumsec | Discrete-time filters | Return a vector of the <br> cumulative second-order <br> sections for an SOS filter |
| denormalize | Discrete-time filters | Restore a filter after a <br> normalize operation. |
| euclidfactors | Multirate | Use Euclid's theorem to <br> determine the integer factors <br> for an mfilt object. |
| filter | All filters | Multirate filters | | Apply a filter to a signal. |
| :--- |
| filtmsb of a CIC filter. |


| Method Name | Supported Objects | Description |
| :---: | :---: | :---: |
| firtype | Multirate filters | Return the type ( 1 to 4 ) of a linear phase FIR filter. |
| freqz | All filters | Plot the frequency response of a filter. |
| grpdelay | All filters | Plot the group delay for a filter. |
| impz | All filters | Plot the impulse response for a filter. |
| isfir | All filters | Test whether a filter is an FIR filter. |
| islinphase | All filters | Test whether a filter is linear phase. |
| ismaxphase | All filters | Test whether a filter is maximum phase. |
| isminphase | All filters | Test whether a filter is minimum phase. |
| isreal | All filters | Test whether a filter is real. |
| isstable | All filters | Test whether a filter is stable. |
| maxstep | Adaptive filter | Return the maximum step size for an adaptfilt object. |
| msepred | Adaptive filter | Return the predicted mean-square error for the adaptfilt object. |
| msesim | Adaptive filter | Return the measured mean-square error for the adaptfilt object via simulation. |


| Method Name | Supported Objects | Description |
| :---: | :---: | :---: |
| normalize | Discrete-time filters | Normalize the filter coefficients. |
| nstates | Multirate filter | Return the number of states in an mfilt object. |
| phasez | All filters | Return the filter phase response. |
| polyphase | Multirate filter | Return the polyphase matrix for an mfilt object. |
| reffilter | Discrete-time filters | Return the reference filter that corresponds to fixed-point filter. |
| reorder | SOS discrete-time filters | Change the order of the sections in an SOS filter. |
| reset | Adaptive and Multirate filters | Reset the filter to the original conditions. |
| scale | SOS discrete-time filters | Scale the sections of an SOS filter. |
| scalecheck | SOS discrete-time filters | Check the scaling of an SOS filter. |
| specifyall | Discrete-time filters | Set the properties of a fixed-point filter so you can specify them manually. |
| stepz | Adaptive and Multirate filters | Return the step response for a filter |
| zerophase | All filters | Return the zerophase response for a filter. |
| zplane | All filters | Return the pole-zero plot for a filter. |

To see the full listing of analysis methods that apply to the adaptfilt, dfilt, and mfilt objects, type help adaptfilt, help dfilt, and help mfilt at the MATLAB prompt.

The Filter Visualization Tool (FVTool) supports these objects so you can use the full power of FVTool to analyze the objects you create.

## Fixed-Point Filter Construction and Property Functions

| Function | Description |
| :--- | :--- |
| get | Get properties of a quantized filter |
| isreal | Test if filter coefficients are real |
| num2bin | Convert a number to two's-complement binary string |
| num2hex | Convert a number to hexadecimal string |
| reset | Reset the properties of a quantized filter to their initial <br> values |
| scale | Scale the sections of second-order section filters |
| scalecheck | Check the scaling of a second-order sections filter |
| scaleopts | Create an object that contains scaling options for <br> second-order section scaling |
| set | Set properties of a quantized filter <br> cell2sosConvert a cell array to a second-order sections matrix <br> sosConvert a quantized filter to second-order sections form, <br> order, and scale |
| sos2cell | Convert a second-order sections matrix to a cell array |

## Quantized Filter Analysis Functions

| Function | Description |
| :--- | :--- |
| freqz | Compute the frequency response for a quantized filter |
| impz | Compute the impulse response for a quantized filter |
| isallpass | Test quantized filters to determine if they are allpass <br> structures |
| isfir | Test quantized filters to see if they are FIR filters |
| islinphase | Test quantized filters to see if they are linear phase |
| ismaxphase | Test quantized filters to see if they are maximum phase <br> filters |
| isminphase | Test quantized filters to see if they are minimum phase <br> filters |
| isreal | Test quantized filters for purely real coefficients |
| issos | Test whether quantized filters are composed of <br> second-order sections |
| isstable | Test for stability of quantized filters <br> noisepsd |
| Compute the power spectral density (PSD) of filter <br> output caused by round-off noise during the quantization <br> process |  |
| noisepsdopts | Create an object that contains options for running the <br> output noise PSD computation noisepsd on a filter |
| zplane | Compute a pole-zero plot for a quantized filter |

Table 9-1: Quantized Filtering Functions

| Function | Description |
| :--- | :--- |
| filter | Filter data with a quantized filter |
| normalize | Normalize quantized filter coefficients |

## Second-Order Sections Conversion Functions

| Function | Description |
| :---: | :---: |
| cell2sos | Convert a cell array to a second-order sections matrix |
| sos | Convert a quantized filter to second-order sections form, order, and scale |
| sos2cell | Convert a second-order sections matrix to a cell array |
| Filter Design Functions |  |
| Function | Description |
| fircband | Design constrained-band Remez FIR filters |
| firceqrip | Design constrained, equiripple, finite impulse response (FIR) filters |
| firgr | Design optimal equiripple FIR (finite impulse response) digital filters based on the Parks-McClellan algorithm |
| firhalfband | Design half-band FIR filters |
| firlpnorm | Design least-pth norm optimal FIR filters |
| firminphase | Compute the minimum phase FIR spectral factor of linear phase FIR filters |
| firnyquist | Design lowpass Nyquist (L-th band) FIR filters |
| ifir | Design interpolated FIR filters |
| iircomb | Design comb IIR filters with periodic frequency response |
| iirgrpdelay | Design least-pth norm IIR filters with given group delay |
| iirlpnorm | Design least-pth norm IIR filters |
| iirlpnormc | Design constrained least-pth norm IIR filters |

Filter Design Functions

| Function | Description |
| :--- | :--- |
| iirnotch | Design notch IIR filters to attenuate a fixed frequency |
| iirpeak | Design peaking IIR filters for boosting or cutting <br> specific frequencies |

Filter Conversion Functions

| Function | Description |
| :--- | :--- |
| ca2tf | Convert coupled allpass filters to transfer function form |
| cl2tf | Convert lattice coupled allpass filters to transfer <br> function form |
| convert | Convert dfilt objects from one structure to another |
| firlp2lp | Transform lowpass FIR filters to lowpass filters with <br> different passband specifications |
| firlp2hp | Transform lowpass FIR filters to highpass FIR filters |
| iirlp2bp | Transform lowpass IIR filters to bandpass filters |
| iirlp2bs | Transform lowpass IIR filters to bandstop filters |
| iirlp2hp | Transform lowpass IIR filters to highpass filters |
| iirlp2lp | Transform lowpass IIR filters to lowpass filters |
| iirpowcomp | Compute the power complementary IIR filter |
| tf2ca | Convert transfer function form to coupled allpass form |
| tf2cl | Convert transfer function form to lattice coupled <br> allpass form |

## Functions Operating on Discrete-Time Filters

The following table lists functions that operate directly on discrete-time filters. Some are overloaded and operate on other quantized objects such as multirate filters. Overloaded functions are marked in the table.

| Functions | Functions That Operate <br> Directly on Quantized Filters | Overloaded <br> Functions |
| :--- | :--- | :--- |
| convert | $\div$ |  |
| cumsec | $\div$ | $\div$ |
| disp | $\div$ | $\div$ |
| denormalize | $\div$ | $\div$ |
| double | $\div$ | $\div$ |
| filter | $\div$ | $\div$ |
| freqz | $\div$ | $\div$ |
| get | $\div$ | $\div$ |
| grpdelay | $\div$ | $\div$ |
| impz | $\div$ | $\div$ |
| isallpass | $\div$ | $\div$ |
| isfir | $\div$ |  |
| islinphase | $\div$ |  |
| ismaxphase | $\div$ |  |
| isminphase | $\div$ |  |
| isreal | $\div$ |  |
| issos | isstable | $\div$ |


| Functions | Functions That Operate <br> Directly on Quantized Filters | Overloaded <br> Functions |
| :--- | :--- | :--- |
| normalize | $\div$ |  |
| num2bin | $\div$ |  |
| num2hex | $\div$ | $\div$ |
| order | $\div$ | $\div$ |
| phase | $\div$ | $\div$ |
| phasez | $\div$ | $\div$ |
| range | $\div$ | $\div$ |
| reffilter | $\div$ | $\div$ |
| reorder | $\div$ | $\div$ |
| reset | $\div$ | $\div$ |
| scale | $\div$ | $\div$ |
| scalecheck | $\div$ |  |
| scaleopts | $\div$ |  |
| set | $\div$ |  |
| specifyall | $\div$ |  |
| sos | $\div p l a n e$ |  |
|  | $\div$ |  |

To get command line help on an overloaded function functionname for quantized filters, type either one of the following syntax options:

```
help dfilt/functionname
help dfilt.functionname
```

To get online help from the Help system, type these syntax options instead:

## doc dfilt.functionname

doc functionname
For most functions and methods, use
doc functionname

## Functions for Designing Discrete-Time Filters

The following functions design digital FIR filters:

- fircband
- firceqrip
- firgr
- firlpnorm
- firhalfband
- firminphase
- firnyquist
- firgr
- ifir

The following functions design digital IIR filters:

- iircomb
- iirgrpdelay
- iirlpnorm
- iirlpnormc
- iirnotch
- iirpeak

The following functions return adaptive (adaptfilt) filter objects:

- adaptfilt.adjlms
- adaptfilt.ap
- adaptfilt.apru
- adaptfilt.bap
- adaptfilt.blms
- adaptfilt.blmsfft
- adaptfilt.dlms
- adaptfilt.fdaf
- adaptfilt.filtxlms
- adaptfilt.ftf
- adaptfilt.gal
- adaptfilt.hrls
- adaptfilt.hswrls
- adaptfilt.lms
- adaptfilt.lsl
- adaptfilt.nlms
- adaptfilt.pbfdaf
- adaptfilt.pbufdaf
- adaptfilt.qrdrls
- adaptfilt.rls
- adaptfilt.sd
- adaptfilt.se
- adaptfilt.ss
- adaptfilt.swrls
- adaptfilt.swftf
- adaptfilt.tdafdct
- adaptfilt.tdafdft
- adaptfilt.ufdaf

The following functions return discrete-time filter objects (dfilt objects):

- dfilt.calattice
- dfilt.calatticepc
- dfilt.cascade
- dfilt.dfasymfir
- dfilt.df1
- dfilt.df1sos
- dfilt.df1t
- dfilt.df2
- dfilt.df2sos
- dfilt.df2t
- dfilt.dffir
- dfilt.dffirt
- dfilt.latticeallpass
- dfilt.latticear
- dfilt.latticemamin
- dfilt.latticemamax
- dfilt.latticearma
- dfilt.dfsymfir

The following functions return multirate filter objects:

- mfilt.cicdecim
- mfilt.cicinterp
- mfilt.fftfirinterp
- mfilt.firdecim
- mfilt.firfracdecim
- mfilt.firfracinterp
- mfilt.firinterp
- mfilt.firsrc
- mfilt.firtdecim
- mfilt.holdinterp
- mfilt.linearinterp

The following functions transform the frequency response of digital filters from one type to another, such as lowpass to highpass:

## IIR transforms

- firlp2lp
- firlp2hp
- iirlp2bp
- iirlp2bs
- iirlp2hp
- iirlp2lp
- iirlp2mb
- iirlp2xn
- iirlp2bpc
- iirlp2bsc
- iirshiftc
- iirlp2mbc
- iirlp2xc
- iirbpc2bpc
- iirrateup
- iirftransf


## ZPK transforms

- zpklp2lp
- zpklp2hp
- zpklp2bp
- zpklp2bs
- zpkshift
- zpklp2mb
- zpklp2xn
- zpklp2bpc
- zpklp2bsc
- zpkshiftc
- zpklp2mbc
- zpklp2xc
- zpkbpc2bpc
- zpkrateup
- zpkftransf

The following functions convert the structures of digital filters:

- ca2tf
- cl2tf
- convert
- iirpowcomp
- tf2ca
- tf2cl

To get command line help on a design or conversion function such as firgr or fdesign, type either

- doc functionname (for example doc firgr or doc fdesign)
- doc objecttype.function where objecttype is one of the following strings that specify the version of help to see:
- adaptfilt
- dfilt
- fdesign
- mfilt

For example, for information about the method you use to construct a direct form 2 filter, use doc dfilt.df2. Or for information about creating lowpass filter design objects, use doc fdesign.lowpass.

## Functions - Alphabetical List

This following pages provide the reference information for every function in the toolbox, in alphabetical order by the name of the function.

## adaptfilt

## Purpose Construct an adaptive filter object

$$
\text { Syntax } \quad \text { ha }=\text { adaptfilt.algorithm(input1,input2, ) }
$$

Description ha = adaptfilt.algorithm('input1', input2, ) returns the adaptive filter object ha that uses the adaptive filtering technique specified by algorithm. When you construct an adaptive filter object, include an algorithm specifier to implement a specific adaptive filter. Note that you do not enclose the algorithm option in single quotation marks as you do for most strings. To construct an adaptive filter object you must supply an algorithm string-there is no default algorithm, although every constructor creates a default adaptive filter when you do not provide input arguments such as input1 or input2 in the calling syntax.

## Algorithms

For adaptive filter (adaptfilt) objects, the algorithm string determines which adaptive filter algorithm your adaptfilt object implements. Each available algorithm entry appears in one of the tables along with a brief description of the algorithm. Click on the algorithm in the first column to get more information about the associated adaptive filter technique.

- LMS based adaptive filters
- RLS based adaptive filters
- Affine projection adaptive filters
- Adaptive filters in the frequency domain
- Lattice based adaptive filters

Least Mean Squares (LMS) Based FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.adjlms | Use the Adjoint LMS FIR adaptive filter <br> algorithm |
| adaptfilt.blms | Use the Block LMS FIR adaptive filter algorithm |
| adaptfilt.blmsfft | Use the FFT-based Block LMS FIR adaptive filter <br> algorithm |
| adaptfilt.dlms | Use the delayed LMS FIR adaptive filter <br> algorithm |
| adaptfilt.filtxlms | Use the filtered-x LMS FIR adaptive filter <br> algorithm |
| adaptfilt.lms | Use the LMS FIR adaptive filter algorithm |
| adaptfilt.nlms | Use the normalized LMS FIR adaptive filter <br> algorithm |
| adaptfilt.sd | Use the sign-data LMS FIR adaptive filter <br> algorithm |
| adaptfilt.se | Use the sign-error LMS FIR adaptive filter <br> algorithm |
| adaptfilt.ss | Use the sign-sign LMS FIR adaptive filter <br> algorithm |

For further information about an adapting algorithm, refer to the reference page for the algorithm.

## adaptfilt

## Recursive Least Squares (RLS) Based FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.ftf | Use the fast transversal least squares adaptation <br> algorithm |
| adaptfilt.qrdrls | Use the QR-decomposition RLS adaptation <br> algorithm |
| adaptfilt.hrls | Use the householder RLS adaptation algorithm |
| adaptfilt.hswrls | Use the householder SWRLS adaptation <br> algorithm |
| adaptfilt.rls | Use the recursive-least squares (RLS) adaptation <br> algorithm |
| adaptfilt.swrls | Use the sliding window (SW) RLS adaptation <br> algorithm |
| adaptfilt.swftf | Use the sliding window FTF adaptation <br> algorithm |

For more complete information about an adapting algorithm, refer to the reference page for the algorithm.

## Affine Projection (AP) FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.ap | Use the affine projection algorithm that uses <br> direct matrix inversion |
| adaptfilt.apru | Use the affine projection algorithm that uses <br> recursive matrix updating |
| adaptfilt.bap | Use the block affine projection adaptation <br> algorithm |

To find more information about an adapting algorithm, refer to the reference page for the algorithm.

## adaptfilt

FIR Adaptive Filters in the Frequency Domain (FD)

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.fdaf | Use the frequency domain adaptation algorithm |
| adaptfilt.pbfdaf | Use the partition block version of the FDAF <br> algorithm |
| adaptfilt.pbufdaf | Use the partition block unconstrained version of <br> the FDAF algorithm |
| adaptfilt.tdafdct | Use the transform domain adaptation algorithm <br> using DCT |
| adaptfilt.tdafdft | Use the transform domain adaptation algorithm <br> using DFT |
| adaptfilt.ufdaf | Use the unconstrained FDAF algorithm for <br> adaptation |

For more information about an adapting algorithm, refer to the reference page for the algorithm.

## Lattice Based (L) FIR Adaptive Filters

| adaptfilt.algorithm <br> String | Description of the Adapting Algorithm Used to <br> Generate Filter Coefficients During Adaptation |
| :--- | :--- |
| adaptfilt.gal | Use the gradient adaptive lattice filter <br> adaptation algorithm |
| adaptfilt.lsl | Use the least squares lattice adaptation <br> algorithm |
| adaptfilt.qrdlsl | Use the QR decomposition least squares lattice <br> adaptation algorithm |

For more information about an adapting algorithm, refer to the reference page for the algorithm.

## Properties for all Adaptive Filter Objects

Each reference page for an algorithm and adaptfilt.algorithm object specifies which properties apply to the adapting algorithm and how to use them.

## Methods for Adaptive Filter Objects

As is true with all objects, methods enable you to perform various operations on adaptfilt objects. To use the methods, you apply them to the object handle that you assigned when you constructed the adaptfilt object.

Most of the analysis methods that apply to dfilt objects also work with adaptfilt objects. Methods like freqz rely on the filter coefficients in the adaptfilt object. Since the coefficients change each time the filter adapts to data, you should view the results of using a method as an analysis of the filter at a moment in time for the object. Use caution when you apply an analysis method to your adaptive filter objects-always check that your result approached your expectation.

In particular, the Filter Visualization Tool (FVTool) supports all of the adaptfilt objects. Analyzing and viewing your adaptfilt objects is straightforward-use the fvtool method with the name of your object

```
fvtool(objectname)
```


## adaptfilt

to launch FVTool and work with your object.
Some methods share their names with functions in the Signal Processing Toolbox, or even functions in this toolbox. Functions that share names with methods behave in a similar way. Using the same name for more than one function or method is called overloading and is common is many toolboxes.

| Method | Description |
| :--- | :--- |
| adaptfilt/coefficients | Return the instantaneous adaptive filter <br> coefficients |
| adaptfilt/filter | Apply an adaptfilt object to your signal |
| adaptfilt/freqz | Plot the instantaneous adaptive filter <br> frequency response |
| adaptfilt/grpdelay | Plot the instantaneous adaptive filter group <br> delay |
| adaptfilt/impz | Plot the instantaneous adaptive filter <br> impulse response. |
| adaptfilt/info | Return the adaptive filter information. |
| adaptfilt/isfir | Test whether an adaptive filter is an finite <br> impulse response (FIR) filters. |
| adaptfilt/islinphase | Test whether an adaptive filter is linear <br> phase |
| adaptfilt/ismaxphase | Test whether an adaptive filter is maximum <br> phase |
| adaptfilt/isminphase | Test whether an adaptive filter is minimum <br> phase |
| adaptfilt/isreal | True whether an adaptive filter has real <br> coefficients |
| adaptfilt/isstable | Test whether an adaptive filter is stable |


| Method | Description |
| :--- | :--- |
| adaptfilt/maxstep | Return the maximum step size for an <br> adaptive filter |
| adaptfilt/msepred | Return the predicted mean square error |
| adaptfilt/msesim | Return the measured mean square error via <br> simulation. |
| adaptfilt/phasez | Plot the instantaneous adaptive filter phase <br> response |
| adaptfilt/reset | Reset an adaptive filter to initial conditions |
| adaptfilt/stepz | Plot the instantaneous adaptive filter step <br> response |
| adaptfilt/tf | Return the instantaneous adaptive filter <br> transfer function |
| adaptfilt/zerophase | Plot the instantaneous adaptive filter <br> zerophase response |
| adaptfilt/zpk | Return a matrix containing the <br> instantaneous adaptive filter zero, pole, and <br> gain values |
| adaptfilt/zplane | Plot the instantaneous adaptive filter in the <br> Z-plane |

## Working with Adaptive Filter Objects

The next sections cover viewing and changing the properties of adaptfilt objects. Generally, modifying the properties is the same for adaptfilt, dfilt, and mfilt objects and most of the same methods apply to all.

## Viewing Object Properties

As with any object, you can use get to view a adaptfilt object's properties. To see a specific property, use

```
get(ha,'property')
```


## adaptfilt

To see all properties for an object, use

```
get(ha)
```


## Changing Object Properties

To set specific properties, use

```
set(ha,'property1',value1,'property2',value2,...)
```

You must use single quotation marks around the property name so MATLAB treats them as strings.

## Copying an Object

To create a copy of an object, use copy.

```
ha2 = copy(ha)
```

Note Using the syntax ha2 = ha copies only the object handle and does not create a new object-ha and ha2 are not independent. When you change the characteristics of ha2, those of ha change as well.

## Using Filter States

Two properties control your adaptive filter states.

- States-stores the current states of the filter. Before the filter is applied, the states correspond to the initial conditions and after the filter is applied, the states correspond to the final conditions.
- PersistentMemory—resets the filter before filtering. The default value is false which causes the properties that are modified by the filter, such as coefficients and states, to be reset to the value you specified when you constructed the object, before you use the object to filter data. Setting PersistentMemory to true allows the object to retain its current properties between filtering operations, rather than resetting the filter to its property values at construction.

Examples
Construct an LMS adaptive filter object and use it to identify an unknown system. For this example, use 500 iteration of the adapting process to
determine the unknown filter coefficients. Using the LMS algorithm represents one of the most straightforward technique for adaptive filters.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Glancing at the figure shows you the coefficients after adapting closely match the desired unknown FIR filter.

## adaptfilt



[^1]
## Purpose

Syntax

Description

Adjoint LMS FIR adaptive filter that adapts using an adjoint LMS algorithm

```
ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,
 errstates,pstates,coeffs,states)
```

ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs, pathest, errstates, pstates, coeffs, states) constructs object ha, an FIR adjoint LMS adaptive filter. 1 is the adaptive filter length (the number of coefficients or taps) and must be a positive integer. l defaults to 10 when you omit the argument. step is the adjoint LMS step size. It must be a nonnegative scalar. When you omit the step argument, step defaults to 0.1.
leakage is the adjoint LMS leakage factor. It must be a scalar between 0 and 1. When leakage is less than one, you implement a leaky version of the adjlms algorithm to determine the filter coefficients. leakage defaults to 1 specifying no leakage in the algorithm.
pathcoeffs is the secondary path filter model. This vector should contain the coefficient values of the secondary path from the output actuator to the error sensor.
pathest is the estimate of the secondary path filter model. pathest defaults to the values in pathcoeffs.
errstates is a vector of error states of the adaptive filter. It must have a length equal to the filter order of the secondary path model estimate. errstates defaults to a vector of zeros of appropriate length. pstates contains the secondary path FIR filter states. It must be a vector of length equal to the filter order of the secondary path model. pstates defaults to a vector of zeros of appropriate length. The initial filter coefficients for the secondary path filter compose vector coeffs. It must be a length 1 vector. coeffs defaults to a length $l$ vector of zeros. states is a vector containing the initial filter states. It must be a vector of length l+ne-1, where ne is the length of errstates. When you omit states, it defaults to an appropriate length vector of zeros.

## adaptfilt.adjlms

## Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table list all the properties for the adjoint LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | Length l vector <br> with zeros for all <br> elements | Specifies the adaptive <br> filter algorithm the <br> object uses during <br> adaptation |
| Coefficients | Adjoint LMS FIR filter <br> coefficients. Should be <br> initialized with the <br> initial coefficients for <br> the FIR filter prior to <br> adapting. You need <br> l entries in <br> coefficients. Updated <br> filter coefficients are <br> returned in <br> coefficients when <br> you use s as an output <br> argument. |  |
| NumSamplesProcessed | Any positive <br> integer | Specifies the number <br> performed during the <br> adaptation process |
| ErrorStates | $[0, \ldots, 0]$ | A vector of the error <br> states for your adaptive <br> filter, with length equal <br> to the order of your <br> secondary path filter |
| FilterLength | The number of |  |
| coefficients in your |  |  |
| adaptive filter |  |  |$|$


| Property | Default Value | Description |
| :--- | :--- | :--- |
| Leakage | 1 | Specifies the leakage <br> parameter. Allows you <br> to implement a leaky <br> algorithm. Including a <br> leakage factor can <br> improve the results of <br> the algorithm by forcing <br> the algorithm to <br> continue to adapt even <br> after it reaches a <br> minimum value. <br> Ranges between 0 <br> and 1. |
| SecondaryPathCoeffs | No default | A vector that contains <br> the coefficient values of <br> your secondary path <br> from the output <br> actuator to the error <br> sensor |
| SecondaryPathEstimate | pathcoeffs values | An estimate of the <br> secondary path filter <br> model |
| SecondaryPathStates | Length of the <br> secondary path <br> filter. All elements <br> are zeros. | The states of the <br> secondary path filter, <br> the unknown system |

## adapIfilt.adjlms

| Property | Default Value | Description |
| :---: | :---: | :---: |
| States | l+ne +1 , where ne is length(errstates) | Contains the initial conditions for your adaptive filter and returns the states of the FIR filter after adaptation.If omitted, it defaults to a zero vector of length equal to l+ne +1 . When you use adaptfilt.adjlms in a loop structure, use this element to specify the initial filter states for the adapting FIR filter. |

$\left.\left.\left.\begin{array}{l|ll}\hline \text { Property } & \text { Default Value } & \begin{array}{l}\text { Description }\end{array} \\ \hline \text { Stepsize } & 0.1 & \begin{array}{l}\text { Sets the adjoint LMS } \\ \text { algorithm step size } \\ \text { used for each iteration } \\ \text { of the adapting } \\ \text { algorithm. Determines } \\ \text { both how quickly and } \\ \text { how closely the } \\ \text { adaptive filter } \\ \text { converges to the filter } \\ \text { solution. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\ \text { filter states get restored } \\ \text { to their starting values } \\ \text { for each filtering } \\ \text { operation. The starting } \\ \text { values are the values in } \\ \text { place when you create }\end{array} \\ \text { the filter. }\end{array}\right\} \begin{array}{l}\text { PersistentMemory } \\ \text { returns to zero any } \\ \text { state that the filter } \\ \text { changes during } \\ \text { processing. States that }\end{array}\right\} \begin{array}{ll}\text { the filter does not } \\ \text { change are not affected. } \\ \text { Defaults to false. }\end{array}\right\}$

Example
Demonstrate active noise control of a random noise signal that runs for 1000 samples.

```
x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be canceled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Adjoint LMS step size
```


## adaptfilt.adjlms

```
ha = adaptfilt.adjlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;
```

Reviewing the figure shows that the adaptive filter attenuates the original noise signal as you expect.


See Also
References
adaptfilt.dlms, adaptfilt.filtxlms
Wan, Eric., "Adjoint LMS: An Alternative to Filtered-X LMS and Multiple Error LMS," Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1841-1845, 1997

| Purpose | Construct an affine projection FIR adaptive filter object that uses direct matrix inversion |  |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states, errstates,epsstates)``` |  |
| Description | ha = adaptfilt.ap(l,step, projectord,offset, coeffs,states, errstates, epsstates) constructs an affine projection FIR adaptive filter ha using direct matrix inversion. |  |
|  | Input Arguments |  |
|  | Entries in the following table describe the input arguments for adaptfilt.ap. |  |
|  | Input Argument | Description |
|  | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
|  | step | Affine projection step size. This is a scalar that should be a value between zero and one. Setting step equal to one provides the fastest convergence during adaptation. step defaults to 1 . |
|  | projectord | Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two. |
|  | offset | Offset for the input signal covariance matrix. You should initialize the covariance matrix to a diagonal matrix whose diagonal entries are equal to the offset you specify. offset should be positive. offset defaults to one. |

## adaptfilt.ap

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector containing the initial filter <br> coefficients. It must be a length l vector, the <br> number of filter coefficients. coeffs <br> defaults to length l vector of zeros when you <br> do not provide the argument for input. |
| states | Vector of the adaptive filter states. states <br> defaults to a vector of zeros which has <br> length equal to (l + projectord - 2). |
| errstates | Vector of the adaptive filter error states. <br> errstates defaults to a zero vector with <br> length equal to (projectord - 1). |
| epsstates | Vector of the epsilon values of the adaptive <br> filter. epsstates defaults to a vector of zeros <br> with (projectord - 1) elements. |

## Properties

Since your adaptfilt.ap filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. ap objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter <br> algorithm the object uses <br> during adaptation |
| FilterLength | Any positive <br> integer | Reports the length of the filter, <br> the number of coefficients or <br> taps |
| NumSamplesProcessed | Any positive <br> integer | Specifies the number <br> performed during the <br> adaptation process |


| Name | Range | Description |
| :---: | :---: | :---: |
| ProjectionOrder |  | Projection order of the affine projection algorithm. <br> projectord defines the size of the input signal covariance matrix and defaults to two. |
| OffsetCov |  | Contains the offset covariance matrix |
| Coefficients | Vector of elements | Vector containing the initial filter coefficients. It must be a length 1 vector, the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. |
| States | Vector of elements, data type double | Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to ( $1+$ projectord-2). |
| ErrorStates | Vector of elements | Vector of the adaptive filter error states. errstates defaults to a zero vector with length equal to (projectord-1). |
| EpsilonStates | Vector of elements | Vector of the epsilon values of the adaptive filter. epsstates defaults to a vector of zeros with (projectord-1) elements. |

## adaptfilt.ap

| Name | Range | Description |
| :--- | :--- | :--- |
| StepSize | Any scalar <br> from zero to <br> one, inclusive | Specifies the step size taken <br> between filter coefficient <br> updates |
| PersistentMemory | false or true | Determine whether the filter <br> states get restored to their <br> starting values for each <br> filtering operation. The <br> starting values are the values <br> in place when you create the <br> filter. PersistentMemory <br> returns to zero any state that <br> the filter changes during <br> processing. States that the <br> filter does not change are not <br> affected. Defaults to true. |

## Example

Quadrature phase shift keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter. Run the adaptation for 1000 iterations.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
 % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
offset = 0.05; % Offset for covariance matrix
ha = adaptfilt.ap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
```

```
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

The four plots shown reveal the QPSK process at work.


## adaptfilt.ap

## See also

msesim
References [1] K. Ozeki and Umeda, T., "An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and Its Properties," Electronics and Communications in Japan, vol.67-A, no. 5, pp. 19-27, May 1984
[2] Y. Maruyama, "A Fast Method of Projection Algorithm," Proc. 1990 IEICE Spring Conf., B-744

## adaptfilt.apru

| Purpose | Return an affine projection FIR adaptive filter object that uses recursive matrix updating |  |
| :---: | :---: | :---: |
| Syntax | ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states, errstates,epsstates) |  |
| Description | ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states, errstates, epsstates) constructs an affine projection FIR adaptive filter ha using recursive matrix updating. |  |
|  | Input Arguments |  |
|  | Entries in the following table describe the input arguments for adaptfilt.apru. |  |
|  | Input Argument | Description |
|  | 1 | Adaptive filter length (the number of coefficients or taps). It must be a positive integer. 1 defaults to 10 . |
|  | step | Affine projection step size. This is a scalar that should be a value between zero and one. Setting step equal to one provides the fastest convergence during adaptation. step defaults to 1 . |
|  | projectord | Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two. |
|  | offset | Offset for the input signal covariance matrix. You should initialize the covariance matrix to a diagonal matrix whose diagonal entries are equal to the offset you specify. offset should be positive. offset defaults to one. |

## adaptfilt.apru

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector containing the initial filter <br> coefficients. It must be a length l vector, the <br> number of filter coefficients. coeffs <br> defaults to length l vector of zeros when you <br> do not provide the argument for input. |
| states | Vector of the adaptive filter states. states <br> defaults to a vector of zeros which has <br> length equal to (l + projectord - 2). |
| errstates | Vector of the adaptive filter error states. <br> errstates defaults to a zero vector with <br> length equal to (projectord - 1). |
| epsstates | Vector of the epsilon values of the adaptive <br> filter. epsstates defaults to a vector of zeros <br> with (projectord - 1) elements. |

## Properties

Since your adaptfilt.apru filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.apru objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter <br> algorithm the object uses <br> during adaptation |
| FilterLength | Any positive <br> integer | Reports the length of the filter, <br> the number of coefficients or <br> taps |
| NumSamplesProcessed | Any positive <br> integer | Specifies the number <br> performed during the <br> adaptation process |

## adaptfilt.apru

| Name | Range | Description |
| :---: | :---: | :---: |
| ProjectionOrder |  | Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two. |
| OffsetCov |  | Contains the offset covariance matrix |
| Coefficients | Vector of elements | Vector containing the initial filter coefficients. It must be a length 1 vector, the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. |
| States | Vector of elements, data type double | Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to ( $1+$ projectord-2). |
| ErrorStates | Vector of elements | Vector of the adaptive filter error states. errstates defaults to a zero vector with length equal to (projectord $1)$. |
| EpsilonStates | Vector of elements | Vector of the epsilon values of the adaptive filter. epsstates defaults to a vector of zeros with (projectord - 1) elements. |

## adaptfilt.apru

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { StepSize } & \begin{array}{l}\text { Any scalar } \\ \text { from zero to } \\ \text { one, inclusive }\end{array} & \begin{array}{l}\text { Specifies the step size taken } \\ \text { between filter coefficient } \\ \text { updates }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The } \\ \text { starting values are the values } \\ \text { in place when you create the } \\ \text { filter. PersistentMemory } \\ \text { returns to zero any state that } \\ \text { the filter changes during } \\ \text { processing. States that the }\end{array} \\ \text { filter does not change are not } \\ \text { affected. Defaults to true. }\end{array}\right]$.

## Example

Demonstrate quadrature phase shift keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter. In this example we run the adaptation for 1000 iterations.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
 % QPSK sig
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
del = 0.05; % Offset
ha = adaptfilt.apru(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
```


## adaptfilt.apru

```
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

In the component and scatter plots below, you see the results of QPSK equalization.

## adaptfilt.apru



## See Also

References
adaptfilt, adaptfilt.ap, adaptfilt.bap
[1] K. Ozeki, Omeda, T, "An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and Its Properties,", Electronics and Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984
[2] Y. Maruyama, "A Fast Method of Projection Algorithm," Proceedings 1990 IEICE Spring Conference, B-744

## adaptfilt.bap

Purpose
Return a block affine projection FIR adaptive filter object
Syntax ha = adaptfilt.bap(l, step, projectord,offset, coeffs, states)
Description
ha = adaptfilt.bap(l,step, projectord,offset, coeffs, states) constructs a block affine projection FIR adaptive filter ha.

## Input Arguments

Entries in the following table describe the input arguments for adaptfilt.bap.

| Input Argument | Description |
| :--- | :--- |
| l | Adaptive filter length (the number of <br> coefficients or taps) and it must be a <br> positive integer. 1 defaults to 10. |
| step | Affine projection step size. This is a scalar <br> that should be a value between zero and <br> one. Setting step equal to one provides the <br> fastest convergence during adaptation. step <br> defaults to 1. |
| projectord | Projection order of the affine projection <br> algorithm. projectord defines the size of <br> the input signal covariance matrix and <br> defaults to two. |
| offset | Offset for the input signal covariance <br> matrix. You should initialize the covariance <br> matrix to a diagonal matrix whose diagonal <br> entries are equal to the offset you specify. <br> offset should be positive. offset defaults <br> to one. |

## adaptfilt.bap

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector containing the initial filter <br> coefficients. It must be a length l vector, the <br> number of filter coefficients. coeffs <br> defaults to length l vector of zeros when you <br> do not provide the argument for input. |
| states | Vector of the adaptive filter states. states <br> defaults to a vector of zeros which has <br> length equal to (l + projectord -2$).$ |

## Properties

Since your adaptfilt.bap filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. bap objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter <br> algorithm the object uses <br> during adaptation |
| FilterLength | Any positive <br> integer | Reports the length of the filter, <br> the number of coefficients or <br> taps |
| NumSamplesProcessed | Any positive <br> integer | Specifies the number <br> performed during the <br> adaptation process |
| ProjectionOrder |  | Projection order of the affine <br> projection algorithm. <br> projectord defines the size of <br> the input signal covariance <br> matrix and defaults to two. |

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { OffsetCov } & \begin{array}{l}\text { Contains the offset covariance } \\ \text { matrix }\end{array} \\ \hline \text { Coefficients } & & \begin{array}{l}\text { Vector containing the initial } \\ \text { filter coefficients. It must be a } \\ \text { length l vector, the number of } \\ \text { filter coefficients. coeffs } \\ \text { defaults to length l vector of } \\ \text { zeros when you do not provide } \\ \text { the argument for input. }\end{array} \\ \hline \text { States } & \begin{array}{l}\text { Vector of } \\ \text { elements, } \\ \text { data type } \\ \text { double }\end{array} & \begin{array}{l}\text { Vector of the adaptive filter } \\ \text { states. states defaults to a } \\ \text { vector of zeros which has } \\ \text { length equal to (l + } \\ \text { projectord - 2). }\end{array} \\ \hline \text { StepSize } & \begin{array}{l}\text { Any scalar } \\ \text { from zero to } \\ \text { one, inclusive }\end{array} & \begin{array}{l}\text { Specifies the step size taken } \\ \text { between filter coefficient } \\ \text { updates }\end{array} \\ \hline \text { false or true } & \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each }\end{array} \\ \text { filtering operation. The } \\ \text { starting values are the values } \\ \text { in place when you create the } \\ \text { filter. PersistentMemory } \\ \text { returns to zero any state that } \\ \text { the filter changes during } \\ \text { processing. States that the } \\ \text { filter does not change are not } \\ \text { affected. Defaults to true. }\end{array}\right\}$

## Example

Show an example of quadrature phase shift keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter.

$$
D=16 ; \quad \text { \% Number of samples of delay }
$$

## adaptfilt.bap

```
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of
 % channel
a = [1 -0.7]; % Denominator coefficients
 % of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
 % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed
 % QPSK signal)
mu = 0.5; % Step size
po = 4; % Projection order
offset = 1.0; % Offset for covariance matrix
ha = adaptfilt.bap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```



Using the block affine projection object in QPSK results in the plots shown here.

## See Also <br> adaptfilt, adaptfilt.ap, adaptfilt.apru

## References

[1] K. Ozeki, Omeda, T, "An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and Its Properties," Electronics and Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984
[2] M. Montazeri, M, Duhamel, P, "A Set of Algorithms Linking NLMS and Block RLS Algorithms," IEEE Transactions Signal Processing, vol. 43, no. 2, pp, 444-453, February 1995

## adaptfilt.blms

Purpose
Construct a Block LMS (BLMS) FIR adaptive filter

## Syntax

Description
ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)
ha = adaptfilt.blms(l,step,leakage,blocklen, coeffs,states)
constructs an FIR block LMS adaptive filter ha, where 1 is the adaptive filter length (the number of coefficients or taps) and must be a positive integer. 1 defaults to 10 .
step is the block LMS step size. You must set step to a nonnegative scalar. You can use function maxstep to determine a reasonable range of step size values for the signals being processed. When unspecified, step defaults to 0 .
leakage is the block LMS leakage factor. It must be a scalar between 0 and 1. If you set leakage to be less than one, you implement the leaky block LMS algorithm. leakage defaults to 1 specifying no leakage in the adapting algorithm.
blocklen is the block length used. It must be a positive integer and the signal vectors $d$ and $x$ should be divisible by blocklen. Larger block lengths result in faster per-sample execution times but with poor adaptation characteristics. When you choose blocklen such that blocklen + length (coeffs) is a power of 2 , use adaptfilt.blmsfft. blocklen defaults to 1 .
coeffs is a vector of initial filter coefficients. it must be a length 1 vector. coeffs defaults to length 1 vector of zeros.
states contains a vector of your initial filter states. It must be a length $l$ vector and defaults to a length 1 vector of zeros when you do not include it in your calling function.

## adaptfilt.blms

## Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table list all the properties for the adjoint LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :---: | :---: | :---: |
| Algorithm | None | Defines the adaptive filter algorithm the object uses during adaptation |
| FilterLength | Any positive integer | Reports the length of the filter, the number of coefficients or taps |
| NumSamplesProcessed | Any positive integer | Specifies the number performed during the adaptation process |
| Coefficients | Vector of elements | Vector containing the initial filter coefficients. It must be a length 1 vector where $l$ is the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. |
| States | Vector of elements | Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to 1 |

## adaptfilt.blms

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Leakage |  | Specifies the leakage <br> parameter. Allows you <br> to implement a leaky <br> algorithm. Including a <br> leakage factor can <br> improve the results of <br> the algorithm by <br> forcing the algorithm to <br> continue to adapt even <br> after it reaches a <br> minimum value. <br> Ranges between 0 <br> and 1. |
| BlockLength | Vector of length 1 | Size of the blocks of <br> data processed in each <br> iteration |

## adaptfilt.blms

$\left.\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { StepSize } & 0.1 & \begin{array}{l}\text { Sets the block LMS } \\ \text { algorithm step size } \\ \text { used for each iteration } \\ \text { of the adapting } \\ \text { algorithm. Determines } \\ \text { both how quickly and } \\ \text { how closely the } \\ \text { adaptive filter } \\ \text { converges to the filter } \\ \text { solution. Use maxstep } \\ \text { to determine the } \\ \text { maximum usable step } \\ \text { size. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\ \text { filter states get } \\ \text { restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The } \\ \text { starting values are the } \\ \text { values in place when }\end{array} \\ \text { you create the filter. }\end{array}\right\} \begin{array}{l}\text { PersistentMemory } \\ \text { returns to zero any } \\ \text { state that the filter } \\ \text { changes during } \\ \text { processing. States that } \\ \text { the filter does not } \\ \text { change are not affected. }\end{array}\right\}$

Example
Use an adaptive filter to identify an unknown 32nd-order FIR filter. In this example we input 500 samples to result in 500 iterations of the adaptation process. You see in the plot that follows the example code that the adaptive filter has determined the coefficients of the unknown system under test.

```
x = randn(1,500); % Input to the filter
```


## adaptfilt.blms

```
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,500); % Observation noise signal
d = filter (b,1,x)+no; % Desired signal
mu = 0.008; % Block LMS step size
n = 5; % Block length
ha = adaptfilt.blms(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Based on looking at the figures here, the adaptive filter correctly identified the unknown system after 500 iterations, or fewer. In the lower plot, you see the comparison between the actual filter coefficients and those determined by the adaptation process.


[^2]
## adaptfilt.blmsfft

Purpose
Construct an FFT-based block LMS FIR adaptive filter

## Syntax

Description
ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,states)
ha = adaptfilt.blmsfft(l,step,leakage,blocklen, coeffs,states)
constructs an FIR block LMS adaptive filter object ha where 1 is the adaptive filter length (the number of coefficients or taps) and must be a positive integer. 1 defaults to 10 . step is the block LMS step size. It must be a nonnegative scalar. The function maxstep may be helpful to determine a reasonable range of step size values for the signals you are processing. step defaults to 0 .
leakage is the block LMS leakage factor. It must also be a scalar between 0 and 1 . When leakage is less than one, the adaptfilt.blmsfft implements a leaky block LMS algorithm. leakage defaults to 1 (no leakage). blocklen is the block length used. It must be a positive integer such that

```
blocklen + length(coeffs)
```

is a power of two; otherwise, an adaptfilt.blms algorithm is used for adapting. Larger block lengths result in faster execution times, with poor adaptation characteristics as the cost of the speed gained. blocklen defaults to l. Enter your initial filter coefficients in coeffs, a vector of length 1 . When omitted, coeffs defaults to a length 1 vector of all zeros. states contains a vector of initial filter states; it must be a length 1 vector. states defaults to a length 1 vector of all zeros when you omit the states argument in the calling syntax.

## adaptfilt.blmsfft

## Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table list all the properties for the block LMS object, their default values, and a brief description of the property.
$\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive } \\ \text { filter algorithm the } \\ \text { object uses during } \\ \text { adaptation }\end{array} \\ \hline \text { FilterLength } & \text { Any positive integer } & \begin{array}{l}\text { Reports the length of } \\ \text { the filter, the number of } \\ \text { coefficients or taps }\end{array} \\ \hline \text { NumSamplesProcessed } & \text { Any positive integer } & \begin{array}{l}\text { Specifies the number } \\ \text { performed during the } \\ \text { adaptation process }\end{array} \\ \hline \text { Coefficients } & \text { Vector of elements } & \begin{array}{l}\text { Vector containing the } \\ \text { initial filter coefficients. } \\ \text { It must be a length l } \\ \text { vector where l is the }\end{array} \\ \text { number of filter } \\ \text { coefficients. } \\ \text { coefficients defaults } \\ \text { to length l vector of } \\ \text { zeros when you do not } \\ \text { provide the argument } \\ \text { for input. }\end{array}\right\}$

## adaptfilt.blmsfft

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Leakage | 1 | Specifies the leakage <br> parameter. Allows you <br> to implement a leaky <br> algorithm. Including a <br> leakage factor can <br> improve the results of <br> the algorithm by <br> forcing the algorithm to <br> continue to adapt even <br> after it reaches a <br> minimum value. <br> Ranges between 0 <br> and 1. |
| BlockLength | Vector of length 1 | Size of the blocks of <br> data processed in each <br> iteration |

$\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { StepSize } & 0.1 & \begin{array}{l}\text { Sets the block LMS } \\ \text { algorithm step size } \\ \text { used for each iteration } \\ \text { of the adapting } \\ \text { algorithm. Determines } \\ \text { both how quickly and } \\ \text { how closely the } \\ \text { adaptive filter } \\ \text { converges to the filter } \\ \text { solution. Use maxstep } \\ \text { to determine the } \\ \text { maximum usable step } \\ \text { size. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\ \text { filter states get } \\ \text { restored to their } \\ \text { starting values for each }\end{array} \\ \text { filtering operation. The } \\ \text { starting values are the }\end{array}\right\}$

## Example

Identify an unknown FIR filter with 32 coefficients using 512 iterations of the adapting algorithm.

```
x = randn(1,512); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,512); % Observation noise signal
```


## adaptfilt.blmsfft

```
d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Step size
n = 16; % Block length
ha = adaptfilt.blmsfft(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d(1:500);y(1:500);e(1:500)]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('actual','estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```




## adaptfilt.blmsfft

As a result of running the adaptation process, filter object ha now matches the unknown system FIR filter b, based on comparing the filter coefficients derived during adaptation.

See Also
Reference
adaptfilt.blms, adaptfilt.fdaf, adaptfilt.lms, filter
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

## adaptfilt.dlms

Purpose Create a delayed LMS FIR adaptive filter object

\author{
Syntax <br> Description <br> ```
ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs, <br> states) <br> ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs, states) constructs an FIR delayed LMS adaptive filter ha.

``` \\ \section*{Input Arguments} \\ Entries in the following table describe the input arguments for adaptfilt.dlms.
}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l}
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. 1 defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l}
LMS step size. It must be a nonnegative \\
scalar. You can use maxstep to determine \\
a reasonable range of step size values for the \\
signals being processed. step defaults to 0.
\end{tabular} \\
\hline leakage & \begin{tabular}{l}
Your LMS leakage factor. It must be a scalar \\
between 0 and 1. When leakage is less than \\
one, adaptfilt.lms implements a leaky LMS \\
algorithm. When you omit the leakage \\
property in the calling syntax, it defaults to 1 \\
providing no leakage in the adapting \\
algorithm.
\end{tabular} \\
\hline delay & \begin{tabular}{l}
Update delay given in time samples. This \\
scalar should be a positive integer-negative \\
delays do not work. delay defaults to 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline errstates & \begin{tabular}{l}
Vector of the error states of your adaptive \\
filter. It must have a length equal to the \\
update delay (delay) in samples. errstates \\
defaults to an appropriate length vector of \\
zeros.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l}
Vector of initial filter coefficients. it must be a \\
length l vector. coeffs defaults to length 1 \\
vector with elements equal to zero.
\end{tabular} \\
\hline states & \begin{tabular}{l}
Vector of initial filter states for the adaptive \\
filter. It must be a length l-1 vector. states \\
defaults to a length l-1 vector of zeros.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table list all the properties for the block LMS object, their default values, and a brief description of the property.
\begin{tabular}{l|ll}
\hline Property & Default Value & Description \\
\hline Algorithm & None & \begin{tabular}{l}
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l}
Any positive \\
integer
\end{tabular} & \begin{tabular}{l}
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.dlms}
\begin{tabular}{|c|c|c|}
\hline Property & Default Value & Description \\
\hline Coefficients & Vector of elements & Vector containing the initial filter coefficients. It must be a length 1 vector where 1 is the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. LMS FIR filter coefficients. Should be initialized with the initial coefficients for the FIR filter prior to adapting. You need 1 entries in coeffs. \\
\hline Delay & 1 & Specifies the update delay for the adaptive algorithm \\
\hline ErrorStates & Vector of zeros with the number of elements equal to delay & A vector comprising the error states for the adaptive filter \\
\hline States & Vector of elements, data type double & Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to (l + projectord \(2)\). \\
\hline
\end{tabular}

\title{
adaptfilt.dlms
}
\begin{tabular}{l|ll}
\hline Property & Default Value & Description \\
\hline StepSize & 0.1 & \begin{tabular}{l}
Sets the LMS algorithm \\
step size used for each \\
iteration of the adapting \\
algorithm. Determines \\
both how quickly and how \\
closely the adaptive filter \\
converges to the filter \\
solution.
\end{tabular} \\
\hline Leakage & 1 & \begin{tabular}{l}
Specifies the leakage \\
parameter. Allows you to \\
implement a leaky \\
algorithm. Including a \\
leakage factor can \\
improve the results of the \\
algorithm by forcing the \\
algorithm to continue to \\
adapt even after it reaches \\
a minimum value. Ranges \\
between 0 and 1.
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.dlms}
\begin{tabular}{l|ll}
\hline Property & Default Value & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l}
Determine whether the \\
filter states get restored to \\
their starting values for \\
each filtering operation. \\
The starting values are \\
the values in place when \\
you create the filter if you \\
have not changed the \\
filter since you \\
constructed it. \\
PersistentMemory \\
returns to zero any state \\
that the filter changes \\
during processing. States \\
that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
& & \\
& & \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l}
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

System identification of a 32 -coefficient FIR filter. Refer to the figure that follows to see the results of the adapting filter process.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = O.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
delay = 1; % Update delay
ha = adaptfilt.dlms(32,mu,1,delay);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');

```

\section*{adaptfilt.dlms}
```

subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```

Using a delayed LMS adaptive filter in the process to identify an unknown filter appears to work as planned, as shown in this figure.

\section*{See Also}

Reference
adaptfilt.adjlms, adaptfilt.filtxlms, adaptfilt.lms
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

\section*{adaptfilt.fdaf}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a frequency-domain FIR adaptive filter with bin step size normalization} \\
\hline Syntax & \multicolumn{2}{|l|}{```
ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,
 offset,coeffs,states)
```} \\
\hline \multirow[t]{9}{*}{Description} & \multicolumn{2}{|l|}{ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,offset, coeffs, states) constructs a frequency-domain FIR adaptive filter ha with bin step size normalization. If you omit all the input arguments you create a default object with \(\mathrm{I}=10\) and step \(=1\).} \\
\hline & \multicolumn{2}{|l|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.fdaf.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps). l must be a positive integer; it defaults to 10 when you omit the argument. \\
\hline & step & Step size of the adaptive filter. This is a scalar and should lie in the range ( 0,1 ]. step defaults to 1. \\
\hline & leakage & Leakage parameter of the adaptive filter. If this parameter is set to a value between zero and one, you implement a leaky FDAF algorithm. leakage defaults to 1 -no leakage provided in the algorithm. \\
\hline & delta & Initial common value of all of the FFT input signal powers. Its initial value should be positive. delta defaults to 1 . \\
\hline & lambda & Specifies the averaging factor used to compute the exponentially-windowed FFT input signal powers for the coefficient updates. lambda should lie in the range \((0,1]\). lambda defaults to 0.9 . \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline blocklen & \begin{tabular}{l} 
Block length for the coefficient updates. This \\
must be a positive integer. For faster execution, \\
(blocklen + l) should be a power of two. \\
blocklen defaults to l.
\end{tabular} \\
\hline offset & \begin{tabular}{l} 
Offset for the normalization terms in the \\
coefficient updates. Use this to avoid divide by \\
zeros or by very small numbers when any of the \\
FFT input signal powers become very small. \\
offset defaults to zero.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Initial time-domain coefficients of the adaptive \\
filter. coeff should be a length l vector. The \\
adaptive filter object uses these coefficients to \\
compute the initial frequency-domain filter \\
coefficients via an FFT computed after \\
zero-padding the time-domain vector by the \\
blocklen.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
The adaptive filter states. states defaults to \\
a zero vector that has length equal to l.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.fdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.fdaf objects. To show you the properties that apply, this table lists and describes each property for the adaptfilt.fdaf filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the filter, \\
the number of coefficients or \\
taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.fdaf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter. PersistentMemory \\
returns to zero any state that \\
the filter changes during \\
processing. States that the \\
filter does not change are not \\
affected. Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of samples \\
processed during filtering. \\
Defaults to zero.
\end{tabular} \\
\hline Leakage & & \begin{tabular}{l} 
Leakage parameter of the \\
adaptive filter. if this \\
parameter is set to a value \\
between zero and one, you \\
implement a leaky FDAF \\
algorithm. leakage defaults to \\
\(1-n o ~ l e a k a g e ~ p r o v i d e d ~ i n ~ t h e ~\)
\end{tabular} \\
algorithm.
\end{tabular}

\section*{adaptfilt.fdaf}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { AvgFactor } & (0,1] & \begin{array}{l}\text { Specifies the averaging factor } \\ \text { used to compute the } \\ \text { exponentially-windowed FFT } \\ \text { input signal powers for the } \\ \text { coefficient updates. Same as } \\ \text { the input argument lambda. }\end{array} \\ \hline \text { BlockLength } & \text { Any integer } & \begin{array}{l}\text { Block length for the coefficient } \\ \text { updates. This must be a } \\ \text { positive integer. For faster } \\ \text { execution, (blocklen +l) } \\ \text { should be a power of two. } \\ \text { blocklen defaults to l. }\end{array} \\ \hline \text { Offset } & \begin{array}{l}\text { Any positive } \\ \text { real value }\end{array} & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. Use this to avoid } \\ \text { dividing by zero or by very } \\ \text { small numbers when any of the }\end{array} \\ \text { FFT input signal powers } \\ \text { become very small. offset } \\ \text { defaults to zero. }\end{array}\right\}\)

\section*{Examples}

Quadrature Phase Shift Keying (QPSK) adaptive equalization using 1024 iterations of a 32 -coefficient FIR filter. After this example code, a figure demonstrates the equalization results.
\[
D=16 ; \quad \text { \% Number of samples of delay }
\]

\section*{adaptfilt.fdaf}
```

b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1024; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK
% signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
ha = adaptfilt.fdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

\section*{adaptfilt.fdaf}


See Also
Reference
adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blms, adaptfilt.blmsfft
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

\section*{adaptfilt.filtxlms}

Purpose
Create an filtered-x LMS FIR adaptive filter

\author{
Syntax \\ Description
}
```

ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states)
ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest, errstates, pstates, coeffs, states) constructs an filtered-x LMS adaptive filter ha.

```

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.filtxlms.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. I defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l} 
Filtered LMS step size. it must be a \\
nonnegative scalar. step defaults to 0.1.
\end{tabular} \\
\hline leakage & \begin{tabular}{l} 
is the filtered-x LMS leakage factor. it must \\
be a scalar between 0 and 1. If it is less than \\
one, a leaky version of adaptfilt. filtxlms is \\
implemented. leakage defaults to 1 (no \\
leakage).
\end{tabular} \\
\hline pathcoeffs & \begin{tabular}{l} 
is the secondary path filter model. this vector \\
should contain the coefficient values of the \\
secondary path from the output actuator to \\
the error sensor.
\end{tabular} \\
\hline pathest & \begin{tabular}{l} 
is the estimate of the secondary path filter \\
model. pathest defaults to the values in \\
pathcoeffs.
\end{tabular} \\
\hline fstates & \begin{tabular}{l} 
is a vector of filtered input states of the \\
adaptive filter. fstates defaults to a zero \\
vector of length equal to (l-1).
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.filtxIms}
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline pstates & \begin{tabular}{l} 
are the secondary path FIR filter states. it \\
must be a vector of length equal to the \\
(length(pathcoeffs) - 1). pstates defaults to \\
a vector of zeros of appropriate length.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
is a vector of initial filter coefficients. it must \\
be a length l vector. coeffs defaults to length \\
l vector of zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states. states defaults \\
to a zero vector of length equal to the larger of \\
(length(pathcoeffs) -1) and \\
(length(pathest) -1\().\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table list all the properties for the adjoint LMS object, their default values, and a brief description of the property.
\begin{tabular}{l|l|l}
\hline Property & Default Value & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive \\
filter algorithm the \\
object uses during \\
adaptation
\end{tabular} \\
\hline FilterLength & Any positive integer & \begin{tabular}{l} 
Reports the length of \\
the filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.filtxlms}
\begin{tabular}{l|l|l}
\hline Property & Default Value & Description \\
\hline Coefficients & Vector of elements & \begin{tabular}{l} 
Vector containing the \\
initial filter coefficients. \\
It must be a length l \\
vector where l is the \\
number of filter \\
coefficients. coeffs \\
defaults to length l \\
vector of zeros when \\
you do not provide the \\
argument for input.
\end{tabular} \\
\hline States & Vector of elements & \begin{tabular}{l} 
Vector of the adaptive \\
filter states. states \\
defaults to a vector of \\
zeros which has length \\
equal to \\
(l + projectord - 2)
\end{tabular} \\
\hline SecondaryPathCoeffs & No default & \begin{tabular}{l} 
A vector that contains \\
the coefficient values of \\
your secondary path \\
from the output \\
actuator to the error \\
sensor
\end{tabular} \\
\hline SecondaryPathEstimate & pathcoeffs values & \begin{tabular}{l} 
An estimate of the \\
secondary path filter \\
model
\end{tabular} \\
\hline SecondaryPathStates & \begin{tabular}{ll} 
Vector of size \\
(length(pathcoeffs)-1) \\
with all elements \\
equal to zero.
\end{tabular} & \begin{tabular}{l} 
The states of the \\
secondary path FIR \\
filter-the unknown \\
system
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.filtxIms}
\begin{tabular}{l|l|l}
\hline Property & Default Value & Description \\
\hline FilteredInputStates & \(1-1\) & \begin{tabular}{l} 
Vector of filtered input \\
states with length \\
equal to l-1.
\end{tabular} \\
\hline StepSize & 0.1 & \begin{tabular}{l} 
Sets the filtered-x \\
algorithm step size \\
used for each iteration \\
of the adapting \\
algorithm. Determines \\
both how quickly and \\
how closely the \\
adaptive filter \\
converges to the filter \\
solution.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Demonstrate active noise control of a random noise signal over 1000 iterations.
As the figure that follows this code demonstrates, the filtered-x LMS filter successfully controls random noise in this context.
```

x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be cancelled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Filtered-X LMS step size
ha = adaptfilt.filtxlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;

```

\section*{adaptfilt.filtxIms}


\section*{See also}

Reference
adaptfilt.dlms, adaptfilt.lms
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

Purpose
Syntax
Description

Construct a fast transversal least squares adaptive filter object
```

ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)

```
ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)
constructs a fast transversal least squares adaptive filter object ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.ftf.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. l defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
RLS forgetting factor. This is a scalar that \\
should lie in the range (1-0.5/1, 1]. lambda \\
defaults to 1.
\end{tabular} \\
\hline delta & \begin{tabular}{l} 
Soft-constrained initialization factor. This \\
scalar should be positive and sufficiently large \\
to prevent an excessive number of Kalman \\
gain rescues. delta defaults to one.
\end{tabular} \\
\hline gamma & \begin{tabular}{l} 
Conversion factor. gamma defaults to one \\
specifying soft-constrained initialization.
\end{tabular} \\
\hline gstates & \begin{tabular}{l} 
States of the Kalman gain updates. gstates \\
defaults to a zero vector of length l.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Length l vector of initial filter coefficients. \\
coeffs defaults to a length l vector of zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter States. states defaults \\
to a zero vector of length (l-1).
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.ftf filter is an object, it has properties that define its operating behavior. Note that many of the properties are also input arguments

\section*{adaptfilt.ftf}
for creating adaptfilt.ftf objects. To show you the properties that apply, this table lists and describes each property for the fast transversal least squares filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the filter, \\
the number of coefficients or \\
taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where l is the \\
number of filter coefficients. \\
coeffs defaults to length l \\
vector of zeros when you do not \\
provide the argument for \\
input.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements, \\
data type \\
double
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l + \\
projectord - 2).
\end{tabular} \\
\hline ForgettingFactor & & \begin{tabular}{l} 
RLS forgetting factor. This is a \\
scalar that should lie in the \\
range (1-0.5/l, 1]. lambda \\
defaults to 1.
\end{tabular} \\
\hline InitFactor & & \begin{tabular}{l} 
Soft-constrained initialization \\
factor. This scalar should be \\
positive and sufficiently large \\
to prevent an excessive \\
number of Kalman gain \\
rescues. delta defaults to one.
\end{tabular} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Name & Range \\
\hline FwdPrediction & \begin{tabular}{l} 
Description \\
Contains the predicted values \\
for samples during adaptation. \\
Compare these to the actual \\
samples to get the error and \\
power.
\end{tabular} \\
\hline BkwdPrediction & \begin{tabular}{l} 
Returns the predicted samples \\
generated during \\
adaptation.Refer to [12] in the \\
bibliography for details about \\
linear prediction.
\end{tabular} \\
\hline KalmanGain & \begin{tabular}{l} 
Empty when you construct the \\
object, this gets populated after \\
you run the filter.
\end{tabular} \\
\hline ConversionFactor & \\
& \\
\hline
\end{tabular} \begin{tabular}{l} 
Conversion factor. Called \\
gamma when it is an input \\
argument, it defaults to the \\
matrix [1-1] that specifies \\
soft-constrained initialization.
\end{tabular},

\section*{adaptfilt.ftf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you constructed \\
it. PersistentMemory returns \\
to zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

System Identification of a 32 -coefficient FIR filter by running the identification process for 500 iterations.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');

```
```

xlabel('coefficient \#'); ylabel('Coefficient Value'); grid on;

```

For this example of identifying an unknown system, the figure shows that the adaptation process identifies the filter coefficients for the unknown FIR filter within the first 150 iterations.



\section*{See Also}

Reference
adaptfilt.swftf, adaptfilt.rls, adaptfilt.lsl
D.T.M. Slock and Kailath, T., "Numerically Stable Fast Transversal Filters for Recursive Least Squares Adaptive Filtering," IEEE Trans. Signal Processing, vol. 38, no. 1, pp. 92-114.

\section*{adaptfilt.gal}

\section*{Purpose Construct a gradient adaptive lattice FIR filter}
```

Syntax
ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda,
rcoeffs,coeffs,states)
Description
ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda, rcoeffs, coeffs, states) constructs a gradient adaptive lattice FIR filter ha.

```

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.gal.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline \(\mathbf{l}\) & \begin{tabular}{l} 
Length of the joint process filter coefficients. It \\
must be a positive integer and must be equal \\
to the length of the reflection coefficients plus \\
one. 1 defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l} 
Joint process step size of the adaptive filter. \\
This scalar should be a value between zero \\
and one. step defaults to 0.
\end{tabular} \\
\hline leakage & \begin{tabular}{l} 
Leakage factor of the adaptive filter. It must \\
be a scalar between 0 and 1. Setting leakage \\
less than one implements a leaky algorithm to \\
estimate both the reflection and the joint \\
process coefficients. leakage defaults to 1 (no \\
leakage).
\end{tabular} \\
\hline offset & \begin{tabular}{l} 
Specifies an optional offset for the \\
denominator of the step size normalization \\
term. It must be a scalar greater or equal to \\
zero. A non-zero offset is useful to avoid \\
divide-by-near-zero conditions when the input \\
signal amplitude becomes very small. offset \\
defaults to 1.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline rstep & \begin{tabular}{l} 
Reflection process step size of the adaptive \\
filter. This scalar should be a value between \\
zero and one. rstep defaults to step.
\end{tabular} \\
\hline delta & \begin{tabular}{l} 
Initial common value of the forward and \\
backward prediction error powers. It should be \\
a positive value. 0.1 is the default value for \\
delta.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
Specifies the averaging factor used to compute \\
the exponentially windowed forward and \\
backward prediction error powers for the \\
coefficient updates. lambda should lie in the \\
range (0, 1]. lambda defaults to the value \\
(1-step).
\end{tabular} \\
\hline rcoeffs & \begin{tabular}{l} 
Vector of initial reflection coefficients. It \\
should be a length (l-1) vector. rcoeffs \\
defaults to a zero vector of length (l-1).
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial joint process filter coefficients. \\
It must be a length l vector. coeffs defaults to \\
a length l vector of zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of the backward prediction error states \\
of the adaptive filter. states defaults to a zero \\
vector of length (l-1).
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.gal filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.gal objects. To show you the properties that

\section*{adaptfilt.gal}
apply, this table lists and describes each property for the affine projection filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Reports the length of the filter, \\
the number of coefficients or \\
taps
\end{tabular} \\
\hline elements & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where l is the \\
number of filter coefficients. \\
coeffs defaults to length 1 \\
vector of zeros when you do not \\
provide the argument for \\
input.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l + \\
projectord - 2).
\end{tabular} \\
\hline StepSize & 0 to 1 & \begin{tabular}{l} 
Specifies the step size taken \\
between filter coefficient \\
updates
\end{tabular} \\
\hline Leakage & 0 to 1 & \begin{tabular}{l} 
Leakage parameter of the \\
adaptive filter. If this \\
parameter is set to a value \\
between zero and one, you \\
implement a leaky GAL \\
algorithm. leakage defaults to \\
\(1-\) no leakage provided in the \\
algorithm.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Offset & \begin{tabular}{l} 
Offset for the normalization \\
terms in the coefficient \\
updates. Use this to avoid \\
dividing by zero or by very \\
small numbers when input \\
signal amplitude becomes very \\
small. offset defaults to one.
\end{tabular} \\
\hline ReflectionCoeffs & & \begin{tabular}{l} 
Returns the minimum \\
mean-squared prediction error \\
in the forward direction. Refer \\
to [12] in the bibliography for \\
details about linear prediction.
\end{tabular} \\
\hline FwdPredErrorPower & & \begin{tabular}{l} 
Returns the minimum \\
mean-squared prediction error. \\
Refer to [12] in the \\
bibliography for details about \\
linear prediction
\end{tabular} \\
\hline BkwdPredErrorPower & & \\
\hline ReflectionCoeffsStep & & \begin{tabular}{l} 
Specifies the averaging factor \\
used to compute the \\
exponentially-windowed \\
forward and backward \\
prediction error powers for the \\
coefficient updates. Same as \\
the input argument lambda.
\end{tabular} \\
\hline AvgFactor & & \\
\hline
\end{tabular}

\section*{adaptfilt.gal}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you constructed \\
it. PersistentMemory returns \\
to zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of samples \\
processed during filtering. \\
Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32-coefficient adaptive filter over 1000 iterations.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.007; % Step size
ha = adaptfilt.gal(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));

```
```

title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

To see the results, look at this figure.


Received Signal Scatter Plot




\section*{adaptfilt.gal}

\section*{See Also}

References
adaptfilt.qrdlsl, adaptfilt.lsl, adaptfilt.tdafdft
L.J. Griffiths, "A Continuously Adaptive Filter Implemented as a Lattice Structure," Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Hartford, CT, pp. 683-686, 1977
S. Haykin, Adaptive Filter Theory, 3rd Ed., Upper Saddle River, NJ, Prentice Hall, 1996
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a householder recursive least squares (RLS) FIR adaptive filter object} \\
\hline Syntax & \multicolumn{2}{|l|}{ha = adaptfilt.hrls(l, lambda, sqrtinvcov, coeffs, states)} \\
\hline Description & \multicolumn{2}{|l|}{ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states) constructs an FIR householder RLS adaptive filter ha.} \\
\hline & \multicolumn{2}{|l|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.hrls.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . \\
\hline & lambda & RLS forgetting factor. This is a scalar and should lie in the range ( 0,1 ]. lambda defaults to 1 meaning the adaptation process retains infinite memory. \\
\hline & sqrtinvcov & Square-root of the inverse of the sliding window input signal covariance matrix. This square matrix should be full-ranked. \\
\hline & coeffs & Vector of initial filter coefficients. It must be a length \(l\) vector. coeffs defaults to being a length \(l\) vector of zeros. \\
\hline & states & Vector of initial filter states. It must be a length l-1 vector. states defaults to a length l-1 vector of zeros. \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.hrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.hrls objects. To show you the properties

\section*{adaptfilt.hrls}
that apply, this table lists and describes each property for the affine projection filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be \\
a length l vector where l is \\
the number of filter \\
coefficients. coeffs defaults \\
to length l vector of zeros \\
when you do not provide the \\
argument for input.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements, \\
data type \\
double
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l - 1).
\end{tabular} \\
\hline ForgettingFactor & Scalar & \begin{tabular}{l} 
RLS forgetting factor. This \\
is a scalar and should lie in \\
the range (0, 1]. Same as \\
input argument lambda. It \\
defaults to 1 meaning the \\
adaptation process retains \\
infinite memory.
\end{tabular} \\
\hline KalmanGain & & \begin{tabular}{l} 
Empty when you construct \\
the object, this gets \\
populated after you run the \\
filter.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Vector of size \\
(l,1)
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.hrls}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline SqrtInvCov & \begin{tabular}{l} 
Matrix of \\
doubles
\end{tabular} & \begin{tabular}{l} 
Square root of the inverse of \\
the sliding window input \\
signal covariance matrix. \\
This square matrix should \\
be full-ranked.
\end{tabular} \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the \\
filter states get restored to \\
their starting values for \\
each filtering operation. The \\
starting values are the \\
values in place when you \\
create the filter if you have \\
not changed the filter since \\
you constructed it. \\
PersistentMemory returns \\
to zero any state that the \\
filter changes during \\
processing. Defaults to \\
false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Use 500 iterations of an adaptive filter object to identify a 32 -coefficient FIR filter system. Both the example code and the resulting figure show the successful filter identification through adaptive filter processing.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
GO = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.hrls(32,lam,GO);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);

```

\section*{adaptfilt.hrls}
```

title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```



See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

Purpose
Syntax

Description

Construct a householder sliding window RLS FIR adaptive filter
```

ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen,
dstates, coeffs, states)

```
ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen, dstates, coeffs, states) constructs an FIR householder sliding window recursive-least-square adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.hswrls.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline \(\mathbf{l}\) & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. l defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
Recursive least square (RLS) forgetting factor. \\
This is a scalar and should lie in the range (0, \\
1]. lambda defaults to 1 meaning the \\
adaptation process retains infinite memory.
\end{tabular} \\
\hline sqrtinvcov & \begin{tabular}{l} 
Square-root of the inverse of the sliding \\
window input signal covariance matrix. This \\
square matrix should be full-ranked.
\end{tabular} \\
\hline swblocklen & \begin{tabular}{l} 
Block length of the sliding window. This \\
integer must be at least as large as the filter \\
length. swblocklen defaults to 16.
\end{tabular} \\
\hline dstates & \begin{tabular}{l} 
Desired signal states of the adaptive filter. \\
dstates defaults to a zero vector with length \\
equal to (swblocklen - 1).
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.hswrls}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. It must be a \\
length l vector. coeffs defaults to being \\
a length l vector of zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states. It must be \\
a length (l + swblocklen -2) vector. states \\
defaults to a length (l + swblocklen -2) \\
vector of zeros.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.hswrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.hswrls objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the \\
initial filter coefficients. It \\
must be a length l vector \\
where l is the number of \\
filter coefficients. coeffs \\
defaults to length l vector \\
of zeros when you do not \\
provide the argument for \\
input.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements, \\
data type \\
double
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l + \\
projectord - 2).
\end{tabular} \\
\hline ForgettingFactor & Scalar & \begin{tabular}{l} 
Root-least-square (RLS) \\
forgetting factor. This is a \\
scalar and should lie in the \\
range (0, 1]. Same as input \\
argument lambda. It \\
defaults to 1 meaning the \\
adaptation process retains \\
infinite memory.
\end{tabular} \\
\hline KalmanGain & (l,1) vector & \begin{tabular}{l} 
Empty when you construct \\
the object, this gets \\
populated after you run the \\
filter.
\end{tabular} \\
\hline SqrtInvCov & l-by-l Matrix & \begin{tabular}{l} 
Square-root of the inverse \\
of the sliding window input \\
signal covariance matrix. \\
This square matrix should \\
be full-ranked.
\end{tabular} \\
\hline SwBlockLength & Integer & \begin{tabular}{l} 
Block length of the sliding \\
window. This integer must \\
be at least as large as the
\end{tabular} \\
filter length. swblocklen \\
defaults to 16.
\end{tabular}

\section*{adaptfilt.hswrls}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the \\
filter states get restored to \\
their starting values for \\
each filtering operation. \\
The starting values are the \\
values in place when you \\
create the filter if you have \\
not changed the filter since \\
you constructed it. \\
PersistentMemory returns \\
to zero any state that the \\
filter changes during \\
processing. Defaults to \\
false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

System Identification of a 32 -coefficient FIR filter.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
GO = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % block length
ha = adaptfilt.hswrls(32,lam,G0,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```

\section*{adaptfilt.hswrls}

In the pair of plots shown in the figure you see the comparison of the desired and actual output for the adapting filter and the coefficients of both filters, the unknown and the adapted.


See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hrls

\section*{adaptfilt.Ims}

Purpose
Construct a least-mean-square (LMS) FIR adaptive filter object
```

Syntax ha = adaptfilt.lms(l,step,leakage,coeffs,states)

```

Description
ha = adaptfilt.lms(l,step,leakage, coeffs,states) constructs an FIR
LMS adaptive filter object ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.lms.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline \(\mathbf{l}\) & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. l defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l} 
LMS step size. It must be a nonnegative \\
scalar. You can use maxstep to determine \\
a reasonable range of step size values for the \\
signals being processed. step defaults to 0.1.
\end{tabular} \\
\hline leakage & \begin{tabular}{l} 
Your LMS leakage factor. It must be a scalar \\
between 0 and 1. When leakage is less than \\
one, adaptfilt. lms implements a leaky LMS \\
algorithm. When you omit the leakage \\
property in the calling syntax, it defaults to 1 \\
providing no leakage in the adapting \\
algorithm.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. it must be a \\
length l vector. coeffs defaults to length l \\
vector with elements equal to zero.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states for the adaptive \\
filter. It must be a length l-1 vector. states \\
defaults to a length l-1 vector of zeros.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table list all the properties for the

\section*{adaptfilt.Ims}
adaptfilt.lms object, their default values, and a brief description of the property.
\begin{tabular}{l|l|l}
\hline Property & Range & Property Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Reports the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be \\
a length l vector where l is \\
the number of filter \\
coefficients. coeffs defaults \\
to a length l vector of zeros \\
when you do not provide the \\
vector as an input argument.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements, data \\
type double
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l-1).
\end{tabular} \\
\hline StepSize & 0 to 1 & \begin{tabular}{l} 
LMS step size. It must be a \\
scalar between zero and one. \\
Setting this step size value \\
to one provides the fastest \\
convergence. step defaults to \\
0.1.
\end{tabular} \\
\hline Leakage & 0 to 1 & \begin{tabular}{l} 
LMS leakage factor. It must \\
be a scalar between zero and \\
one. When it is less than one, \\
a leaky NLMS algorithm \\
results. leakage defaults \\
to 1 (no leakage).
\end{tabular} \\
\hline & &
\end{tabular}

\section*{adaptfilt.Ims}
\begin{tabular}{l|l|l}
\hline Property & Range & Property Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states and coefficients get \\
restored to their starting \\
values for each filtering \\
operation. The starting \\
values are the values in \\
place when you create the \\
filter. PersistentMemory \\
returns to zero any property \\
value that the filter changes \\
during processing. Property \\
values that the filter does \\
not change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Use 500 iterations of an adapting filter system to identify and unknown 32nd-order FIR filter.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```

Using LMS filters in an adaptive filter architecture is a time honored means for identifying an unknown filter. By running the example code provided you can demonstrate one process to identify an unknown FIR filter.


See Also

Reference
adaptfilt.blms, adaptfilt.blmsfft, adaptfilt.dlms, adaptfilt.nlms, adaptfilt.tdafdft, adaptfilt.sd, adaptfilt.se, adaptfilt.ss
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

\section*{adaptfilt.Isl}

Purpose
Construct a least squares lattice (LSL) adaptive filter
Syntax ha = adaptfilt.lsl(l,lambda,delta, coeffs,states)
Description
ha = adaptfilt.lsl(l,lambda,delta,coeffs,states) constructs a least
squares lattice adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.lsl.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Length of the joint process filter coefficients. It \\
must be a positive integer and must be equal \\
to the length of the prediction coefficients plus \\
one. L defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
Forgetting factor of the adaptive filter. This is \\
a scalar and should lie in the range \((0,1]\). \\
lambda defaults to 1. lambda = 1 denotes \\
infinite memory while adapting to find the \\
new filter.
\end{tabular} \\
\hline delta & \begin{tabular}{l} 
Soft-constrained initialization factor in the \\
least squares lattice algorithm. It should be \\
positive. delta defaults to 1.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial joint process filter coefficients. \\
It must be a length l vector. coeffs defaults to \\
a length l vector of all zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of the backward prediction error states \\
of the adaptive filter. states defaults to \\
a length l vector of all zeros, specifying \\
soft-constrained initialization for the \\
algorithm.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.lsl filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.lsl objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive filter } \\ \text { algorithm the object uses } \\ \text { during adaptation }\end{array} \\ \hline \text { FilterLength } & \begin{array}{l}\text { Any positive } \\ \text { integer }\end{array} & \begin{array}{l}\text { Reports the length of the } \\ \text { filter, the number of } \\ \text { coefficients or taps }\end{array} \\ \hline \text { Coefficients } & \begin{array}{l}\text { Vector of } \\ \text { elements }\end{array} & \begin{array}{l}\text { Vector containing the initial } \\ \text { filter coefficients. It must be a } \\ \text { length l vector where l is the } \\ \text { number of filter coefficients. } \\ \text { coeffs defaults to length 1 } \\ \text { vector of zeros when you do } \\ \text { not provide the argument for } \\ \text { input. }\end{array} \\ \hline \text { States } & \begin{array}{l}\text { Vector of } \\ \text { elements, } \\ \text { data type } \\ \text { double }\end{array} & \begin{array}{l}\text { Vector of the adaptive filter } \\ \text { states. states defaults to a } \\ \text { vector of zeros which has } \\ \text { length equal to l }\end{array} \\ \hline \text { ForgettingFactor } & & \begin{array}{l}\text { Forgetting factor of the } \\ \text { adaptive filter. This is a } \\ \text { scalar and should lie in the } \\ \text { range (0, 1]. It defaults to 1. }\end{array} \\ \text { Setting forgetting } \\ \text { factor = 1 denotes infinite } \\ \text { memory while adapting to } \\ \text { find the new filter. Note that } \\ \text { this is the lambda input } \\ \text { argument. }\end{array}\right\}\)

\section*{adaptfilt.|s|}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline InitFactor & \begin{tabular}{l} 
Soft-constrained \\
initialization factor. This \\
scalar should be positive and \\
sufficiently large to prevent \\
an excessive number of \\
Kalman gain rescues. delta \\
defaults to one.
\end{tabular} \\
\hline FwdPrediction & & \begin{tabular}{l} 
Returns the predicted \\
samples generated during \\
adaptation.Refer to [12] in \\
the bibliography for details \\
about linear prediction.
\end{tabular} \\
\hline BkwdPrediction & &
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you \\
constructed it. \\
PersistentMemory returns to \\
zero any state that the filter \\
changes during processing.
\end{tabular} \\
& & \begin{tabular}{l} 
States that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. As a check, the
\end{tabular} \\
number of samples reported \\
processed plus the number of \\
nonprocessed samples should \\
be the total number of input \\
samples. Defaults to zero.
\end{tabular}

\section*{Examples}

Demonstrate Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient adaptive filter running for 1000 iterations. After you review the example code, the figure shows the results of running the example to use QPSK adaptive equalization with a 32 nd-order FIR filter. Notice that the error between the in-phase and quadrature components, as shown by the errors plotted in the upper plots, falls to near zero. Also, the equalized signal shows the clear quadrature nature.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations

```

\section*{adaptfilt.lsl}
```

s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK
% signal)
lam = 0.995; % Forgetting factor
del = 1; % Soft-constrained initialization
factor
ha = adaptfilt.lsl(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```


See Also
References
adaptfilt.qrdlsl, adaptfilt.gal, adaptfilt.ftf, adaptfilt.rls
S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

\section*{adaptfilt.nIms}

Purpose Construct a normalized LMS FIR adaptive filter object
```

Syntax ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states)
Description
ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states) constructs a normalized least-mean squares (NLMS) FIR adaptive filter object named ha.

```

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.nlms.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. 1 defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l} 
NLMS step size. It must be a scalar between 0 \\
and 2. Setting this step size value to one \\
provides the fastest convergence. step \\
defaults to 1.
\end{tabular} \\
\hline leakage & \begin{tabular}{l} 
NLMS leakage factor. It must be a scalar \\
between zero and one. When it is less than \\
one, a leaky NLMS algorithm results. leakage \\
defaults to 1 (no leakage).
\end{tabular} \\
\hline offset & \begin{tabular}{l} 
Specifies an optional offset for the \\
denominator of the step size normalization \\
term. You must specify offset to be a scalar \\
greater than or equal to zero. Nonzero offsets \\
can help avoid a divide-by-near-zero condition \\
that causes errors. Use this to avoid dividing \\
by zero (or by very small numbers) when the \\
square of the input data norm becomes very
\end{tabular} \\
small (when the input signal amplitude \\
becomes very small). When you omit it, offset \\
defaults to zero.
\end{tabular}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline coeffs & \begin{tabular}{l} 
Vector composed of your initial filter \\
coefficients. Enter a length l vector. coeffs \\
defaults to a vector of zeros with length equal \\
to the filter order.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Your initial adaptive filter states appear in the \\
states vector. It must be a vector of length \\
l-1. states defaults to a length 1-1 vector with \\
zeros for all of the elements.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table list all the properties for normalized LMS objects, their default values, and a brief description of the property.
\begin{tabular}{l|l|l}
\hline Property & Range & Property Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Reports the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be \\
a length l vector where l is \\
the number of filter \\
coefficients. coeffs defaults \\
to length l vector of zeros \\
when you do not provide the \\
argument for input.
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.nlms}
\(\left.\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Range } & \text { Property Description } \\ \hline \text { States } & \begin{array}{l}\text { Vector of } \\ \text { elements, data } \\ \text { type double }\end{array} & \begin{array}{l}\text { Vector of the adaptive filter } \\ \text { states. states defaults to a } \\ \text { vector of zeros which has } \\ \text { length equal to (l-1). }\end{array} \\ \hline \text { StepSize } & 0 \text { to 1 } & \begin{array}{l}\text { NLMS step size. It must be a } \\ \text { scalar between zero and one. } \\ \text { Setting this step size value } \\ \text { to one provides the fastest } \\ \text { convergence. step defaults to } \\ \text { one. }\end{array} \\ \hline \text { Leakage } & 0 \text { to 1 } & \begin{array}{l}\text { NLMS leakage factor. It } \\ \text { must be a scalar between } \\ \text { zero and one. When it is less } \\ \text { than one, a leaky NLMS } \\ \text { algorithm results. leakage } \\ \text { defaults to 1 (no leakage). }\end{array} \\ \hline \text { Offset } & 0 \text { or greater } & \begin{array}{l}\text { Specifies an optional offset } \\ \text { for the denominator of the } \\ \text { step size normalization term. } \\ \text { You must specify offset to be } \\ \text { a scalar greater than or } \\ \text { equal to zero. Nonzero } \\ \text { offsets can help avoid a } \\ \text { divide-by-near-zero condition } \\ \text { that causes errors. Use this } \\ \text { to avoid dividing by zero (or } \\ \text { by very small numbers) } \\ \text { when the square of the input } \\ \text { data norm becomes very } \\ \text { small (when the input signal } \\ \text { amplitude becomes very }\end{array} \\ \text { small). When you omit it, }\end{array}\right\} \begin{array}{l}\text { offset defaults to zero. }\end{array}\right\}\)
\begin{tabular}{l|l|l}
\hline Property & Range & Property Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states and coefficients get \\
restored to their starting \\
values for each filtering \\
operation. The starting \\
values are the values in \\
place when you create the \\
filter. PersistentMemory \\
returns to zero any property \\
value that the filter changes \\
during processing. Property \\
values that the filter does \\
not change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

To help you compare this algorithm's performance to other LMS-based algorithms, such as BLMS or LMS, this example demonstrates the NLMS adaptive filter in use to identify the coefficients of an unknown FIR filter of order equal to 32 -an example used in other adaptive filter examples.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size
offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);

```

\section*{adaptfilt.nIms}
```

legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```



As you see from the figure, the nlms variant again closely matches the actual filter coefficients in the unknown FIR filter.

\section*{See Also}
adaptfilt.ap, adaptfilt.apru, adaptfilt.lms, adaptfilt.rls, adaptfilt.swrls
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a partitioned block frequency-domain (PBFDAF) FIR adaptive filter that includes binned step size normalization} \\
\hline Syntax & \multicolumn{2}{|l|}{```
ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset,
    coeffs,states)
```} \\
\hline Description & \multicolumn{2}{|l|}{ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda, blocklen,offset, coeffs, states) constructs a partitioned block frequency-domain FIR adaptive filter ha that uses bin step size normalization during adaptation.} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Input Arguments \\
Entries in the following table describe the input arguments for adaptfilt.pbfdaf.
\end{tabular}}} \\
\hline & & \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. L defaults to 10 . \\
\hline & step & Step size of the adaptive filter. This is a scalar and should lie in the range \((0,1]\). step defaults to 1 . \\
\hline & leakage & Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, a leaky version of the PBFDAF algorithm is implemented. leakage defaults to 1 - no leakage. \\
\hline & delta & Initial common value of all of the FFT input signal powers. Its initial value should be positive. delta defaults to 1 . \\
\hline & lambda & Averaging factor used to compute the exponentially windowed FFT input signal powers for the coefficient updates. lambda should lie in the range (0,1]. lambda defaults to 0.9 . \\
\hline
\end{tabular}

\section*{adaptfilt.pbfdaf}
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline blocklen & \begin{tabular}{l}
Block length for the coefficient updates. This \\
must be a positive integer such that \\
\((l /\) blocklen) is also an integer. For faster \\
execution, blocklen should be a power of two. \\
blocklen defaults to two.
\end{tabular} \\
\hline offset & \begin{tabular}{l}
Offset for the normalization terms in the \\
coefficient updates. This can be useful to \\
avoid divide by zeros conditions, or dividing by \\
very small numbers, if any of the FFT input \\
signal powers become very small. offset \\
defaults to zero.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l}
Initial time-domain coefficients of the \\
adaptive filter. It should be a vector of \\
length l. The PBFDAF algorithm uses these \\
coefficients to compute the initial \\
frequency-domain filter coefficient matrix via \\
FFTs.
\end{tabular} \\
\hline states & \begin{tabular}{l}
Specifies the filter initial conditions. states \\
defaults to a zero vector of length l.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.pbfdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.pbfdaf objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l}
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l}
Any positive \\
integer
\end{tabular} & \begin{tabular}{l}
Reports the length of the filter, \\
the number of coefficients or \\
taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.pbfdaf}
\(\left.\begin{array}{l|ll}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { StepSize } & 0 \text { to } 1 & \begin{array}{l}\text { Step size of the adaptive filter. } \\ \text { This is a scalar and should lie } \\ \text { in the range (0,1]. step } \\ \text { defaults to 1. }\end{array} \\ \hline \text { Leakage } & 0 \text { to 1 } & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. When you set } \\ \text { this argument to a value } \\ \text { between zero and one, a leaky } \\ \text { version of the PBFDAF } \\ \text { algorithm is implemented. } \\ \text { leakage defaults to 1- no } \\ \text { leakage. }\end{array} \\ \hline \text { Power } & & \begin{array}{l}\text { A vector of 2*1 elements, each } \\ \text { initialized with the value } \\ \text { delta from the input } \\ \text { arguments. As you filter data, } \\ \text { Power gets updated by the } \\ \text { filter process. }\end{array} \\ \hline \text { AvgFactor } & & \begin{array}{l}\text { Averaging factor used to } \\ \text { compute the exponentially } \\ \text { windowed FFT input signal } \\ \text { powers for the coefficient }\end{array} \\ \text { updates. AvgFactor should lie }\end{array}\right\}\)

\section*{adaptfilt.pbfdaf}
\begin{tabular}{l|l}
\hline Name & Range \\
\hline BlockLength & \begin{tabular}{l}
Description \\
Block length for the coefficient \\
updates. This must be a \\
positive integer such that \\
(l/blocklen) is also an \\
integer. For faster execution, \\
blocklen should be a power of \\
two. blocklen defaults to \\
two.
\end{tabular} \\
\hline Offset & \begin{tabular}{l}
Offset for the normalization \\
terms in the coefficient \\
updates. This can be useful to \\
avoid divide by zeros \\
conditions, or dividing by very \\
small numbers, if any of the \\
FFT input signal powers \\
become very small. offset \\
defaults to zero.
\end{tabular} \\
\hline FFTCoefficients & \\
\hline & \begin{tabular}{l}
Stores the discrete Fourier \\
transform of the filter \\
coefficients in coeffs.
\end{tabular} \\
\hline FFTStates & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l}
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter. PersistentMemory \\
returns to zero any state that \\
the filter changes during \\
processing. States that the \\
filter does not change are not \\
affected. Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l}
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

An example of Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr = 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
N = 8; % Block size
ha = adaptfilt.pbfdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));

```

\section*{adaptfilt.pbfdaf}
```

title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

In the figure shown, the four subplots provide the details of the results of the QPSK process used in the equalization for this example.

See Also
References
adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blmsfft
J.S. So and K.K. Pang, "Multidelay Block Frequency Domain Adaptive Filter," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 373-376, February 1990
J.M. Paez Borrallo and M.G. Otero, "On The Implementation of a Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) For Long Acoustic Echo Cancellation," Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992

\section*{adaptfilt.pbufdaf}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a partitioned block unconstrained frequency-domain (PBUFDAF) FIR adaptive filter with binned step size normalization} \\
\hline Syntax & \multicolumn{2}{|l|}{```
ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen,
 offset,coeffs,states)(
```} \\
\hline Description & \multicolumn{2}{|l|}{ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen, offset, coeffs, states) constructs a partitioned block unconstrained frequency-domain FIR adaptive filter ha with bin step size normalization.} \\
\hline & \multicolumn{2}{|l|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.pbufdaf.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. L defaults to 10 . \\
\hline & step & Step size of the adaptive filter. This is a scalar and should lie in the range \((0,1]\). step defaults to 1. \\
\hline & leakage & Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, a leaky version of the PBFDAF algorithm is implemented. leakage defaults to 1- no leakage. \\
\hline & delta & Initial common value of all of the FFT input signal powers. Its initial value should be positive. delta defaults to 1 . \\
\hline & lambda & Averaging factor used to compute the exponentially windowed FFT input signal powers for the coefficient updates. lambda should lie in the range ( 0,1 ]. lambda defaults to 0.9 . \\
\hline
\end{tabular}

\section*{adaptfilt.pbufdaf}
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline blocklen & \begin{tabular}{l} 
Block length for the coefficient updates. This \\
must be a positive integer such that \\
\((1 /\) blocklen) is also an integer. For faster \\
execution, blocklen should be a power of two. \\
blocklen defaults to two.
\end{tabular} \\
\hline offset & \begin{tabular}{l} 
Offset for the normalization terms in the \\
coefficient updates. This can be useful to \\
avoid divide by zeros conditions, or dividing by \\
very small numbers, if any of the FFT input \\
signal powers become very small. offset \\
defaults to zero.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Initial time-domain coefficients of the \\
adaptive filter. It should be a vector of \\
length l. The PBFDAF algorithm uses these \\
coefficients to compute the initial \\
frequency-domain filter coefficient matrix via \\
FFTs.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Specifies the filter initial conditions. states \\
defaults to a zero vector of length l.
\end{tabular} \\
\hline
\end{tabular}

Properties
Since your adaptfilt. pbufdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. pbufdaf objects. To show you the

\section*{adaptfilt.pbufdaf}
properties that apply, this table lists and describes each property for the filter object.
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\
\hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive filter } \\
\text { algorithm the object uses } \\
\text { during adaptation }\end{array} \\
\hline \text { FilterLength } & \text { Any positive } \\
\text { integer }\end{array} \begin{array}{l}\text { Reports the length of the filter, } \\
\text { the number of coefficients or } \\
\text { taps }\end{array}\right]\)\begin{tabular}{l} 
Step size of the adaptive filter. \\
This is a scalar and should lie \\
in the range (0,1]. step \\
defaults to 1.
\end{tabular}\(|\)\begin{tabular}{l} 
Leakage parameter of the \\
adaptive filter. When you set \\
this argument to a value \\
between zero and one, a leaky \\
version of the PBFDAF \\
algorithm is implemented. \\
leakage defaults to 1- no \\
leakage.
\end{tabular}

\section*{adaptfilt.pbufdaf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline AvgFactor & \begin{tabular}{l} 
Averaging factor used to \\
compute the exponentially \\
windowed FFT input signal \\
powers for the coefficient \\
updates. AvgFactor should lie \\
in the range (0,1]. AvgFactor \\
defaults to 0.9. Called lambda \\
as an input argument.
\end{tabular} \\
\hline BlockLength & & \begin{tabular}{l} 
Block length for the coefficient \\
updates. This must be a \\
positive integer such that \\
(l/blocklen) is also an \\
integer. For faster execution, \\
blocklen should be a power of \\
two. blocklen defaults to \\
two.
\end{tabular} \\
\hline Offset & & \begin{tabular}{l} 
Offset for the normalization \\
terms in the coefficient \\
updates. This can be useful to \\
avoid divide by zeros \\
conditions, or dividing by very \\
small numbers, if any of the
\end{tabular} \\
FFT input signal powers \\
become very small. offset \\
defaults to zero.
\end{tabular}

\section*{adaptfilt.pbufdaf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter. PersistentMemory \\
returns to zero any state that \\
the filter changes during \\
processing. States that the \\
filter does not change are not \\
affected. Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Demonstrating Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter. To perform the equalization, this example runs for 1000 iterations.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband QPSK
% signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
N = 8; % Block size
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d);

```

\section*{adaptfilt.pbufdaf}
```

subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

To allow you to compare this algorithm to another, such as the pbfdaf version, we use the same example of QPSK adaptation. The figure shows the results.

\section*{adaptfilt.pbufdaf}


\section*{See Also}

References
adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blmsfft
J.S. So and K.K. Pang, "Multidelay Block Frequency Domain Adaptive Filter," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 373-376, February 1990
J.M. Paez Borrallo and M.G. Otero, "On The Implementation of a Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) for Long Acoustic Echo Cancellation," Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992

Purpose
Return a QR-decomposition-based least squares lattice adaptive filter object
```

Syntax ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states)

```

Description
ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states) returns a QR-decomposition-based least squares lattice adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.qrdlsl.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l} 
Length of the joint process filter coefficients. It \\
must be a positive integer and must be equal \\
to the length of the prediction coefficients \\
plus one. L defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
Forgetting factor of the adaptive filter. This is \\
a scalar and should lie in the range (0, 1]. \\
lambda defaults to 1. lambda = 1 denotes \\
infinite memory while adapting to find the \\
new filter.
\end{tabular} \\
\hline delta & \begin{tabular}{l} 
Soft-constrained initialization factor in the \\
least squares lattice algorithm. It should be \\
positive. delta defaults to 1.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial joint process filter coefficients. \\
It must be a length l vector. coeffs defaults to \\
a length l vector of all zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of the angle normalized backward \\
prediction error states of the adaptive filter
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt. qrdlsl filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input

\section*{adaptfilt.qrdlsl}
arguments for creating adaptfilt. qrdlsl objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the filter, \\
the number of coefficients or \\
taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where l is the \\
number of filter coefficients. \\
coeffs defaults to length 1 \\
vector of zeros when you do \\
not provide the argument for \\
input.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements, \\
data type \\
double
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to l - 1
\end{tabular} \\
\hline ForgettingFactor & & \begin{tabular}{l} 
Forgetting factor of the \\
adaptive filter. This is a \\
scalar and should lie in the \\
range (0, 1]. It defaults to 1. \\
Setting forgetting \\
factor = 1 denotes infinite \\
memory while adapting to find \\
the new filter. Note that this is \\
the lambda input argument.
\end{tabular} \\
\hline & &
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline InitFactor & & \begin{tabular}{l} 
Soft-constrained initialization \\
factor. This scalar should be \\
positive and sufficiently large \\
to prevent an excessive \\
number of Kalman gain \\
rescues. delta defaults to one.
\end{tabular} \\
\hline FwdPrediction & & \begin{tabular}{l} 
Returns the predicted samples \\
generated during adaptation \\
in the forward direction.Refer \\
to [12] in the bibliography for \\
details about linear \\
prediction.
\end{tabular} \\
\hline BkwdPrediction & & \begin{tabular}{l} 
Returns the predicted samples \\
generated during \\
adaptation.Refer to [12] in the \\
bibliography for details about \\
linear prediction.
\end{tabular} \\
\hline & & \\
\hline
\end{tabular}

\section*{adaptfilt.qrdlsl}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you constructed \\
it. PersistentMemory returns \\
to zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Implement Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient adaptive filter. To see the results of the equalization process in this example, look at the figure that follows the example code.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband
QPSK % signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
lam = 0.995; % Forgetting factor
del = 1; % Soft-constrained initialization
factor
ha = adaptfilt.qrdlsl(32,lam,del);

```
```

[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```


\section*{adaptfilt.qrdlsl}

\section*{See Also}

References
adaptfilt.qrdrls, adaptfilt.gal, adaptfilt.ftf, adaptfilt.lsl
S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

Purpose
Syntax ha = adaptfilt.qrdrls(l,lambda, sqrtcov, coeffs, states)
Description
Create a QR-decomposition-based RLS FIR adaptive filter object
ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states) constructs an FIR QR-decomposition-based recursive-least squares (RLS) adaptive filter object ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt. qrdrls.
\begin{tabular}{ll} 
Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer.l defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
RLS forgetting factor. This is a scalar and \\
should lie within the range (0, 1]. lambda \\
defaults to 1.
\end{tabular} \\
\hline sqrtcov & \begin{tabular}{l} 
Upper-triangular Cholesky (square root) \\
factor of the input covariance matrix. \\
Initialize this matrix with a positive definite \\
upper triangular matrix.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. It must be a \\
length l vector. coeffs defaults to length 1 \\
vector whose elements are zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states. It must be \\
a length l-1 vector. states defaults to a length \\
l-1 vector of zeros.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.qrdrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input

\section*{adaptfilt.qrdrls}
arguments for creating adaptfilt. qrdrls objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the filter, \\
the number of coefficients or \\
taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
length l
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where l is the \\
number of filter coefficients. \\
coeffs defaults to length 1 \\
vector of zeros when you do \\
not provide the argument for \\
input.
\end{tabular} \\
\hline States & Vector of & \begin{tabular}{l} 
Vector of the adaptive filter \\
elements \\
states. states defaults to a \\
vector of zeros which has \\
length equal to \\
(l + projectord - 2).
\end{tabular} \\
\hline ForgettingFactor & Scalar & \begin{tabular}{l} 
Forgetting factor of the \\
adaptive filter. This is a \\
scalar and should lie in the \\
range (0, 1]. It defaults to 1. \\
Setting forgetting \\
factor = 1 denotes infinite \\
memory while adapting to find \\
the new filter. Note that this is \\
the lambda input argument.
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.qrdrls}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline SqrtCov & \begin{tabular}{l} 
Square \\
matrix with \\
each \\
dimension \\
equal to the \\
filter length 1
\end{tabular} & \begin{tabular}{l} 
Upper-triangular Cholesky \\
(square root) factor of the \\
input covariance matrix. \\
Initialize this matrix with a \\
positive definite upper \\
triangular matrix.
\end{tabular} \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you constructed \\
it. PersistentMemory returns \\
to zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & & Any integer
\end{tabular} \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular}

\section*{Examples}

System Identification of a 32-coefficient FIR filter (500 iterations).
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
GO = sqrt(.1)*eye(32); % Initial sqrt correlation matrix
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.qrdrls(32,lam,G0);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');

```

\section*{adaptfilt.qrdrls}
```

legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```

Using this variant of the RLS algorithm successfully identifies the unknown FIR filter, as shown here.


See Also
adaptfilt.rls, adaptfilt.hrls, adaptfilt.hswrls, adaptfilt.swrls

Purpose
Syntax ha = adaptfilt.rls(l,lambda,invcov, coeffs, states)
Description
Construct a direct form recursive least squares (RLS) FIR adaptive filter object
ha = adaptfilt.rls(l, lambda,invcov,coeffs,states) constructs an FIR direct form RLS adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.rls.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the \\
number of coefficients or taps) \\
and it must be a positive \\
integer. 1 defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
RLS forgetting factor. This is \\
a scalar and should lie in the \\
range (0, 1]. lambda defaults \\
to 1.
\end{tabular} \\
\hline invcov & \begin{tabular}{l} 
Inverse of the input signal \\
covariance matrix. For best \\
performance, you should \\
initialize this matrix to be \\
a positive definite matrix.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter \\
coefficients. it must be a length
\end{tabular} \\
\hline states & \begin{tabular}{l} 
l vector. coeffs defaults to \\
length l vector with elements \\
equal to zero.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Vector of initial filter states for \\
the adaptive filter. It must be a \\
length l-1 vector. states \\
defaults to a length l-1 vector \\
of zeros.
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.rls}

Properties
Since your adaptfilt.rls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.rls objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation.
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the filter, \\
the number of coefficients or \\
taps. Remember that filter \\
length is filter order + 1.
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector \\
containing l \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be \\
a length l vector where l is \\
the number of filter \\
coefficients. coeffs defaults to \\
length l vector of zeros when \\
you do not provide the \\
argument for input.
\end{tabular} \\
\hline States & Double array & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to \\
(l + projectord - 2).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline ForgettingFactor & Scalar & \begin{tabular}{l} 
Forgetting factor of the \\
adaptive filter. This is a \\
scalar and should lie in the \\
range (0, 1]. It defaults to 1. \\
Setting forgetting \\
factor = 1 denotes infinite \\
memory while adapting to find \\
the new filter. Note that this is \\
the lambda input argument.
\end{tabular} \\
\hline KalmanGain & \begin{tabular}{l} 
Vector of size \\
\((1,1)\)
\end{tabular} & \begin{tabular}{l} 
Empty when you construct the \\
object, this gets populated \\
after you run the filter.
\end{tabular} \\
\hline MnvCov & \begin{tabular}{l} 
Matrix of size \\
l-by-1
\end{tabular} & \begin{tabular}{l} 
Upper-triangular Cholesky \\
(square root) factor of the \\
input covariance matrix. \\
Initialize this matrix with a \\
positive definite upper \\
triangular matrix.
\end{tabular} \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you constructed \\
it. PersistentMemory returns \\
to zero any state that the filter \\
changes during processing. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline & & \\
\hline
\end{tabular}

\section*{adaptfilt.rls}

\section*{Examples}

System Identification of a 32 -coefficient FIR filter over 500 adaptation iterations.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
PO = 10*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.rls(32,lam,PO);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient valUe'); grid on;

```

In this example of adaptive filtering using the RLS algorithm to update the filter coefficients for each iteration, the figure shown reveals the fidelity of the derived filter after adaptation.


See Also
adaptfilt.hrls,adaptfilt.hswrls, adaptfilt.qrdrls

\section*{adaptfilt.sd}

Purpose Construct an FIR adaptive filter object that uses the sign-data algorithm
```

Syntax ha = adaptfilt.sd(l,step,leakage,coeffs,states)

```

Description ha = adaptfilt.sd(l, step,leakage, coeffs, states) constructs an FIR sign-data adaptive filter object ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.sd.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. l defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l} 
SD step size. It must be a nonnegative scalar. \\
step defaults to 0.1
\end{tabular} \\
\hline leakage & \begin{tabular}{l} 
Your SD leakage factor. It must be a scalar \\
between 0 and 1. When leakage is less than \\
one, adaptfilt. sd implements a leaky SD \\
algorithm. When you omit the leakage \\
property in the calling syntax, it defaults to 1 \\
providing no leakage in the adapting \\
algorithm.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. it must be a \\
length 1 vector. coeffs defaults to length 1 \\
vector with elements equal to zero.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states for the adaptive \\
filter. It must be a length l-1 vector. states \\
defaults to a length l-1 vector of zeros.
\end{tabular} \\
\hline
\end{tabular}

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table list all the properties for sign-data objects, their default values, and a brief description of the property.
\begin{tabular}{l|ll}
\hline Property & Default Value & Description \\
\hline Algorithm & Sign-data & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & 10 & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & zeros(1,1) & \begin{tabular}{l} 
Vector containing the \\
initial filter coefficients. It \\
must be a length l vector \\
where l is the number of \\
filter coefficients. coeffs \\
defaults to length l vector \\
of zeros when you do not \\
provide the argument for \\
input. Should be \\
initialized with the initial \\
coefficients for the FIR \\
filter prior to adapting. \\
You need l entries in \\
coefficients.
\end{tabular} \\
\hline States & & zeros(l-1,1) \\
\hline
\end{tabular}

\section*{adaptfilt.sd}
\(\left.\begin{array}{l|ll}\hline \text { Property } & \text { Default Value } & \begin{array}{l}\text { Description } \\ \hline \text { StepSize } \\ \hline \text { Leakage }\end{array} \\ \hline 0.1 & \begin{array}{l}\text { Sets the SD algorithm } \\ \text { step size used for each } \\ \text { iteration of the adapting } \\ \text { algorithm. Determines } \\ \text { both how quickly and how } \\ \text { closely the adaptive filter } \\ \text { converges to the filter } \\ \text { solution. }\end{array} \\ \hline & & \begin{array}{l}\text { Specifies the leakage } \\ \text { parameter. Allows you to } \\ \text { implement a leaky } \\ \text { algorithm. Including a } \\ \text { leakage factor can } \\ \text { improve the results of the } \\ \text { algorithm by forcing the } \\ \text { algorithm to continue to }\end{array} \\ \text { adapt even after it } \\ \text { reaches a minimum value. } \\ \text { Ranges between 0 and 1. } \\ \text { DEFaults to 0 }\end{array}\right]\)
\begin{tabular}{l|ll}
\hline Property & Default Value & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the \\
filter states and \\
coefficients get restored to \\
their starting values for \\
each filtering operation. \\
The starting values are \\
the values in place when \\
you create the filter. \\
PersistentMemory \\
returns to zero any \\
property value that the \\
filter changes during \\
processing. Property \\
values that the filter does \\
not change are not \\
affected. Defaults to \\
false.
\end{tabular} \\
& & \\
& & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline NumSamplesProcessed & 0 & \\
\hline
\end{tabular}

\section*{Example}

Adaptive line enhancement using a 32 -coefficient FIR filter to perform the enhancement. This example runs for 5000 iterations, as you see in property iter.
```

d = 1;
ntr= 5000;
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal
n = randn(1,ntr+d); % Noise signal
x = v(1:ntr)+n(1:ntr); %Input signal (delayed desired
d
d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-data step size.
ha = adaptfilt.sd(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);

```

\section*{adaptfilt.sd}
```

axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx), pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

```



Each of the variants-sign-data, sign-error, and sign-sign-uses the same example. You can compare the results by viewing the figure shown for each adaptive filter method-adaptfilt.sd, adaptfilt.se, and adaptfilt.ss.

See Also
adaptfilt.lms, adaptfilt.se, adaptfilt.ss
References
Moschner, J.L., "Adaptive Filter with Clipped Input Data," Ph.D. thesis, Stanford Univ., Stanford, CA, June 1970.

Hayes, M., Statistical Digital Signal Processing and Modeling, New York Wiley, 1996.

\section*{adaptfilt.se}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a sign-error algorithm FIR adaptive filter object} \\
\hline Syntax & \multicolumn{2}{|l|}{ha = adaptfilt.se(l,step,leakage, coeffs, states)} \\
\hline \multirow[t]{9}{*}{Description} & \multicolumn{2}{|l|}{ha = adaptfilt.se(l, step,leakage, coeffs, states) constructs an FIR sign-error adaptive filter ha.} \\
\hline & \multicolumn{2}{|l|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.se.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . \\
\hline & step & SE step size. It must be a nonnegative scalar. You can use maxstep to determine a reasonable range of step size values for the signals being processed. step defaults to 0.1 \\
\hline & leakage & Your SE leakage factor. It must be a scalar between 0 and 1 . When leakage is less than one, adaptfilt.se implements a leaky SE algorithm. When you omit the leakage property in the calling syntax, it defaults to 1 providing no leakage in the adapting algorithm. \\
\hline & coeffs & Vector of initial filter coefficients. it must be a length 1 vector. coeffs defaults to length 1 vector with elements equal to zero. \\
\hline & states & Vector of initial filter states for the adaptive filter. It must be a length 1-1 vector. states defaults to a length \(1-1\) vector of zeros. \\
\hline
\end{tabular}

\section*{Properties}

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table list all the properties for the
sign-error SD object, their default values, and a brief description of the property.
\begin{tabular}{|c|c|c|}
\hline Property & Default Value & Description \\
\hline Algorithm & Sign-error & Defines the adaptive filter algorithm the object uses during adaptation \\
\hline FilterLength & 10 & Reports the length of the filter, the number of coefficients or taps \\
\hline Coefficients & zeros(1,1) & Vector containing the initial filter coefficients. It must be a length \(l\) vector where \(l\) is the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. Should be initialized with the initial coefficients for the FIR filter prior to adapting. \\
\hline States & zeros(1-1,1) & Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to ( \(1-1\) ). \\
\hline StepSize & 0.1 & Sets the SE algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution. \\
\hline
\end{tabular}

\section*{adaptfilt.se}
\(\left.\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \begin{array}{l}\text { Description } \\ \hline \text { Leakage } \\ \\ \end{array} \\ \hline \text { false or true } & \begin{array}{l}\text { Specifies the leakage } \\ \text { parameter. Allows you to } \\ \text { implement a leaky algorithm. } \\ \text { Including a leakage factor can } \\ \text { improve the results of the } \\ \text { algorithm by forcing the } \\ \text { algorithm to continue to } \\ \text { adapt even after it reaches a } \\ \text { minimum value. Ranges } \\ \text { between 0 and 1. Defaults to } \\ \text { one if omitted. }\end{array} \\ \hline \begin{array}{l}\text { Determine whether the filter } \\ \text { states and coefficients get } \\ \text { restored to their starting } \\ \text { values for each filtering } \\ \text { operation. The starting values } \\ \text { are the values in place when }\end{array} \\ \text { you create the filter. }\end{array}\right\} \begin{array}{l}\text { PersistentMemory returns to } \\ \text { zero any property value that } \\ \text { the filter changes during } \\ \text { processing. Property values }\end{array}\right\}\)

Use inspect (ha) to view or change the object properties graphically using the MATLAB Property Inspector.

Examples Adaptive line enhancement using a 32-coefficient FIR filter running over 5000 iterations.
```

d = 1; % Number of samples of delay
ntr= 5000; % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal
n = randn(1,ntr+d); % Noise signal
x = v(1:ntr)+n(1:ntr); % Input signal (delayed desired
% signal)
d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-error step size
ha = adaptfilt.se(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx), pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

```

Compare the figure shown here to the ones for adaptfilt.sd and adaptfilt.ss to see how the variants perform on the same example.

\section*{adaptfilt.se}


\section*{See Also}

References
adaptfilt.sd, adaptfilt.ss, adaptfilt.lms
Gersho, A, "Adaptive Filtering With Binary Reinforcement," IEEE Trans. Information Theory, vol. IT-30, pp. 191-199, March 1984.

Hayes, M, Statistical Digital Signal Processing and Modeling, New York, Wiley, 1996.

Purpose
Construct an adaptive FIR filter object that uses the sign-sign algorithm
```

Syntax ha = adaptfilt.ss(l,step,leakage,coeffs,states)
ha = adaptfilt.ss(l,step,leakage,coeffs,states)

```

Description
ha = adaptfilt.se(l,step,leakage,coeffs,states) constructs an FIR sign-error adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.ss.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. 1 defaults to 10.
\end{tabular} \\
\hline step & \begin{tabular}{l} 
SS step size. It must be a nonnegative scalar. \\
step defaults to 0.1.
\end{tabular} \\
\hline Teakage & \begin{tabular}{l} 
Your SS leakage factor. It must be a scalar \\
between 0 and 1. When leakage is less than \\
one, adaptfilt. lms implements a leaky SS \\
algorithm. When you omit the leakage \\
property in the calling syntax, it defaults to 1 \\
providing no leakage in the adapting \\
algorithm.
\end{tabular} \\
\hline The coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. it must be a \\
length l vector. coeffs defaults to length 1 \\
vector with elements equal to zero.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states for the adaptive \\
filter. It must be a length l-1 vector. states \\
defaults to a length l-1 vector of zeros.
\end{tabular} \\
\hline
\end{tabular}
adaptfilt.ss can be called for a block of data, when \(x\) and \(d\) are vectors, or in "sample by sample mode" using a For-loop with the method filter:
```

for n = 1:length(x)
ha = adaptfilt.ss(25,0.9);

```

\section*{adaptfilt.ss}
```

[y(n),e(n)] = filter(ha,(x(n),d(n),s));
% The property values of ha may be modified here.
end

```

\section*{Properties}

In the syntax for creating the adaptfilt object, most of the input options are properties of the object you create. This table list all the properties for sign-sign objects, their default values, and a brief description of the property.
\begin{tabular}{l|l|l}
\hline Property & Default Value & Description \\
\hline Algorithm & Sign-sign & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & zeros(1,1) & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where lis the \\
number of filter coefficients. \\
coeffs defaults to length l \\
vector of zeros when you do \\
not provide the argument for \\
input. Should be initialized \\
with the initial coefficients for \\
the FIR filter prior to \\
adapting.
\end{tabular} \\
\hline States & zeros(l-1,1) & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l -1).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property & Default Value & Description \\
\hline StepSize & 0.1 & \begin{tabular}{l} 
Sets the SE algorithm step \\
size used for each iteration of \\
the adapting algorithm. \\
Determines both how quickly \\
and how closely the adaptive \\
filter converges to the filter \\
solution.
\end{tabular} \\
\hline Leakage & 1 & \begin{tabular}{l} 
Specifies the leakage \\
parameter. Allows you to \\
implement a leaky algorithm. \\
Including a leakage factor can \\
improve the results of the \\
algorithm by forcing the \\
algorithm to continue to \\
adapt even after it reaches a \\
minimum value. Ranges \\
between 0 and 1.1 is the \\
default value.
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.ss}
\begin{tabular}{l|l|l}
\hline Property & Default Value & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states and coefficients get \\
restored to their starting \\
values for each filtering \\
operation. The starting values \\
are the values in place when \\
you create the filter. \\
PersistentMemory returns to \\
zero any property value that \\
the filter changes during \\
processing. Property values \\
that the filter does not change \\
are not affected. Defaults to \\
false.
\end{tabular} \\
\hline NumSamplesProcessed & 0 & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Demonstrating adaptive line enhancement using a 32-coefficient FIR filter provides a good introduction to the sign-sign algorithm.
```

d = 1; % number of samples of delay
ntr= 5000; % number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % sinusoidal signal
n = randn(1,ntr+d); % noise signal
x = v(1:ntr)+n(1:ntr); % Delayed input signal
d = v(1+d:ntr+d)+n(1+d:ntr+d); % desired signal
mu = 0.0001; % sign-sign step size
ha = adaptfilt.ss(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));

```
```

pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx), pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed', 'Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

```

This example is the same as the ones used for the sign-data and sign-error examples. Comparing the figures shown for each of the others lets you assess the performance of each for the same task.



See Also
adaptfilt.se, adaptfilt.sd, adaptfilt.lms

\section*{adaptfilt.ss}

\author{
References Lucky, R.W, "Techniques For Adaptive Equalization of Digital Communication Systems," Bell Systems Technical Journal, vol. 45, pp. 255-286, Feb. 1966 \\ Hayes, M., Statistical Digital Signal Processing and Modeling, New York, Wiley, 1996.
}

Purpose
Syntax

Description

Construct a sliding window fast transversal least squares adaptive filter object
```

ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates,coeffs
, states)

```
ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates, coeffs, states) constructs a sliding window fast transversal least squares adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.swftf.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps) and it must be a positive \\
integer. l defaults to 10.
\end{tabular} \\
\hline delta & \begin{tabular}{l} 
Soft-constrained initialization factor. This \\
scalar should be positive and sufficiently large \\
to maintain stability. delta defaults to 1.
\end{tabular} \\
\hline blocklen & \begin{tabular}{l} 
Block length of the sliding window. This must \\
be an integer at least as large as the filter \\
length 1, which is the default value.
\end{tabular} \\
\hline gamma & \begin{tabular}{l} 
Conversion factor. gamma defaults to the \\
matrix [1 -1] that specifies soft-constrained \\
initialization.
\end{tabular} \\
\hline gstates & \begin{tabular}{l} 
States of the kalman gain updates. gstates \\
defaults to a zero vector of length \\
(l + blocklen - 1).
\end{tabular} \\
\hline dstates & \begin{tabular}{l} 
Desired signal states of the adaptive filter. \\
dstates defaults to a zero vector of length \\
equal to (blocklen - 1). For a default object, \\
dstates is (l-1).
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.swftf}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. It must be \\
a length l vector. coeffs defaults to length 1 \\
vector of all zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states. states defaults \\
to a zero vector of length equal to \\
\((1+\) blocklen -2\()\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.swftf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.swftf objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Vector of \\
elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the \\
initial filter coefficients. It \\
must be a length l vector \\
where l is the number of \\
filter coefficients. coeffs \\
defaults to length l vector \\
of zeros when you do not \\
provide the argument for \\
input.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { States } & \begin{array}{l}\text { Vector of } \\ \text { elements, } \\ \text { data type } \\ \text { double }\end{array} & \begin{array}{l}\text { Vector of the adaptive } \\ \text { filter states. states } \\ \text { defaults to a vector of } \\ \text { zeros which has length } \\ \text { equal to (l + projectord - } \\ 2)\end{array} \\ \hline \text { BlockLength } & & \begin{array}{l}\text { Block length of the sliding } \\ \text { window. This must be an } \\ \text { integer at least as large } \\ \text { as the filter length 1, }\end{array} \\ \text { which is the default } \\ \text { value. }\end{array}\right\}\)

\section*{adaptfilt.swfff}
\begin{tabular}{l|l}
\hline Name & Range \\
\hline BkwdPredictions & \begin{tabular}{l} 
Description \\
samples generated during \\
adaptation.Refer to [12] \\
in the bibliography for \\
details about linear \\
prediction.
\end{tabular} \\
\hline DesiredSignalStates & \begin{tabular}{l} 
Desired signal states of \\
the adaptive filter. \\
dstates defaults to a zero \\
vector with length equal \\
to (blocklen - 1).
\end{tabular} \\
\hline KalmanGainStates & \begin{tabular}{l} 
Contains the states of the \\
Kalman gains for the \\
adaptive algorithm.
\end{tabular} \\
& \\
& \\
& \\
& \\
& \\
Initialized to a vector of \\
double data type entries.
\end{tabular}.
\(\left.\begin{array}{l|ll}\hline \text { Name } & \text { Range } & \text { Description } \\
\hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\
\text { filter states get restored } \\
\text { to their starting values } \\
\text { for each filtering } \\
\text { operation. The starting } \\
\text { values are the values in } \\
\text { place when you create the } \\
\text { filter if you have not } \\
\text { changed the filter since } \\
\text { you constructed it. } \\
\text { PersistentMemory } \\
\text { returns to zero any state }\end{array} \\
\text { that the filter changes } \\
\text { during processing. States } \\
\text { that the filter does not } \\
\text { change are not affected. }\end{array}\right\}\)\begin{tabular}{l} 
Defaults to false.
\end{tabular}

\section*{Examples}

Over 500 iterations, perform a system identification of a 32 -coefficient FIR filter.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
L = 32; % Adaptive filter length
del = 0.1; % Soft-constrained initialization factor
N = 64; % block length
ha = adaptfilt.swftf(L,del,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');

```

\section*{adaptfilt.swfff}
```

xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```

Review the figure for the results of the example. When you evaluate the example you should get the same results, within the differences in the random noise signal you use.


See Also adaptfilt.ftf, adaptfilt.swrls, adaptfilt.ap, adaptfilt.apru

\section*{References}
D.T.M. Slock and Kailath, T., "A Modular Prewindowing Framework for Covariance FTF RLS Algorithms," Signal Processing, vol. 28, pp. 47-61, 1992

\section*{adaptfilt.swftf}
D.T.M. Slock and Kailath, T., "A Modular Multichannel Multi-Experiment Fast Transversal Filter RLS Algorithm," Signal Processing, vol. 28, pp. 25-45, 1992

\section*{adaptfilt.swrls}

Purpose
Construct a sliding window recursive least squares FIR adaptive filter

\section*{Syntax}
ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates, coeffs,states)

Description
ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates, coeffs, states) constructs an FIR sliding window RLS adaptive filter ha.

\section*{Input Arguments}

Entries in the following table describe the input arguments for adaptfilt.swrls.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Adaptive filter length (the number of \\
coefficients or taps). It must be a positive \\
integer. l defaults to 10.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
RLS forgetting factor. This is a scalar and \\
should lie within the range (0, 1]. lambda \\
defaults to 1.
\end{tabular} \\
\hline invcov & \begin{tabular}{l} 
Inverse of the input signal covariance matrix. \\
You should initialize invcov to a positive \\
definite matrix.
\end{tabular} \\
\hline swblocklen & \begin{tabular}{l} 
Block length of the sliding window. This \\
integer must be at least as large as the filter \\
length. swblocklen defaults to 16.
\end{tabular} \\
\hline dstates & \begin{tabular}{l} 
Desired signal states of the adaptive filter. \\
dstates defaults to a zero vector with length \\
equal to (swblocklen - 1).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline coeffs & \begin{tabular}{l} 
Vector of initial filter coefficients. It must be \\
a length l vector. coeffs defaults to length 1 \\
vector of all zeros.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Vector of initial filter states. states defaults \\
to a zero vector of length equal to \\
\((l+\) swblocklen -2\()\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.swrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. swrls objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline Coefficients & \begin{tabular}{l} 
Any vector of \\
l elements
\end{tabular} & \begin{tabular}{l} 
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where l is the \\
number of filter coefficients. \\
coeffs defaults to length l \\
vector of zeros when you do \\
not provide the argument for \\
input.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of \\
elements, \\
data type \\
double
\end{tabular} & \begin{tabular}{l} 
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to \\
(l + swblocklen - 2).
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.swrls}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline ForgettingFactor & Scalar & \begin{tabular}{l} 
Forgetting factor of the \\
adaptive filter. This is a \\
scalar and should lie in the \\
range (0, 1]. It defaults to 1. \\
Setting forgetting \\
factor = 1 denotes infinite \\
memory while adapting to \\
find the new filter. Note that \\
this is the lambda input \\
argument.
\end{tabular} \\
\hline KalmanGain & \begin{tabular}{l} 
Vector with \\
dimensions \\
\((1,1)\)
\end{tabular} & \begin{tabular}{l} 
Empty when you construct \\
the object, this gets populated \\
after you run the filter.
\end{tabular} \\
\hline InvCov & Matrix & \begin{tabular}{l} 
Square matrix with each \\
dimension equal to the filter \\
length l.
\end{tabular} \\
\hline SwBlockLength & Integer & \begin{tabular}{l} 
Block length of the sliding \\
window. This integer must be \\
at least as large as the filter \\
length. swblocklen defaults \\
to 16.
\end{tabular} \\
\hline DesiredSignalStates & Vector & \begin{tabular}{l} 
Desired signal states of the \\
adaptive filter. dstates \\
defaults to a zero vector with \\
length equal to \\
(swblocklen - 1).
\end{tabular} \\
\hline & & \begin{tabular}{l} 
(1)
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.swrls}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter if you have not changed \\
the filter since you \\
constructed it. \\
PersistentMemory returns to \\
zero any state that the filter \\
changes during processing. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

System Identification of a 32 -coefficient FIR filter. Use 500 iterations to adapt to the unknown filter. After the example code, you see a figure that plots the results of the running the code.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
PO = 10*eye(32); % Initial correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % Block length
ha = adaptfilt.swrls(32,lam,PO,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');

```

\section*{adaptfilt.swrls}
```

xlabel('Coefficient \#'); ylabel('Coefficient Value'); grid on;

```

In the figure you see clearly that the adaptive filter process successfully identified the coefficients of the unknown FIR filter. But then you knew it had to or many things we take for granted, such as modems on computers, would not work.


See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Create a transform-domain (TDAFDFT) adaptive filter object that uses the discrete Fourier transform} \\
\hline Syntax & \multicolumn{2}{|l|}{```
ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda,
    coeffs,states)
```} \\
\hline Description & \multicolumn{2}{|l|}{ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda, coeffs, states) constructs a transform-domain adaptive filter object ha using a discrete Fourier transform.} \\
\hline & \multicolumn{2}{|l|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.tdafdft.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . \\
\hline & step & Adaptive filter step size. It must be a nonnegative scalar. You can use maxstep to determine a reasonable range of step size values for the signals being processed. step defaults to 0 . \\
\hline & leakage & Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, you are implementing a leaky version of the TDAFDFT algorithm. leakage defaults to 1-no leakage. \\
\hline & offset & Offset for the normalization terms in the coefficient updates. YOu can use this argument to avoid dividing by zeros or by very small numbers when any of the FFT input signal powers become very small. offset defaults to zero. \\
\hline
\end{tabular}

\section*{adaptfilt.tdafdft}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline delta & \begin{tabular}{l}
Initial common value of all of the transform \\
domain powers. Its initial value should be \\
positive. delta defaults to 5.
\end{tabular} \\
\hline lambda & \begin{tabular}{l}
Averaging factor used to compute the \\
exponentially-windowed estimates of the \\
powers in the transformed signal bins for the \\
coefficient updates. lambda should lie between \\
zero and one. For default filter objects, \\
LAMBDA equals (1-step).
\end{tabular} \\
\hline coeffs & \begin{tabular}{l}
Initial time domain coefficients of the \\
adaptive filter. Set it to be a length l vector. \\
coeffs defaults to a zero vector of length l.
\end{tabular} \\
\hline states & \begin{tabular}{l}
Initial conditions of the adaptive filter. states \\
defaults to a zero vector with length equal to \\
\((l-1)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.tdafdft filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.tdafdft objects. To show you the properties that apply, this table lists and describes each property for the transform domain filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l}
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l}
Any positive \\
integer
\end{tabular} & \begin{tabular}{l}
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.tdafdft}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Coefficients & \begin{tabular}{l}
Vector of \\
elements
\end{tabular} & \begin{tabular}{l}
Vector containing the initial \\
filter coefficients. It must be a \\
length l vector where l is the \\
number of filter coefficients. \\
coeffs defaults to length 1 \\
vector of zeros when you do \\
not provide the argument for \\
input.
\end{tabular} \\
\hline States & \begin{tabular}{l}
Vector of \\
elements, \\
data type \\
double
\end{tabular} & \begin{tabular}{l}
Vector of the adaptive filter \\
states. states defaults to a \\
vector of zeros which has \\
length equal to (l + \\
projectord - 2).
\end{tabular} \\
\hline StepSize & 0 to 1 & \begin{tabular}{l}
Step size. It must be a \\
nonnegative scalar, greater \\
than zero and less than or \\
equal to 1. step defaults to 0.
\end{tabular} \\
\hline Leakage & 0 to 1 & \begin{tabular}{l}
Leakage parameter of the \\
adaptive filter. When you set \\
this argument to a value
\end{tabular} \\
between zero and one, you \\
are implementing a leaky \\
version of the TDAFDFT \\
algorithm. leakage defaults \\
to 1-no leakage.
\end{tabular}

\section*{adaptfilt.tdafdft}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Offset } & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. You can use this } \\ \text { argument to avoid dividing } \\ \text { by zeros or by very small } \\ \text { numbers when any of the } \\ \text { FFT input signal powers } \\ \text { become very small. offset } \\ \text { defaults to zero. }\end{array} \\ \hline \text { Power } & & \begin{array}{l}\text { A vector of 2*l elements, } \\ \text { each initialized with the } \\ \text { value delta from the input } \\ \text { arguments. As you filter } \\ \text { data, Power gets updated by } \\ \text { the filter process. }\end{array} \\ & \begin{array}{l}2^{*} 1 \text { element } \\ \text { vector }\end{array} & \begin{array}{l}\text { Averaging factor used to } \\ \text { compute the } \\ \text { exponentially-windowed } \\ \text { estimates of the powers in }\end{array} \\ \hline \text { AvgFactor } & & \begin{array}{l}\text { the transformed signal bins } \\ \text { for the coefficient updates. } \\ \text { AvgFactor should lie between } \\ \text { zero and one. For default }\end{array} \\ \text { filter objects, AvgFactor } \\ \text { equals (1 - step). lambda is } \\ \text { the input argument that } \\ \text { represent AvgFactor. }\end{array}\right\}\)

\section*{adaptfilt.tdafdft}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l}
Determines whether the \\
filter states get restored to \\
their starting values for each \\
filtering operation. The \\
starting values are the values \\
in place when you create the \\
filter. PersistentMemory \\
returns to zero any state that \\
the filter changes during \\
processing. States that the \\
filter does not change are not \\
affected. Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l}
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter (1000 iterations).
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.01; % Step size
ha = adaptfilt.tdafdft(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');

```

\section*{adaptfilt.tdafdft}
```

xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

All of the time domain adaptive filter reference pages use this QPSK example. By comparing the results for each variation you get an idea of the differences in the way each one performs.

This figure demonstrates the results of running the example code shown.

See Also
References
adaptfilt.tdafdct, adaptfilt.fdaf, adaptfilt.blms
S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996

\section*{adaptfilt.tdafdct}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a transform-domain (TDAFDCT) adaptive filter object that uses the discrete cosine transform} \\
\hline Syntax & \multicolumn{2}{|l|}{```
ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,coeffs,
states)
```} \\
\hline Description & \multicolumn{2}{|l|}{ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda, coeffs, states) constructs a transform-domain adaptive filter ha object that uses the discrete cosine transform to perform filter adaptation.} \\
\hline & \multicolumn{2}{|l|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.tdafdct.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . \\
\hline & step & Adaptive filter step size. It must be a nonnegative scalar. You can use maxstep to determine a reasonable range of step size values for the signals being processed. step defaults to 0 . \\
\hline & leakage & Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, you are implementing a leaky version of the TDAFDCT algorithm. leakage defaults to 1-no leakage. \\
\hline & offset & Offset for the normalization terms in the coefficient updates. You can use this argument to avoid dividing by zero or by very small numbers when any of the FFT input signal powers become very small. offset defaults to zero. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline delta & \begin{tabular}{l} 
Initial common value of all of the transform \\
domain powers. Its initial value should be \\
positive. delta defaults to 5.
\end{tabular} \\
\hline lambda & \begin{tabular}{l} 
Averaging factor used to compute the \\
exponentially-windowed estimates of the \\
powers in the transformed signal bins for the \\
coefficient updates. lambda should lie between \\
zero and one. For default filter objects, lambda \\
equals (1 - step).
\end{tabular} \\
\hline coeffs & \begin{tabular}{l} 
Initial time domain coefficients of the adaptive \\
filter. Set it to be a length l vector. coeffs \\
defaults to a zero vector of length l.
\end{tabular} \\
\hline states & \begin{tabular}{l} 
Initial conditions of the adaptive filter. states \\
defaults to a zero vector with length equal to \\
(l-1).
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.tdafdct filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.tdafdct objects. To show you the properties that apply, this table lists and describes each property for the transform domain filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l} 
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l} 
Any positive \\
integer
\end{tabular} & \begin{tabular}{l} 
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.tdafdct}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Coefficients } & \begin{array}{l}\text { Vector of } \\ \text { elements }\end{array} & \begin{array}{l}\text { Vector containing the } \\ \text { initial filter coefficients. It } \\ \text { must be a length l vector } \\ \text { where l is the number of } \\ \text { filter coefficients. coeffs } \\ \text { defaults to length l vector } \\ \text { of zeros when you do not } \\ \text { provide the argument for } \\ \text { input. }\end{array} \\ \hline \text { States } & \begin{array}{l}\text { Vector of } \\ \text { elements, } \\ \text { data type } \\ \text { double }\end{array} & \begin{array}{l}\text { Vector of the adaptive } \\ \text { filter states. states } \\ \text { defaults to a vector of } \\ \text { zeros which has length } \\ \text { equal to } \\ \text { (l + projectord - 2). }\end{array} \\ \hline \text { StepSize } & 0 \text { to 1 } & \begin{array}{l}\text { Step size. It must be a } \\ \text { nonnegative scalar, } \\ \text { greater than zero and less } \\ \text { than or equal to 1. You } \\ \text { can use maxstep to } \\ \text { determine a reasonable } \\ \text { range of step size values } \\ \text { for the signals being } \\ \text { processed. step defaults } \\ \text { to 0. }\end{array} \\ \hline \text { Leakage } & & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. When you }\end{array} \\ \text { set this argument to a } \\ \text { value between zero and } \\ \text { one, you are } \\ \text { implementing a leaky } \\ \text { version of the TDAFDFT } \\ \text { algorithm. leakage } \\ \text { defaults to 1-no leakage. }\end{array}\right\}\)
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\
\hline \text { Offset } & \begin{array}{l}\text { Offset for the } \\
\text { normalization terms in } \\
\text { the coefficient updates. } \\
\text { You can use this } \\
\text { argument to avoid } \\
\text { dividing by zeros or by } \\
\text { very small numbers when } \\
\text { any of the FFT input } \\
\text { signal powers become } \\
\text { very small. offset } \\
\text { defaults to zero. }\end{array} \\
\hline \text { Power } & & \begin{array}{l}\text { A vector of 2*l elements, } \\
\text { each initialized with the } \\
\text { value delta from the } \\
\text { input arguments. As you } \\
\text { filter data, Power gets } \\
\text { updated by the filter } \\
\text { process. }\end{array} \\
\hline \text { vector } & & \begin{array}{l}\text { Averaging factor used to } \\
\text { compute the } \\
\text { exponentially-windowed } \\
\text { estimates of the powers in } \\
\text { the transformed signal }\end{array} \\
\text { bins for the coefficient } \\
\text { updates. AvgFactor } \\
\text { should lie between zero } \\
\text { and one. For default filter } \\
\text { objects, AvgFactor equals } \\
\text { (1-step). lambda is the } \\
\text { input argument that } \\
\text { represent AvgFactor. }\end{array}\right\}\)\begin{tabular}{l} 
\\
\end{tabular}

\section*{adaptfilt.tdafdct}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline PersistentMemory & false or true & \begin{tabular}{l} 
Determine whether the \\
filter states get restored \\
to their starting values \\
for each filtering \\
operation. The starting \\
values are the values in \\
place when you create the \\
filter. PersistentMemory \\
returns to zero any state \\
that the filter changes \\
during processing. States \\
that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l} 
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

For checking the values of properties for an adaptive filter object, use get (ha) or enter the object name, without a trailing semicolon, at the MATLAB prompt.

\section*{Examples}

Using 1000 iterations, perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.01; % Step size

```
```

ha = adaptfilt.tdafdct(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

Compare the plots shown in this figure to those in the other time domain filter variations. The comparison should help you select and understand how the variants differ.

\section*{adaptfilt.tdafdct}


See Also
References
adaptfilt.tdafdft, adaptfilt.fdaf, adaptfilt.blms
S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.

\section*{adaptfilt.ufdaf}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Construct a Unconstrained frequency-domain (UFDAF) FIR adaptive filter with binned step size normalization} \\
\hline Syntax & \multicolumn{2}{|l|}{```
ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,offset,c
oeffs,states)
```} \\
\hline Description & \multicolumn{2}{|l|}{ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda, blocklen,offset, c oeffs, states) constructs an unconstrained frequency-domain FIR adaptive filter ha with bin step size normalization.} \\
\hline \multicolumn{3}{|c|}{Input Arguments} \\
\hline & \multicolumn{2}{|l|}{Entries in the following table describe the input arguments for adaptfilt.ufdaf.} \\
\hline & Input Argument & Description \\
\hline & 1 & Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . \\
\hline & step & Adaptive filter step size. It must be a nonnegative scalar. step defaults to 0 . \\
\hline & leakage & Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, you are implementing a leaky version of the UFDAF algorithm. leakage defaults to \(1-\) no leakage. \\
\hline & delta & Initial common value of all of the FFT input signal powers. the initial value of delta should should be positive, and it defaults to 1 . \\
\hline & lambda & Specifies the averaging factor used to compute the exponentially-windowed FFT input signal powers for the coefficient updates. lambda should lie in the range \((0,1]\). For default UFDAF filter objects, lambda defaults to 0.9. \\
\hline
\end{tabular}

\section*{adaptfilt.ufdaf}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline blocklen & \begin{tabular}{l}
Block length for the coefficient updates. This \\
must be a positive integer. For faster \\
execution, (blocklen + 1) should be a power of \\
two. blocklen defaults to l.
\end{tabular} \\
\hline offset & \begin{tabular}{l}
Offset for the normalization terms in the \\
coefficient updates. This can help you avoid \\
divide by zero conditions, or divide by very \\
small numbers conditions, when any of the \\
FFT input signal powers become very small.
\end{tabular} \\
\hline coeffs & \begin{tabular}{l}
Default value is zero.
\end{tabular} \\
& \begin{tabular}{l}
Initial time-domain coefficients of the \\
adaptive filter. It should be a length l vector. \\
The filter object uses these coefficients to \\
compute the initial frequency-domain filter \\
coefficients via an FFT computed after \\
zero-padding the time-domain vector by \\
blocklen.
\end{tabular} \\
\hline states & \begin{tabular}{l}
Adaptive filter states. states defaults to \\
a zero vector with length equal to l.
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties}

Since your adaptfilt.ufdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.ufdaf objects. To show you the properties that apply, this table lists and describes each property for the filter object.
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline Algorithm & None & \begin{tabular}{l}
Defines the adaptive filter \\
algorithm the object uses \\
during adaptation
\end{tabular} \\
\hline FilterLength & \begin{tabular}{l}
Any positive \\
integer
\end{tabular} & \begin{tabular}{l}
Reports the length of the \\
filter, the number of \\
coefficients or taps
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.ufdaf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline StepSize & 0 to 1 & \begin{tabular}{l}
Adaptive filter step size. It \\
must be a nonnegative scalar. \\
You can use maxstep to \\
determine a reasonable \\
range of step size values for \\
the signals being processed. \\
step defaults to 0.
\end{tabular} \\
\hline Leakage & 0 to 1 & \begin{tabular}{l}
Leakage parameter of the \\
adaptive filter. When you set \\
this argument to a value \\
between zero and one, you \\
are implementing a leaky \\
version of the UFDAF \\
algorithm. leakage defaults \\
to 1-no leakage.
\end{tabular} \\
\hline Power & \(2^{*} 1\) element & \begin{tabular}{l}
A vector of 2*l elements, \\
each initialized with the \\
value delta from the input \\
arguments. As you filter \\
data, Power gets updated by \\
the filter process.
\end{tabular} \\
\hline
\end{tabular}

\section*{adaptfilt.ufdaf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline AvgFactor & \begin{tabular}{l}
Specifies the averaging factor \\
used to compute the \\
exponentially-windowed FFT \\
input signal powers for the \\
coefficient updates. \\
AvgFactor should lie in the \\
range (0,1]. For default \\
UFDAF filter objects, \\
AvgFactor defaults to 0.9. \\
Note that AvgFactor and \\
lambda are the same thing- \\
lambda is an input argument \\
and AvgFactor a property of
\end{tabular} \\
the object.
\end{tabular}

\section*{adaptfilt.ufdaf}
\begin{tabular}{l|l|l}
\hline Name & Range & Description \\
\hline FFFTStates & false or true & \begin{tabular}{l}
States for the FFT operation. \\
PersistentMemory \\
states get restored to their \\
starting values for each \\
filtering operation. The \\
starting values are the \\
values in place when you \\
create the filter. \\
PersistentMemory returns to \\
zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected. \\
Defaults to false.
\end{tabular} \\
\hline NumSamplesProcessed & Any integer & \begin{tabular}{l}
Returns the number of \\
samples processed during \\
filtering. Defaults to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Show an example of Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient adaptive filter. For fidelity, use 1024 iterations. The figure that follows the code provides the information you need to assess the performance of the equalization process.
```

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1024; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor

```

\section*{adaptfilt.ufdaf}
```

ha = adaptfilt.ufdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d);
subplot(2,2,1);
plot(1:1000,real([d(1:1000);y(1:1000);e(1:1000)]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

```

\section*{adaptfilt.ufdaf}

See Also
References
adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blms, adaptfilt.blmsfft
J.J. Shynk, "Frequency-domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

\section*{allpassbpc2bpc}

Purpose
Return an allpass filter for complex bandpass transformation
Syntax
Description

\section*{Examples}

Design the allpass filter changing the complex bandpass filter with the band edges originally at \(W_{01}=0.2\) and \(W_{02}=0.4\) to the new band edges of \(W_{t 1}=0.3\) and \(W_{\mathrm{t} 2}=0.6\) precisely defined:
```

Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[ha, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\) :
```

plot(f/pi, angle(ha)/pi, Wt, Wo, 'ro');

```
```

title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

To demonstrate, the following figure shows the mapping function between old and new frequencies.

\section*{Arguments}

Wo
Frequency values to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
AllpassNum
Numerator of the mapping filter

\section*{allpassbpc2bpc}

AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

See Also iirbpc2bpc, zpkbpc2bpc

\section*{Purpose}

Syntax
Description

Return an allpass filter for lowpass to bandpass transformation
```

[AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

```
[AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real lowpass to real bandpass frequency transformation. This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(W_{t 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\). This transformation implements the "DC mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of \(\mathrm{W}_{\mathrm{t}}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and repositioned at two distinct desired frequencies.

Design the allpass filter changing the lowpass filter with cutoff frequency at \(W_{0}=0.5\) to the real bandpass filter with cutoff frequencies at \(W_{t 1}=0.25\) and \(W_{\mathrm{t} 2}=0.375\) :

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);
Calculate the frequency response of the mapping filter in the full range:

\footnotetext{
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
}

\section*{allpasslp2bp}

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:
```

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

Shown in the figure, with the \(x\)-axis as the new frequency, you see the mapping filter for the example.

\section*{Arguments}

\section*{Wo}

Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

\section*{AllpassNum}
Numerator of the mapping filter

\section*{AllpassDen}
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}
iirlp2bp, zpklp2bp
References
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

\section*{allpasslp2bpc}

\section*{Purpose}

Return an allpass filter for lowpass to complex bandpass transformation
Syntax
Description

\section*{Examples}

Design the allpass filter changing the real lowpass filter with the cutoff frequency of \(W_{0}=0.5\) into a complex bandpass filter with band edges of \(W_{t 1}=0.2\) and \(W_{t 2}=0.4\) precisely defined:
```

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{0}\left(W_{t}\right)\) :
```

plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

The figure shown here details the mapping filter provided by the function.

\section*{Arguments}

Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

\section*{allpasslp2bpc}

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

\author{
See Also iirlp2bpc, zpklp2bpc
}

Purpose
Syntax
Description

\section*{Examples}

Return an allpass filter for lowpass to bandstop transformation
```

[AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

```
[AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real lowpass to real bandstop frequency transformation. This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(\mathrm{W}_{\mathrm{t} 1}\), and the second feature, originally at \(+\mathrm{W}_{0}\), at the new location, \(\mathrm{W}_{\mathrm{t} 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\). This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC, but the Nyquist feature moves to a location dependent on the selection of \(W_{o}\) and \(W_{t}\).

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). After the transformation feature \(F_{2}\) will precede \(F_{1}\) in the target filter. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Design the allpass filter changing the lowpass filter with cutoff frequency at \(W_{0}=0.5\) to the real bandstop filter with cutoff frequencies at \(W_{t 1}=0.25\) and \(W_{\mathrm{t} 2}=0.375\) :
```

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{0}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:

\section*{allpasslp2bs}
```

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

In the figure, you find the mapping filter function as determined by the example. Note the response is normalized to \(\pi\), as mentioned earlier.

\section*{Arguments}

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
AllpassNum
Numerator of the mapping filter

\section*{AllpassDen}

Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also \\ iirlp2bs, zpklp2bs}

\section*{References}
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

\section*{allpasslp2bsc}

Purpose
Syntax
Description

\section*{Examples Design the allpass filter changing the real lowpass filter with the cutoff} frequency of \(w_{0}=0.5\) into a complex bandstop filter with band edges of \(W_{t 1}=0.2\) and \(W_{t 2}=0.4\) precisely defined:
```

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\) :
```

plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

We plot the resulting allpass mapping function response in this figure.

\section*{Arguments}

Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

\section*{allpasslp2bsc}

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirlp2bsc, zpklp2bsc

\section*{Purpose}

Syntax
Description

\section*{Examples}

Return an allpass filter for lowpass to highpass transformation
```

[AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

```
[AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real lowpass to real highpass frequency transformation. This transformation effectively places one feature of an original filter, located originally at frequency, \(w_{0}\), at the required target frequency location, \(W_{t}\), at the same time rotating the whole frequency response by half of the sampling frequency. Result is that the DC and Nyquist features swap places.

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). After the transformation feature \(F_{2}\) will precede \(F_{1}\) in the target filter. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way by using the lowpass to highpass transformation.

Design the allpass filter changing the lowpass filter to the highpass filter with its cutoff frequency moved from \(W_{0}=0.5\) to \(W_{t}=0.25\) :
```

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

\section*{allpasslp2hp}

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:
```

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

For transforming your lowpass filter to an highpass variation, the mapping function shown in this figure does the job.

\section*{Arguments}

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

\section*{AllpassNum}
Numerator of the mapping filter

\section*{AllpassDen}
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}
iirlp2hp, zpklp2hp
References
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters," Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

\section*{allpasslp21p}

Purpose
Syntax
Description

Examples Design the allpass filter changing the lowpass filter cutoff frequency originally at \(W_{0}=0.5\) to \(W_{t}=0.25\) :
```

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:
```

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');

```
```

title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```


As shown in the figure, allpasslp2lp generates a mapping function that converts your prototype lowpass filter to a target lowpass filter with different passband specifications.

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
AllpassNum
Numerator of the mapping filter

\section*{allpasslp2lp}

AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also \\ iirlp2lp, zpklp2lp}

\section*{References}
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters," Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

Purpose

\section*{Syntax}

\section*{Description}

\section*{Examples}

Return an allpass filter for lowpass to M-band transformation
```

[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

```
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass mapping filter for performing a real lowpass to real multipassband frequency transformation. Parameter \(M\) is the number of times an original feature is replicated in the target filter. This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency locations, \(\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tm}}\). By default the DC feature is kept at its original location.
[AllpassNum,AllpassDen]=allpasslp2mb(Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC , the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations without redesigning them. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Design the allpass filter changing the real lowpass filter with the cutoff frequency of \(W_{0}=0.5\) into a real multiband filter with band edges of \(W_{t}=[1: 2: 9] / 10\) precisely defined:

\section*{allpasslp2mb}
```

Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:
```

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

As the figure shows, the mapping function, or mapping filter, creates more than one band from your prototype.

Arguments
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
Pass
Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

\section*{allpasslp2mb}

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}

References
iirlp2mb, zpklp2mb
[1] Franchitti, J.C., "All-pass filter interpolation and frequency transformation problems," MSc Thesis, Dept. of Electrical and Computer Engineering, University of Colorado, 1985.
[2] Feyh, G., J.C. Franchitti and C.T. Mullis, "All-pass filter interpolation and frequency transformation problem," Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, Reading, Massachusetts, Addison-Wesley, 1987.
[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm for frequency transformations, Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

\section*{Purpose}

Syntax
Description

\section*{Examples}

Return an allpass filter for lowpass to complex M-band transformation
[AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass mapping filter for performing a real lowpass to complex multipassband frequency transformation. Parameter \(M\) is the number of times an original feature is replicated in the target filter. This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency locations, \(\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations without the need to design them again. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Design the allpass filter changing the real lowpass filter with the cutoff frequency of \(W_{0}=0.5\) into a complex multiband filter with band edges of \(W_{t}=[-3+1: 2: 9] / 10\) precisely defined:
```

Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mbc(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:

\footnotetext{
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
}

\section*{allpasslp2mbc}

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{0}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:
```

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

In this example, the resulting mapping function converts real filters to multiband complex filters.

\section*{Arguments}

\section*{Wo}

Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirlp2mbc, zpklp2mbc

\section*{allpasslp2xc}

Purpose
Syntax
Description

\section*{Examples}

Design the allpass filter moving four features of an original complex filter given in \(W_{o}\) to the new independent frequency locations \(W_{t}\). Please note that the transformation creates N replicas of an original filter around the unit circle, where \(N\) is the order of the allpass mapping filter:
\[
\begin{aligned}
& \text { Wo }=[-0.2,0.3,-0.7,0.4] ; \\
& \text { Wt }=[0.3,0.5,0.7,0.9] ;
\end{aligned}
\]
```

[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{0}\left(W_{t}\right)\) :
```

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

Mapping Function Wo(Wt)

As shown, the mapping function copies four features of interest in your prototype to multiple, independent locations in your target filter.

\section*{allpasslp2xc}
Arguments WoFrequency values to be transformed from the prototype filter
WtDesired frequency locations in the transformed target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 correspondingto half the sample rate.
See Also iirlp2xc, zpklp2xc

\section*{Purpose}

Syntax

\section*{Description}

Return an allpass filter for lowpass to N-point transformation
```

[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

```
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass mapping filter, where N is the allpass filter order, for performing a real lowpass to real multipoint frequency transformation. Parameter \(N\) also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places \(N\) features of an original filter, located at frequencies \(\mathrm{W}_{01}, \ldots, \mathrm{~W}_{\mathrm{ON}}\), at the required target frequency locations, \(\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}\). By default the DC feature is kept at its original location.
[AllpassNum,AllpassDen]=allpasslp2xn(Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation. For DC mobility feature \(F_{2}\) will precede \(F_{1}\) after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating \(N\) bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations without the need of designing them again. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

\section*{allpasslp2xn}
\begin{tabular}{|c|c|}
\hline \multirow[t]{11}{*}{Arguments} & Wo \\
\hline & Frequency values to be transformed from the prototype filter \\
\hline & Wt \\
\hline & Desired frequency locations in the transformed target filter \\
\hline & Pass \\
\hline & Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default \\
\hline & AllpassNum \\
\hline & Numerator of the mapping filter \\
\hline & AllpassDen \\
\hline & Denominator of the mapping filter \\
\hline & Frequencies must be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate. \\
\hline See Also & iirlp2xn, zpklp2xn \\
\hline \multirow[t]{2}{*}{References} & [1] Cain, G.D., A. Krukowski and I. Kale, "High Order Transformations for Flexible IIR Filter Design," VII European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 1994. \\
\hline & [2] Krukowski, A., G.D. Cain and I. Kale, "Custom designed high-order frequency transformations for IIR filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995. \\
\hline
\end{tabular}

\section*{Purpose}

Syntax
Description

Return an allpass filter for integer upsample transformation
[AllpassNum,AllpassDen] = allpassrateup(N)
[AllpassNum,AllpassDen] = allpassrateup(N) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass mapping filter for performing the rateup frequency transformation, which creates \(N\) equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Design the allpass filter creating the effect of upsampling the digital filter four times:
\[
N=4 ;
\]

Choose any feature from an original filter, say at \(\mathrm{W}_{0}=0.2\) :
```

Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\) :
```

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

While this creates the effect of upsampling your prototype filter, compare the results to cicinterp for another approach to upsampling.

\section*{allpassrateup}

Arguments NFrequency replication ratio (upsampling ratio)AllpassNumNumerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirrateup, zpkrateup

Purpose
Syntax
Description

\section*{Examples}

Return an allpass filter for real shift transformation
[AllpassNum,AllpassDen] = allpassshift(Wo,Wt)
[AllpassNum,AllpassDen] = allpassshift(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real frequency shift transformation. This transformation places one selected feature of an original filter, located at frequency \(W_{0}\), at the required target frequency location, \(W_{t}\). This transformation implements the "DC mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of \(W_{0}\) and \(W_{t}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be moved to a different frequency by applying a shift transformation. In such a way you can avoid designing the filter from the beginning.

Design the allpass filter precisely shifting one feature of the lowpass filter originally at \(W_{0}=0.5\) to the new frequencies of \(W_{t}=0.25\) :
```

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

\section*{allpassshift}

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\). Please note that the transformation works in the same way for both positive and negative frequencies:
```

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```


\section*{Arguments}

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also iirshift, zpkshift

\section*{allpassshiftc}

\section*{Purpose Return an allpass filter for complex shift transformation}

\section*{Syntax \\ [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)}

Description

\section*{Examples}

Design the allpass filter precisely rotating the whole filter by the amount defined by the location of the selected feature from an original filter, \(W_{0}=0.5\), and its required position in the target filter, \(\mathrm{w}_{\mathrm{t}}=0.25\) :
```

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

```

Calculate the frequency response of the mapping filter in the full range:
```

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

```

Plot the phase response normalized to \(\pi\), which is in effect the mapping function \(W_{o}\left(W_{t}\right)\) :
```

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

```

The figure shows you that the transformation by the mapping filter does exactly what you intend.

\section*{Arguments}

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

See Also iirshiftc, zpkshiftc

\section*{allpassshiftc}

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall International Inc., 1989.
[2] Dutta-Roy, S.C. and B. Kumar, "On Digital Differentiators, Hilbert Transformers, and Half-band Low-pass Filters," IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.
\begin{tabular}{|c|c|}
\hline Purpose & Generate a Signal Processing Blockset block from a multirate (mfilt) filter object \\
\hline Syntax & ```
block(hm)
block(hm,'propertyname1',propertyvalue1,'propertyname2',...
 propertyvalue2,...)
``` \\
\hline \multirow[t]{4}{*}{Description} & \begin{tabular}{l}
block(hm) generates a Signal Processing Blockset block equivalent to hm. \\
block(hm,'propertyname1', propertyvalue1,' propertyname2',... propertyvalue2, ...) generates a Signal Processing Blockset block using the options specified in the propertyname/propertyvalue pairs. The valid properties and their values are
\end{tabular} \\
\hline & Property Name Description and Values \\
\hline & \begin{tabular}{ll} 
Destination & \begin{tabular}{l} 
Determines which Simulink model gets the \\
block. Choose either current or new. Specifying \\
new opens a new Simulink model and adds the \\
block. Current adds the block to your current \\
Simulink model. Current is the default setting.
\end{tabular}
\end{tabular} \\
\hline & \begin{tabular}{ll} 
Blockname & \begin{tabular}{l} 
Specifies the name of the generated block. The \\
name appears below the block in the model.
\end{tabular} \\
When you do not specify a block name, the \\
default is filter.
\end{tabular} \\
\hline
\end{tabular}

\section*{block}
\begin{tabular}{l|l}
\hline Property Name & Description and Values \\
\hline OverwriteBlock & \begin{tabular}{l} 
Tells block whether to overwrite an existing \\
block of the same name, or create a new block. \\
Off is the default setting-block does not \\
overwrite existing blocks with matching names. \\
Switching from off to on directs block to \\
overwrite existing blocks.
\end{tabular} \\
\hline MapStates & \begin{tabular}{l} 
Specifies whether to apply the current filter \\
states to the new block. This lets you save states \\
from a filter object you may have used or \\
configured in a specific way. The default setting \\
of off means the states are not transferred to \\
the block. Choosing on preserves the current \\
filter states in the block.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Two examples of using block demonstrate the syntax capabilities. Both examples start from an mfilt object with interpolation factor of 3 . In the first example, use block with the default syntax, letting the function determine the block name and configuration.
```

l = 3; % Interpolation factor
hm = mfilt.firinterp(l);

```

Now use the default syntax to create a block.
```

block(hm);

```

In this second example, define the block name to meet your needs by using property name/property value pairs.
```

block(hm, 'blockname', 'firinterp');

```

The figure below shows the blocks in a Simulink model. When you try these examples, you see that the second block writes over the first block location. You can avoid this by moving the first block before you generate the second, or setting the Destination property to new which puts the filter block in a new Simulink model.


Filter

firdecim

See Also
Refer to the Realize Model option in FDATool, and realizemdl
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Design Butterworth IIR digital filters using the specifications in a filter design \\
object
\end{tabular} \\
Syntax & \begin{tabular}{l} 
hd = butter (d) \\
hd \(=\) butter (d, 'matchexactly ' , match)
\end{tabular} \\
Description & \begin{tabular}{l} 
hd = butter (d) designs a Butterworth IIR digital filter using the \\
specifications supplied in the object d.
\end{tabular} \\
& \begin{tabular}{l} 
hd = butter (d, ' matchexactly ' , match) returns a Butterworth IIR filter \\
where the filter response matches the specified response exactly for one filter \\
band. match, which specifies which filter band to match, is either
\end{tabular} \\
- passband-match the passband specification exactly in the final filter. \\
- stopband-match the specified stopband performance exactly in the final \\
filter. This is the default setting.
\end{tabular}

Example 2 constructs a highpass filter design object with order (n) and cutoff frequency (fc) specifications, and then designs a Butterworth filter from the object.
```

d = fdesign.highpass('n,fc',8,.6);
butter(d);

```


\footnotetext{
See Also
cheby1, cheby2, ellip
}

\section*{Purpose Convert coupled allpass filter form to transfer function forms}

\section*{Syntax}
```

[b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)

```

\section*{Description}
\([b, a]=c a 2 t f(d 1, d 2)\) returns the vector of coefficients \(b\) and the vector of coefficients a corresponding to the numerator and the denominator of the transfer function
\[
H(z)=B(z) / A(z)=\frac{1}{2}[H 1(z)+H 2(z)]
\]
d1 and d2 are real vectors corresponding to the denominators of the allpass filters \(\mathrm{H} 1(\mathrm{z})\) and \(\mathrm{H} 2(\mathrm{z})\).
\([b, a]=c a 2 t f(d 1, d 2, b e t a)\) where \(d 1\), d2 and beta are complex, returns the vector of coefficients \(b\) and the vector of coefficients a corresponding to the numerator and the denominator of the transfer function
\[
H(z)=B(z) / A(z)=\frac{1}{2}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
\]
\([b, a, b p]=c a 2 t f(d 1, d 2)\), where \(d 1\) and d2 are real, returns the vector bp of real coefficients corresponding to the numerator of the power complementary filter G(z)
\[
G(z)=B p(z) / A(z)=\frac{1}{2}[H 1(z)-H 2(z)]
\]
\([b, a, b p]=c a 2 t f(d 1, d 2, b e t a)\), where \(d 1, d 2\) and beta are complex, returns the vector of coefficients bp of real or complex coefficients that correspond to the numerator of the power complementary filter \(G(z)\)
\[
G(z)=B p(z) / A(z)=\frac{1}{2 j}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
\]

\section*{Examples}

Create a filter, convert the filter to coupled allpass form, and convert the result back to the original structure (create the power complementary filter as well).
```

[b,a]=cheby1(10,.5,.4);
[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the
% denominators of the
% allpasses.
[num,den,numpc]=ca2tf(d1,d2,beta); % Reconstruct the original
% filter plus the power
% complementary one.
[h,w,s]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
freqzplot([h hpc],w,s); % Plot the mag response of the
% original filter and the
% power complementary one.

```

\section*{cheby 1}
\begin{tabular}{|c|c|}
\hline Purpose & Design Chebyshev Type I digital filter using the specifications in a filter design object \\
\hline \multirow[t]{2}{*}{Syntax} & hd \(=\) cheby 1 ( d ) \\
\hline & hd = cheby 1 (d,'matchexactly', match) \\
\hline \multirow[t]{4}{*}{Description} & hd = cheby1(d) designs a Chebyshev I IIR digital filter using the specifications supplied in the object d. \\
\hline & hd = cheby 1 ( \(d\), 'matchexactly', match \()\) returns a Chebyshev I IIR filter where the filter response matches the specified response exactly for one filter band. match, which specifies which filter band to match, is either \\
\hline & \begin{tabular}{l}
- passband-match the passband specification exactly in the final filter. \\
- stopband-match the specified stopband performance exactly in the final filter. This is the default setting.
\end{tabular} \\
\hline & Use the matchexactly input option only when your filter object designs minimum order Chebyshev filters. This condition applies when you do not specify the filter order in your filter design object. Lowpass, highpass, bandpass, and bandstop filter design objects support a SpecificationType string that does not include the filter order as an input argument. \\
\hline \multirow[t]{9}{*}{Examples} & These examples use filter design objects to construct Chebyshev type I filters. In the first example, you use the matchexactly option to ensure the performance of the filter in the passband. \\
\hline & ```
d = fdesign.lowpass
hd = cheby1(d,'matchexactly','passband')
``` \\
\hline & \(\mathrm{d}=\) \\
\hline & ```
 ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
``` \\
\hline & NormalizedFrequency: true \\
\hline & Fs: 'Normalized' \\
\hline & Fpass: 0.4500 \\
\hline & Fstop: 0.5500 \\
\hline & Apass: 1 \\
\hline
\end{tabular}
cheby1 also design highpass filters, among others. Specify the filter order, passband edge frequency. and the passband ripple to get the filter exactly as required.
```

d = fdesign.highpass('n,fp,ap',7,20,.4,50)
cheby1(d)
d =
ResponseType: 'Highpass with passband-edge
specifications'
SpecificationType: 'N,Fp,Ap'
Description: {3x1 cell}
NormalizedFrequency: false
Fs: 50
FilterOrder: 7
Fpass: 20
Apass: 0.4000

```
hd=cheby 1 (d)
hd =

FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'double'

\section*{cheby 1}
```

 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: false
States: [2x4 double]
NumSamplesProcessed: 0

```

Use fvtool to view the resulting filter.
```

fvtool(hd)

```


By design, cheby1 returns filters that use second-order sections. For many applications, and for most fixed-point applications, SOS filters are particularly well-suited for use.

See Also
butter, cheby2, ellip
Purpose Design Chebyshev Type II digital filter using the specifications in a filter design object
Syntax \(\quad\) hd \(=\) cheby2 \((d)\)
hd = cheby2(d,'matchexactly',match)

Description

\section*{Examples}
hd = cheby2(d) designs a Chebyshev II IIR digital filter using the specifications supplied in the object d.
hd = cheby2(d,'matchexactly', match) returns a Chebyshev II IIR filter where the filter response matches the specified response exactly for one filter band. match, which specifies which filter band to match, is either
- passband-match the passband specification exactly in the final filter.
- stopband-match the specified stopband performance exactly in the final filter. This is the default setting.

Use the matchexactly input option only when your filter object designs minimum order Chebyshev filters. This condition applies when you do not specify the filter order in your filter design object. Lowpass, highpass, bandpass, and bandstop filter design objects support a SpecificationType string that does not include the filter order as an input argument.

These examples use filter design objects to construct Chebyshev type I filters. In the first example, you use the matchexactly option to ensure the performance of the filter in the passband.
```

d = fdesign.lowpass
hd = cheby2(d,'matchexactly','passband')
d =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4500
Fstop: 0.5500
Apass: 1

```

\section*{cheby2}

Astop: 60
hd =
```

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [5x6 double]
ScaleValues: [6x1 double]
PersistentMemory: false
States: [2x5 double]
NumSamplesProcessed: 0

```
cheby2 also design highpass, bandpass, and bandstop filters. Here is a highpass filter where you specify the filter order, the stopband edge frequency. and the stopband attenuation to get the filter exactly as required.
```

d = fdesign.highpass('n,fst,ast',5,20,55,50)
d =
ResponseType: 'Highpass with stopband-edge specifications'
SpecificationType: 'N,Fst,Ast'
Description: {3x1 cell}
NormalizedFrequency: false
Fs: 50
FilterOrder: 5
Fstop: 20
Astop: 55
hd=cheby2(d)
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [3x6 double]
ScaleValues: [4x1 double]
PersistentMemory: false
States: [2x3 double]
NumSamplesProcessed: 0

```

The Filter Visualization Tool shows the highpass filter meets the specifications.
```

fvtool(hd)

```


By design, cheby2 returns filters that use second-order sections. For many applications, and for most fixed-point applications, SOS filters are particularly well-suited for use.

See Also butter, cheby1, ellip

\section*{Purpose Convert coupled allpass lattice to transfer function form}

Syntax \(\quad[b, a]=\operatorname{cl2tf}(k 1, k 2)\)
\([b, a]=\operatorname{cl2tf}(k 1, k 2, b e t a)\)
\([b, a, b p]=c l 2 t f(k 1, k 2)\)
\([b, a, b p]=c l 2 t f(k 1, k 2, b e t a)\)

\section*{Description}
\([b, a]=c l 2 t f(k 1, k 2)\) returns the numerator and denominator vectors of coefficients \(b\) and a corresponding to the transfer function
\[
H(z)=B(z) / A(z)=\frac{1}{2}[H 1(z)+H 2(z)]
\]
where \(H 1(z)\) and \(H 2(z)\) are the transfer functions of the allpass filters determined by k1 and k2, and k1 and k2 are real vectors of reflection coefficients corresponding to allpass lattice structures.
\([b, a]=c l 2 t f(k 1, k 2, b e t a)\) where \(k 1, k 2\) and beta are complex, returns the numerator and denominator vectors of coefficients \(b\) and a corresponding to the transfer function
\[
H(z)=B(z) / A(z)=\frac{1}{2}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
\]
\([b, a, b p]=c l 2 t f(k 1, k 2)\) where \(k 1\) and \(k 2\) are real, returns the vector \(b p\) of real coefficients corresponding to the numerator of the power complementary filter \(G(z)\)
\[
G(z)=B p(z) / A(z)=\frac{1}{2}[H 1(z)-H 2(z)]
\]
\([b, a, b p]=c l 2 t f(k 1, k 2, b e t a)\) where \(k 1, k 2\) and beta are complex, returns the vector of coefficients bp of possibly complex coefficients corresponding to the numerator of the power complementary filter \(G(z)\)
\[
G(z)=B p(z) / A(z)=\frac{1}{2 j}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
\]

\section*{Examples}
```

[b,a]=cheby1(10,.5,.4);
[k1,k2,beta]=tf2cl(b,a); %TF2CL returns the reflection coeffs

```
```

% Reconstruct the original filter
% plus the power complementary one.
[num, den, numpc]=cl2tf(k1,k2,beta);
[h,w, s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original filter and the power
% complementary one.
freqzplot([h hpc],w,s1);

```

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp

\section*{coefficients}
```

Purpose Return the filter coefficients for adaptive filters, discrete-time filters, and multirate filters

```

\author{
Syntax
}
```

c = coefficients(ha)

```
c = coefficients(ha)
coefficients(ha)
coefficients(ha)
c = coefficients(hd)
c = coefficients(hd)
coefficients(hd)
coefficients(hd)
c = coefficients(hm)
c = coefficients(hm)
coefficients(hm)
coefficients(hm)
Description The next sections describe common coefficients operation with adaptive, discrete-time, and multirate filters.
```


Adaptive Filters

c = coefficients(ha) returns a cell array c containing the coefficients of adaptive filter ha. These are the instantaneous filter coefficients available at the time you use the function.
coefficients(ha) without an output argument opens FVTool in the coefficients analysis mode displaying the filter coefficients.

Discrete-Time Filters

c = coefficients(hd) returns a cell array c that contains the coefficients of discrete-time filter hd.
coefficients(hd) without an output argument opens FVTool in the coefficients analysis mode displaying the filter coefficients.

Multirate Filters

$c=$ coefficients (hm) returns c, a cell array containing the coefficients of discrete-time filter hm. CIC-based filters do not have coefficients and this function does not work with constructors like mfilt.cicdecim.
coefficients(hm) with no output argument opens FVTool in the coefficients analysis mode displaying the filter coefficients.

Examples
coefficients works the same way for all filters. This example uses a multirate filter hm to demonstrate the function.

```
hm=mfilt.firdecim(3)
hm =
            FilterStructure: 'Direct-Form FIR Polyphase Decimator'
                    Numerator: [1x72 double]
            DecimationFactor: 3
            PersistentMemory: false
                States: [69x1 double]
            NumSamplesProcessed: 0
c=coefficients(hm)
C =
            [1x72 double]
c{1}
ans =
    Columns 1 through 8
            lllllllll
    Columns 9 through 16
\begin{tabular}{llllllll}
-0.0007 & 0 & 0.0011 & 0.0014 & 0 & -0.0022 & -0.0028 & 0
\end{tabular}
        Columns 17 through 24
\begin{tabular}{llllllll}
0.0040 & 0.0048 & 0 & -0.0068 & -0.0080 & 0 & 0.0111 & 0.0129
\end{tabular}
```

Columns 25 through 32
$\begin{array}{lll}0 & -0.0177 & -0.0207\end{array}$ $0 \quad 0.0287$ 0.0342 $0 \quad-0.0513$
Columns 33 through 40

```
\begin{tabular}{llllllll}
-0.0659 & 0 & 0.1363 & 0.2749 & 0.3333 & 0.2749 & 0.1363 & 0
\end{tabular}Columns 41 through 48
\begin{tabular}{llllllll}
-0.0659 & -0.0513 & 0 & 0.0342 & 0.0287 & 0 & -0.0207 & -0.0177
\end{tabular}
```

Columns 49 through 56
$0 \quad 0.0129 \quad 0.0111$ $0 \quad-0.0080$ -0.0068 $0 \quad 0.0048$
Columns 57 through 64

$$
\begin{array}{llllllll}
0.0040 & 0 & -0.0028 & -0.0022 & 0 & 0.0014 & 0.0011 & 0
\end{array}
$$

Columns 65 through 72
$-0.0007-0.0005$
$0 \quad 0.0003$
0.0002
$0 \quad-0.0001$
-0.0000
coefficients(hm)

A Figure 1: Filter Yisualization Tool - Filter Coefficients
File Edit Analysis Insert View Window Help

- $=$ an

Numerator:	A
0.000000000000000	
-0.000043020495400	
-0.000076013438760	
0.000000000000000	
0.000184871246191	
0.000267535810089	
0.000000000000000	
-0.000509707834263	
-0.000678795935585	
0.000000000000000	
0.001140769019931	
0.001446427823464	
0.000000000000000	
-0.002243697907841	
-0.002752126048140	
0.000000000000000	
0.004037513419562	
0.004837668133744	
0.000000000000000	
-0.006824052783861	-0.008046417641326
0.000000000000000	
0.011070838087278	
0.012941029950154	
0.00000000000000	
0.017654667293030	
-0.020661234151835	

coefficients

See Also

adaptfilt, freqz, grpdelay, impz, info, phasez, stepz, zerophase, zplane

Purpose Read a XILINX CORE Generator ${ }^{\text {TM }}$ coefficient (.COE) file

```
Syntax hd = coeread('filename')
```

Description hd = coeread(filename) extracts the Distributed Arithmetic FIR filter coefficients defined in the XILINX CORE Generator .COE file specified by filename. It returns a dfilt object, the fixed-point filter hd. If you do not provide the file type extension .coe with the filename, the function assumes the .coe extension.

See Also coewrite, dfilt, dfilt.dffir

Purpose

Write a Xilinx CORE Generator ${ }^{\text {TM }}$ coefficient (.COE) file

Syntax
Description

Examples

coewrite(hd)
coewrite(hd, radix)
coewrite(...,filename)
coewrite(hd) writes a XILINX Distributed Arithmetic FIR filter coefficient .COE file which can be loaded into the XILINX CORE Generator. The coefficients are extracted from the fixed-point dfilt object hd. Your fixed-point filter must be a direct form FIR structure dfilt object with one section and whose Arithmetic property is set to fixed. You cannot export single-precision, double-precision, or floating-point filters as .coe files, nor multiple-section filters. To enable you to provide a name for the file, coewrite displays a dialog where you fill in the file name. If you do not specify the name of the output file, the default file name is untitled.coe.
coewrite(hd, radix) indicates the radix (number base) used to specify the FIR filter coefficients. Valid radix values are 2 for binary, 10 for decimal, and 16 for hexadecimal (default).
coewrite(..., filename) writes a XILINX.COE file to filename. If you omit the file extension, coewrite adds the .coe extension to the name of the file.
coewrite generates an ASCII text file that contains the filter coefficients in a format the XILINX CORE Generator can read and load. In this example, you create a 30th-order fixed-point filter and generate the .coe file that include the filter coefficients as well as associated information about the filter.

```
b = firceqrip(30,0.4,[0.05 0.03]);
hq = dfilt.dffir(b);
set(hq,'arithmetic','fixed');
coewrite(hq,10,'mycoefile');
```

When you look at mycoefile.coe, you see the following:

```
;
; XILINX CORE Generator(tm) Distributed Arithmetic FIR filter
coefficient (.COE) File
; Generated by MATLAB(tm) and the Filter Design Toolbox.
;
```


coewrite

```
; Generated on: 4-Dec-2003 13:47:15
;
Radix = 10;
Coefficient_Width = 16;
CoefData = -41,
    -851,
    -366,
        308,
        651,
        22,
        -873,
        -658,
        749,
        1504,
        21,
-2367,
-2012,
3014,
9900,
```

coewrite puts the filter coefficients in column-major order and reports the radix, the coefficient width, and the coefficients. These represent the minimum set of data needed in a .coe file.

See Also coeread, dfilt, dfilt.dffir

Purpose

Syntax $\quad \begin{aligned} h q & =\text { convert (hq, newstruct) } \\ h m & =\text { convert }(h m, \text { newstruct })\end{aligned}$

Description

```
hm = convert(hm,newstruct)
```


Discrete-Time Filters

Convert filter structures of discrete-time and multirate filters
hq = convert(hq, newstruct) returns a quantized filter whose structure has been transformed to the filter structure specified by string newstruct. You can enter any one of the following quantized filter structures:

- 'antisymmetricfir': Antisymmetric finite impulse response (FIR).
- 'df1': Direct form I.
- 'df1t': Direct form I transposed.
- 'df2': Direct form II.
- 'df2t': Direct form II transposed. Default filter structure.
- 'fir': FIR.
- 'firt': Direct form FIR transposed.
- 'latcallpass': Lattice allpass.
- 'latticeca': Lattice coupled-allpass.
- 'latticecapc ': Lattice coupled-allpass power-complementary.
- 'latticear': Lattice autoregressive (AR).
- 'latticema': Lattice moving average (MA) minimum phase.
- 'latcmax': Lattice moving average (MA) maximum phase.
- 'latticearma': Lattice ARMA.
- 'statespace': Single-input/single-output state-space.
- 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

- df1
- df1t
- df2
- df2t
- statespace
- latticearma

For the following filter classes, you can specify other conversions as well:

- Minimum phase FIR filters can be converted to latticema
- Maximum phase FIR filters can be converted to latcmax
- Allpass filters can be converted to latcallpass
convert generates an error when you specify a conversion that is not possible.

Multirate Filters

$\mathrm{hm}=$ convert(hm, newstruct) returns a multirate filter whose structure has been transformed to the filter structure specified by string newstruct. You can enter any one of the following multirate filter structures, defined by the strings shown, for newstruct:

Cascaded Integrator-Comb Structures

- cicdecim—CIC-based decimator
- cicdecimzerolat-CIC-based decimator that exhibits no latency
- cicinterp-CIC-based interpolator
- cicinterpzerolat-CIC-based interpolater that does not induce latency

FIR Structures

- firdecim-FIR decimator
- firtdecim—transposed FIR decimator
- firfracdecim—FIR fractional decimator
- firinterp-FIR interpolator
- firfracinterp-FIR fractional interpolator
- firsrc-FIR sample rate change filter
- firholdinterp-FIR interpolator that uses hold interpolation between input samples
- firlinearinterp-FIR interpolator that uses linear interpolation between input samples
- fftfirinterp-FFT-based FIR interpolator

You cannot convert between the FIR and CIC structures.

```
[b,a]=ellip(5,3,40,.7);
hq = dfilt.df2t(b,a);
hq2 = convert(hq,'df1')
hq2 =
```

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: \(\left[\begin{array}{lllllll}0.1980 ~ 0.78861 .42361 .4236 ~ 0.7886 ~ 0.1980] ~\end{array}\right.\)
 Denominator: [\(\begin{aligned} & 1 \\ & 1.4339 \\ & 1.8021 \\ & 0.6139 \\ & 0.2047\end{aligned}\)-0.2342]
 PersistentMemory: false
 States: Numerator: [5x1 double]
 Denominator:[5x1 double]
 NumSamplesProcessed: 0
 For an example of changing the structure of a multirate filter, try the following conversion from a CIC interpolator to a CIC interpolator with zero latency.

```
hm = mfilt.cicinterp(2,2,3,8,8)
hm =
            FilterStructure: 'Cascaded Integrator-Comb Interpolator'
                    Arithmetic: 'int'
            DifferentialDelay: 2
            NumberOfSections: 3
        InterpolationFactor: 2
                            RoundMode: 'floor'
            PersistentMemory: false
                            States: Integrator: [3x1 States]
                                    Comb: [3x1 States]
        NumSamplesProcessed: 0
            InputWordLength: 8
    SectionWordLengthMode: 'MinWordLengths'
            OutputWordLength: 8
hm2=convert(hm, 'cicinterpzerolat')
hm2 =
            FilterStructure: 'Zero-Latency Cascaded Integrator-Comb Interpolator'
            Arithmetic: 'int'
            DifferentialDelay: 2
            NumberOfSections: 3
        InterpolationFactor: 2
                            RoundMode: 'floor'
            PersistentMemory: false
```

```
            States: Integrator: [3\times1 States]
                                    Comb: [3x1 States]
    NumSamplesProcessed: 0
        InputWordLength: 8
SectionWordLengthMode: 'MinWordLengths'
    OutputWordLength: 8
```


See Also

mfilt
dfilt in the Signal Processing Toolbox documentation

Purpose

Return a vector of filters for the cumulative sections

Syntax
Description

Examples

```
h = cumsec(hd)
h = cumsec(hd,indices)
h = cumsec(hd,indices,secondary)
cumsec(hd)
```

$h=$ cumsec (hd) returns a vector h of SOS filter objects with the cumulative sections. Each element in h is a filter with the structure of the original filter. The first element is the first filter section of hd. The second element of h is a filter that represents the combination of the first and second sections of hd. The third element of h is a filter which combines sections 1,2 and 3 of hd. this pattern continues until the final element of h contains all the sections of $h d$ and should be identical to hd.
$\mathrm{h}=$ cumsec (hd, indices) returns a vector h of SOS filter objects whose indices into the original filter are in the vector indices. Now you can specify the filter sections cumsec uses to compute the cumulative responses.
h = cumsec (hd,indices, secondary) when secondary is true, cumsec uses the secondary scaling points in the sections to determine where the sections should be split. This option applies only when hd is a df2sos and df1tsos filter. For these second-order section structures, the secondary scaling points refer to the scaling locations between the recursive and the nonrecursive parts of the section (the "middle" of the section). Argument secondary accepts either true or false. By default, secondary is false.
cumsec (hd, ...) without an output arguments uses FVTool to plot the magnitude response of the cumulative sections.

To demonstrate how cumsec works, this example plots the relative responses of the sections of a sixth-order filter SOS filter with three sections. Each curve adds one more section to form the filter response.

```
hs = fdesign.lowpass('n,fc',6,.4);
hd = butter(hs);
h = cumsec(hd);
hfvt = fvtool(h);
```

```
legend(hfvt,'First Section','First Two Sections','Overall
Filter');
```


[^3]Purpose

Syntax

Description

Examples

```
Reverse the filter coefficient and gain changes caused by the function normalize
```

```
denormalize(hq)
```

denormalize(hq)
denormalize(hq) reverses the coefficient changes you make when you use normalize with hq. The filter coefficients do not change if you call denormalize (hq) before you use normalize(hq). Calling denormalize more than once on a filter does not change the coefficients after the first denormalize call.
Make a quantized filter hq and normalize the filter coefficients. After normalizing the coefficients, restore them to their original values by reversing the effects of the normalize function.

```
```

d=

```
d=
    .highpass('n,fc',14,0.45)
    .highpass('n,fc',14,0.45)
    d =
    d =
            ResponseType: 'Highpass with cutoff'
            ResponseType: 'Highpass with cutoff'
            SpecificationType: 'N,Fc'
            SpecificationType: 'N,Fc'
            Description: {2x1 cell}
            Description: {2x1 cell}
        NormalizedFrequency: true
        NormalizedFrequency: true
            Fs: 'Normalized'
            Fs: 'Normalized'
            FilterOrder: 14
            FilterOrder: 14
            Fcutoff: 0.4500
            Fcutoff: 0.4500
hd=butter(d)
hd=butter(d)
hd =
hd =
            FilterStructure: 'Direct-Form II, Second-Order Sections'
            FilterStructure: 'Direct-Form II, Second-Order Sections'
                Arithmetic: 'double'
                Arithmetic: 'double'
                    sosMatrix: [7x6 double]
                    sosMatrix: [7x6 double]
            ScaleValues: [8x1 double]
            ScaleValues: [8x1 double]
            PersistentMemory: false
            PersistentMemory: false
                    States: [2x7 double]
                    States: [2x7 double]
    NumSamplesProcessed: 0
```

 NumSamplesProcessed: 0
    ```
```

hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [7x6 double]
ScaleValues: [8x1 double]
PersistentMemory: false
States: [1x1 embedded.fi]
NumSamplesProcessed: 0

```
CoeffWordLength: ..... 16
CoeffAutoScale: true
```Signed: true
```

InputWordLength: ..... 16
InputFracLength: ..... 15
StageInputWordLength: ..... 16
StageInputAutoScale: true
StageOutputWordLength: ..... 16
StageOutputAutoScale: ..... true
OutputWordLength: ..... 16

```OutputMode: 'AvoidOverflow'
```

StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'

## OverflowMode: 'wrap'

```
hq=hd;
g=normalize(hq)
g =
 2
 2
 2
 2
 2
 2
 2
hq.SosMatrix
ans =
\begin{tabular}{llllll}
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.2817 & 0.8008 \\
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.2359 & 0.5081 \\
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.2051 & 0.3110 \\
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.1842 & 0.1776 \\
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.1704 & 0.0892 \\
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.1619 & 0.0350 \\
0.5000 & -1.0000 & 0.5000 & 1.0000 & -0.1579 & 0.0093
\end{tabular}
denormalize(hq)
hq.SosMatrix
ans =
\begin{tabular}{llllll}
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.2817 & 0.8008 \\
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.2359 & 0.5081 \\
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.2051 & 0.3110 \\
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.1842 & 0.1776 \\
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.1704 & 0.0892 \\
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.1619 & 0.0350 \\
1.0000 & -2.0000 & 1.0000 & 1.0000 & -0.1579 & 0.0093
\end{tabular}
```


## denormalize

## See Also

normalize

## designmethods

```
Purpose Return the filter design methods available for designing a filter from a filter design object
```

Syntax

designmethods(d)

```
designmethods(d)
```

Description

## Examples

```
Return the filter design methods available for designing a filter from a filter
designmethods (d) returns a list of the design methods available for the filter design object d with its SpecificationType. When you change the SpecificationType for a filter design object, the methods available to design filters from the object change.
Construct a lowpass object and determine the design methods available to design a filter from the object.
```

FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'double'

```
```

d=fdesign.lowpass('n,fc', 10,12000,48000)

```
d=fdesign.lowpass('n,fc', 10,12000,48000)
d =
d =
 ResponseType: 'Lowpass with cutoff'
 ResponseType: 'Lowpass with cutoff'
 SpecificationType: 'N,Fc'
 SpecificationType: 'N,Fc'
 Description: {2x1 cell}
 Description: {2x1 cell}
 NormalizedFrequency: false
 NormalizedFrequency: false
 Fs: 48000
 Fs: 48000
 FilterOrder: 10
 FilterOrder: 10
 Fcutoff: 12000
 Fcutoff: 12000
>> designmethods(d)
>> designmethods(d)
Design Methods for class fdesign.lowpass:
Design Methods for class fdesign.lowpass:
butter
butter
hd=butter(d)
hd=butter(d)
hd =
```

hd =

```

\section*{designmethods}
```

            sosMatrix: [5x6 double]
            ScaleValues: [6x1 double]
    PersistentMemory: false
States: [2x5 double]
NumSamplesProcessed: 0

```

Now change the SpecificationType string for \(d\) to ' \(n\), fst, ast' and determine the design methods that apply.
```

set(d,'specificationtype','n,fst,ast');
d
d =
ResponseType: 'Lowpass with stopband-edge specifications'
SpecificationType: 'N,Fst,Ast'
Description: {3x1 cell}
NormalizedFrequency: false
Fs: 48000
FilterOrder: 10
Fstop: 12000
Astop: 60
designmethods(d)
Design Methods for class fdesign.lowpass:
cheby2
hd=cheby2(d)
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [5x6 double]
ScaleValues: [6x1 double]
PersistentMemory: false
States: [2x5 double]
NumSamplesProcessed: 0

```

See Also butter, cheby1, cheby2, ellip, equiripple, kaiserwin
\begin{tabular}{|c|c|}
\hline Purpose & Construct a discrete-time, coupled-allpass, lattice filter object-either floating-point or fixed-point \\
\hline Syntax & \[
\begin{aligned}
& \text { hd }=\text { dfilt.calattice(k1,k2, beta) } \\
& \text { hd }=\text { dfilt.calattice }
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
hd = dfilt.calattice(k1, k2, beta) returns a discrete-time, coupled-allpass, lattice filter object hd, which is two allpass, lattice filter structures coupled together. The lattice coefficients for each structure are vectors k1 and k2. Input argument beta is shown in the diagram below. \\
hd = dfilt.calattice returns a default, discrete-time coupled-allpass, lattice filter object, hd. The default values are k1 = k2 = [], which is the default value for dfilt.latticeallpass, and beta \(=1\). This filter passes the input through to the output unchanged.
\end{tabular} \\
\hline
\end{tabular}

Example
Specify a third-order lattice coupled-allpass filter structure for a dfilt filter, hd with the following code.
```

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calattice(k1,k2,beta)
k1 =
0.9511 + 0.3088i
0.7511 + 0.1158i

```
```

k2 =
0.7502 - 0.1218i
beta =
0.1385 + 0.9904i
hd =
FilterStructure: 'Coupled-Allpass Lattice'
Allpass1: [2x1 double]
Allpass2: 0.7502- 0.1218i
Beta: 0.1385+ 0.9904i
PersistentMemory: false
States: [3\times1 double]
NumSamplesProcessed: 0

```

Notice that the Allpass1 and Allpass2 properties store vectors of coefficients.
hd.Allpass1
ans =
 \(0.9511+0.3088 i\)
 \(0.7511+0.1158 i\)
dfilt.calatticepc
dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox documentation
\begin{tabular}{|c|c|}
\hline Purpose & Construct a discrete-time, coupled-allpass, power-complementary lattice filter object-either floating-point or fixed-point \\
\hline Syntax & ```
hd = dfilt.calatticepc(k1,k2,beta)
hd = dfilt.calatticepc
``` \\
\hline Description & \begin{tabular}{l}
hd = dfilt.calatticepc(k1,k2) returns a discrete-time, coupled-allpass, lattice filter object hd, with power-complementary output. This object is two allpass lattice filter structures coupled together to produce complementary output. The lattice coefficients for each structure are vectors, k 1 and k2, respectively. beta is shown in the diagram below \\
hd = dfilt.calatticepc returns a default, discrete-time, coupled-allpass, lattice filter object hd, with power-complementary output. The default values are \(\mathrm{k} 1=\mathrm{k} 2=[]\), which is the default value for the dfilt.latticeallpass. The default for beta=1. This filter passes the input through to the output unchanged.
\end{tabular} \\
\hline
\end{tabular}
calatticepc
(Coupled Allpass Lattice, Power Complementary output)


\section*{Example}

Specify a third-order lattice coupled-allpass power complementary filter structure for a filter hd with the following code. You see from the returned properties that Allpass1 and Allpass2 contain vectors of coefficients for the constituent filters.
```

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calatticepc(k1,k2,beta)
k1 =
0.9511 + 0.3088i
0.7511 + 0.1158i

```
```

k2 =
0.7502 - 0.1218i
beta =
0.1385 + 0.9904i
hd =
FilterStructure: 'Coupled-Allpass Lattice, Power
Complementary Output'
Allpass1: [2x1 double]
Allpass2: 0.7502- 0.1218i
Beta: 0.1385+ 0.9904i
PersistentMemory: false
States: [3x1 double]
NumSamplesProcessed: 0

```

To see the coefficients for Allpass1, check the property values.
```

get(hd,'Allpass1')
ans =
0.9511 + 0.3088i
0.7511 + 0.1158i

```

\section*{See Also}
dfilt.calattice
dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox documentation

\section*{Purpose}

Construct a cascade of discrete-time filter objects
Syntax Refer to dfilt.cascade in the Signal Processing Toolbox for more information.

\section*{Examples}
```

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
h1=dfilt.df2t(b1,a1);
h2=dfilt.df2t(b2,a2);
hcas=dfilt.cascade(h1,h2) % Bandpass with passband 0.4-0.6
hcas =
Filterstructure: Cascade
Section(1): Direct Form II Transposed
Section(2): Direct Form II Transposed
PersistentMemory: false

```

NumSamplesProcessed: 0
To view details of one section, use
```

hcas.section(1)
ans =
FilterStructure: 'Direct Form II Transposed'
Arithmetic: 'double
Numerator: [1x9 double]
Denominator: [1x9 double]
PersistentMemory: false
States: [8x1 double]
NumSamplesProcessed: 0

```
```

Purpose
Syntax Refer to dfilt.df1 in the Signal Processing Toolbox.
Construct a discrete-time, direct-form I filter object for fixed-point and single-precision floating-point filtering
Refer to dfilt.df1 in the Signal Processing Toolbox.
hd = dfilt.df1 returns a default discrete-time, direct-form I filter object that uses double-precision arithmetic. By default, the numerator and denominator coefficients b and a are set to 1 . With these coefficients the filter passes the input to the output without changes.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');

```

For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.

Note a(1), the leading denominator coefficient, cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the direct-form I filter implemented by dfilt.df1. To help you see how the filter processes the coefficients, input, output, and states of the filter, as well as numerical operations, the figure includes the locations of the arithmetic and data type format elements within the signal flow.


\section*{Notes About the Signal Flow Diagram}

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.
\begin{tabular}{|c|c|c|c|}
\hline Signal Flow Label & Word Length Property & Fraction Length Property & Related Properties \\
\hline DenAccumFormat & AccumWordLength & DenAccumFracLength & AccumMode, CastBeforeSum \\
\hline DenFormat & CoeffWordLength & DenFracLength & CoeffAutoScale, Signed, Denominator \\
\hline DenProdFormat & CoeffWordLength & DenProdFracLength & ProductMode, ProductWordLength \\
\hline InputFormat & InputWordLength & InputFracLength & \\
\hline NumAccumFormat & AccumWordLength & NumAccumFracLength & AccumMode, CastBeforeSum \\
\hline NumFormat & CoeffWordLength & NumFracLength & CoeffAutoScale, Signed, Numerator \\
\hline NumProdFormat & CoeffWordLength & NumProdFracLength & ProductWordLength, ProductMode \\
\hline OutputFormat & OutputWordLength & OutputFracLength & OutputMode \\
\hline
\end{tabular}

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

Properties In this table you see the properties associated with df1 implementations of
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.
\begin{tabular}{ll}
\hline Property Name & Brief Description \\
\hline AccumMode & \begin{tabular}{l} 
Determines how the accumulator outputs stored \\
values. Choose from full precision \\
(FullPrecision), or whether to keep the most \\
significant bits (KeepMSB) or least significant bits \\
(KeepLSB) when output results need shorter \\
word length than the accumulator supports. To \\
let you set the word length and the precision (the \\
fraction length) used by the output from the \\
accumulator, set AccumMode to \\
SpecifyPrecision.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Sets the word length used to store data in the \\
accumulator/buffer.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l} 
Defines the arithmetic the filter uses. Gives you \\
the options double, single, and fixed. In short, \\
this property defines the operating mode for \\
your filter.
\end{tabular} \\
\hline CastBeforeSum & \begin{tabular}{l} 
Specifies whether to cast numeric data to the \\
appropriate accumulator format (as shown in \\
the signal flow diagrams) before performing sum \\
operations.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Brief Description \\
\hline CoeffAutoScale & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength and \\
DenFracLength properties to specify the \\
precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline DenAccumFracLength & \begin{tabular}{l} 
Specifies the fraction length the filter algorithm \\
uses to interpret the results of product \\
operations involving denominator coefficients. \\
You can change the value for this property when \\
you set AccumMode to SpecifyPrecision.
\end{tabular} \\
\hline DenFracLength & \begin{tabular}{l} 
Set the fraction length the filter uses to \\
interpret denominator coefficients. \\
DenFracLength is always available, but it is \\
read-only until you set CoeffAutoScale to \\
false.
\end{tabular} \\
\hline Denominator & \begin{tabular}{l} 
Stores the denominator coefficients for the IIR \\
filter.
\end{tabular} \\
\hline DenProdFracLength & \begin{tabular}{l} 
Specifies how the filter algorithm interprets the \\
results of product operations involving \\
denominator coefficients. You can change this \\
property value when you set ProductMode to \\
SpecifyPrecision.
\end{tabular} \\
\hline FilterStructure & \begin{tabular}{l} 
Describes the signal flow for the filter object, \\
including all of the active elements that perform \\
operations during filtering-gains, delays, sums, \\
products, and input/output.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline & \begin{tabular}{l} 
InputFracLength
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Property Name & Brief Description \\
\hline InputWordLength & \begin{tabular}{l} 
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumAccumFracLength & \begin{tabular}{l} 
Specifies how the filter algorithm interprets the \\
results of addition operations involving \\
numerator coefficients. You can change the value \\
of this property after you set AccumMode to \\
SpecifyPrecision.
\end{tabular} \\
\hline Numerator & \begin{tabular}{l} 
Holds the numerator coefficient values for the \\
filter.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l} 
Sets the fraction length used to interpret the \\
value of numerator coefficients.
\end{tabular} \\
\hline NumProdFracLength & \begin{tabular}{l} 
Specifies how the filter algorithm interprets the \\
results of product operations involving \\
numerator coefficients. Available to be changed \\
when you set ProductMode to
\end{tabular} \\
\hline SpecifyPrecision.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Brief Description \\
\hline OverflowMode & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic). \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular} \\
\hline ProductMode & \begin{tabular}{l} 
Determines how the filter handles the output of \\
product operations. Choose from full precision \\
(FullPrecision), or whether to keep the most \\
significant bit (KeepMSB) or least significant bit \\
(KeepLSB) in the result when you need to shorten \\
the data words. For you to be able to set the \\
precision (the fraction length) used by the output \\
from the multiplies, you set ProductMode to \\
SpecifyPrecision.
\end{tabular} \\
\hline ProductWordLength & \begin{tabular}{l} 
Specifies the word length to use for \\
multiplication operation results. This property \\
becomes writable (you can change the value) \\
when you set ProductMode to
\end{tabular} \\
SpecifyPrecision.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Brief Description \\
\hline RoundMode & \begin{tabular}{l} 
Sets the mode the filter uses to quantize \\
numeric values when the values lie between \\
representable values for the data format (word \\
and fraction lengths).
\end{tabular} \\
& \begin{tabular}{l} 
- convergent—Round up to the next allowable \\
quantized value.
\end{tabular} \\
& \begin{tabular}{l} 
- ceil—Round to the nearest allowable \\
quantized value. Numbers that are exactly
\end{tabular} \\
& \begin{tabular}{l} 
halfway between the two nearest allowable \\
quantized values are rounded up only if the
\end{tabular} \\
least significant bit (after rounding) would be \\
set to 1.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Brief Description \\
\hline Signed & \begin{tabular}{l} 
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
This property contains the filter states before, \\
during, and after filter operations. States act as \\
filter memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to filtstates in your Signal \\
Processing Toolbox documentation or in the Help \\
system.
\end{tabular} \\
\hline
\end{tabular}

Specify a second-order direct-form I structure for a dfilt object, hd, with the following code:
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1(b,a)
hd =

```
```

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]
 NumSamplesProcessed: 0

```

Now convert hd to a fixed-point filter:
```

set(hd,'arithmetic','fixed')
hd
hd =

```

\footnotetext{
FilterStructure: 'Direct-Form I'
}
Arithmetic: 'fixed'Numerator: [0.3000 0.6000 0.3000]Denominator: [1 0 0.2000]PersistentMemory: false
States: Numerator: [2x1 fi]Denominator:[2x1 fi]
NumSamplesProcessed: 0
CoeffWordLength: ..... 16
CoeffAutoScale: trueSigned: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputFracLength: ..... 15
ProductMode: 'FullPrecision
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
See Alsodfilt, dfilt.df1t, dfilt.df2, dfilt.df2t

Purpose

Syntax
Description

Construct a fixed-point or single-precision floating-point discrete-time, direct-form I filter object that uses second-order sections

Refer to dfilt.df1sos in the Signal Processing Toolbox.
hd = dfilt.df1sos(s) returns a discrete-time, second-order section, direct-form I filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.df1sos(b1,a1,b2, a2, ...) returns a discrete-time, second-order section, direct-form I filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, and so on.
hd = dfilt.df1sos (...,g) includes a gain vector \(g\). The elements of \(g\) are the gains for each section. The maximum length of \(g\) is the number of sections plus one. When you do not specify \(g\), all gains default to one.
hd = dfilt.df1sos returns a default, discrete-time, second-order section, direct-form I filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the direct-form I filter implemented in second-order sections by dfilt.df1sos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.
\begin{tabular}{ll|l|l}
\hline Signal Flow Label & \begin{tabular}{l} 
Word Length \\
Property
\end{tabular} & \begin{tabular}{l} 
Fraction Length \\
Property
\end{tabular} & Related Properties \\
\hline DenAccumFormat & AccumWordLength & DenAccumFracLength & \begin{tabular}{l} 
AccumMode, \\
CastBeforeSum
\end{tabular} \\
\hline DenFormat & CoeffWordLength & DenFracLength & \begin{tabular}{l} 
CoeffAutoScale, \\
Signed, Denominator
\end{tabular} \\
\hline DenProdFormat & CoeffWordLength & DenProdFracLength & \begin{tabular}{l} 
ProductMode, \\
ProductWordLength
\end{tabular} \\
\hline DenStateFormat & DenStateWordLength & DenStateFracLength & CastBeforeSum, States \\
\hline InputFormat & InputWordLength & InputFracLength & NumAccumFracLength \\
\hline NumAccumFormat & AccumWordLength & \begin{tabular}{l} 
AccumMode, \\
CastBeforeSum
\end{tabular} \\
\hline NumFormat & CoeffWordLength & NumFracLength & \begin{tabular}{l} 
CoeffAutoScale, \\
Signed, Numerator
\end{tabular} \\
\hline NumProdFormat & CoeffWordLength & NumProdFracLength & \begin{tabular}{l} 
ProductWordLength, \\
ProductMode
\end{tabular} \\
\hline NumStateFormat & NumStateWordLength & NumStateFracLength & States \\
\hline OutputFormat & OutputWordLength & OutputFracLength & OutputMode \\
\hline ScaleValueFormat & CoeffWordLength & ScaleValueFracLength & \begin{tabular}{l} 
CoeffAutoScale, \\
ScaleValues
\end{tabular} \\
\hline
\end{tabular}

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the

DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

\section*{Properties}

In this table you see the properties associated with SOS implementation of direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.
\begin{tabular}{ll}
\hline Property Name & Brief Description \\
\hline AccumMode & \begin{tabular}{l} 
Determines how the accumulator outputs \\
stored values. Choose from full precision \\
(FullPrecision), or whether to keep the \\
most significant bits (KeepMSB) or least \\
significant bits (KeepLSB) when output \\
results need shorter word length than the \\
accumulator supports. To let you set the \\
word length and the precision (the fraction \\
length) used by the output from the \\
accumulator, set AccumMode to \\
SpecifyPrecision.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Sets the word length used to store data in \\
the accumulator/buffer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Brief Description \\
\hline Arithmetic & \begin{tabular}{l} 
Defines the arithmetic the filter uses. Gives \\
you the options double, single, and fixed. \\
In short, this property defines the operating \\
mode for your filter.
\end{tabular} \\
\hline CastBeforeSum & \begin{tabular}{l} 
Specifies whether to cast numeric data to the \\
appropriate accumulator format (as shown \\
in the signal flow diagrams) before \\
performing sum operations.
\end{tabular} \\
\hline CoeffAutoScale & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to \\
represent filter coefficients without \\
overflowing. Turning this off by setting the \\
value to false enables you to change the
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
NumFracLength and DenFracLength \\
properties to specify the precision used.
\end{tabular} \\
\hline DenAccumFracLength & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline DenFracLength & \begin{tabular}{l} 
Specifies the fraction length used to \\
interpret data in the accumulator used to \\
hold the results of sum operations. You can \\
change the value for this property when you
\end{tabular} \\
set AccumMode to SpecifyPrecision.
\end{tabular}
\(\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\
\hline \text { DenStateFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\
\text { interpret the states associated with } \\
\text { denominator coefficients in the filter. }\end{array} \\
\hline \text { DenStateWordLength } & \begin{array}{l}\text { Specifies the word length used to represent } \\
\text { the states associated with denominator } \\
\text { coefficients in the filter. }\end{array} \\
\hline \text { FilterStructure } & \begin{array}{l}\text { Describes the signal flow for the filter object, } \\
\text { including all of the active elements that } \\
\text { perform operations during filtering-gains, } \\
\text { delays, sums, products, and input/output. }\end{array} \\
\hline \text { InputFracLength } & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\
\text { interpret input data. }\end{array} \\
\hline \text { NumAccumFracLength } & \begin{array}{l}\text { Specifies the word length applied to } \\
\text { interpret input data. }\end{array} \\
\hline \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\
\text { the results of addition operations involving }\end{array} \\
\hline \text { numerator coefficients. You can change the } \\
\text { value of this property after you set }\end{array}\right\}\)\begin{tabular}{l} 
AccumMode to SpecifyPrecision.
\end{tabular}
\(\left.\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\
\hline \text { NumStateFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\
\text { interpret the states associated with } \\
\text { numerator coefficient operations in the filter. }\end{array} \\
\hline \text { NumWordFracLength } & \begin{array}{l}\text { Specifies the word length used to interpret } \\
\text { the states associated with numerator } \\
\text { coefficient operations in the filter. }\end{array} \\
\hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\
\text { filter output data. You can change the value } \\
\text { of OutputFracLength when you set } \\
\text { OutputMode to SpecifyPrecision. }\end{array} \\
\hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\
\text { filtered data for output. You have the } \\
\text { following choices: }\end{array} \\
\text { - Avoid0verflow-directs the filter to set } \\
\text { the output data word length and fraction } \\
\text { length to avoid causing the data to } \\
\text { overflow. }\end{array}\right\} \begin{array}{l}\text { - BestPrecision-directs the filter to set } \\
\text { the output data word length and fraction } \\
\text { length to maximize the precision in the } \\
\text { output data. }\end{array}\right\} \begin{array}{l}\text { - SpecifyPrecision-lets you set the } \\
\text { word and fraction lengths used by the } \\
\text { output data from filtering. }\end{array}\right\}\)\begin{tabular}{l} 
Determines the word length applied for the \\
output data.
\end{tabular}
\begin{tabular}{ll}
\hline Property Name & Brief Description \\
\hline OverflowMode & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose \\
from either saturate (limit the output to the \\
largest positive or negative representable \\
value) or wrap (set overflowing values to the \\
nearest representable value using modular \\
arithmetic). The choice you make affects \\
only the accumulator and output arithmetic. \\
Coefficient and input arithmetic always \\
saturates. Finally, products never overflow- \\
they maintain full precision.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Determines how the filter handles the \\
output of product operations. Choose from \\
full precision (FullPrecision), or whether to \\
keep the most significant bit (KeepMSB) or \\
least significant bit (KeepLSB) in the result \\
when you need to shorten the data words.
\end{tabular} \\
\hline \begin{tabular}{l} 
For you to be able to set the precision (the \\
fraction length) used by the output from the \\
multiplies, you set ProductMode to
\end{tabular} \\
SpecifyPrecision.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Brief Description \\
\hline RoundMode & \begin{tabular}{l} 
Sets the mode the filter uses to quantize \\
numeric values when the values lie between \\
representable values for the data format \\
(word and fraction lengths).
\end{tabular} \\
& \begin{tabular}{l} 
- convergent-Round up to the next \\
allowable quantized value.
\end{tabular} \\
& \begin{tabular}{l} 
- ceil—Round to the nearest allowable \\
quantized value. Numbers that are exactly
\end{tabular} \\
& \begin{tabular}{l} 
halfway between the two nearest allowable \\
quantized values are rounded up only if the
\end{tabular} \\
least significant bit (after rounding) would \\
be set to 1.
\end{tabular}
\(\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { Signed } & \begin{array}{l}\text { Specifies whether the filter uses signed or } \\ \text { unsigned fixed-point coefficients. Only } \\ \text { coefficients reflect this property setting. }\end{array} \\ \hline \text { SosMatrix } & \begin{array}{l}\text { Holds the filter coefficients as property } \\ \text { values. Displays the matrix in the format } \\ \text { [sections x coefficients/section datatype]. }\end{array} \\ & \begin{array}{l}\text { A [15x6 double] SOS matrix represents a } \\ \text { filter with 6 coefficients per section and 15 } \\ \text { sections, using data type double to represent } \\ \text { the coefficients. }\end{array} \\ \hline \text { States } & \begin{array}{l}\text { This property contains the filter states } \\ \text { before, during, and after filter operations. }\end{array} \\ & \begin{array}{l}\text { States act as filter memory between filtering } \\ \text { runs or sessions. Notice that the states use } \\ \text { fi objects, with the associated properties } \\ \text { from those objects. For details, refer to }\end{array} \\ \text { filtstates in your Signal Processing } \\ \text { Toolbox documentation or in the Help } \\ \text { system. }\end{array}\right]\)

\section*{Examples}

Specify a fixed-point, second-order section, direct-form I dfilt object with the following code:
```

b=[[0.3 0.6 0.3];
a=[1 0 0.2];
hd=dfilt.df1sos(b,a)
hd =

```
```

FilterStructure: 'Direct-Form I, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
ScaleValues: [2x1 double]

```
PersistentMemory: false
```States: Numerator: [2x1 double]Denominator:[2x1 double]NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =
```

FilterStructure: 'Direct-Form I, Second-Order Sections' ScaleValues: [2x1 double] Arithmetic: 'fixed'

```
 sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 fi]
 Denominator:[2x1 fi]
NumSamplesProcessed: 0
```

CoeffWordLength: ..... 16
CoeffAutoScale: true

```Signed: true
```

InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow
NumStateWordLength: ..... 16
NumStateFracLength: ..... 15
DenStateWordLength: ..... 16
DenStateFracLength: ..... 15
ProductMode: 'FullPrecision
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true

See Also dfilt, dfilt.df2tsos

## Purpose <br> Syntax <br> Refer to dfilt.df1t in the Signal Processing Toolbox. <br> Construct a discrete-time, direct-form I transposed filter object that uses fixed-point or single-precision floating-point arithmetic <br> hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter object hd, with numerator coefficients $b$ and denominator coefficients $a$. <br> Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows: <br> - To change to single-precision filtering, enter <br> set(hd,'arithmetic','single'); <br> - To change to fixed-point filtering, enter set(hd,'arithmetic','fixed'); <br> For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22. <br> hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed filter object hd, with $b=1$ and $a=1$. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the transposed direct-form I filter implemented by dfilt.df1t. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
DenStateFormat	DenStateWordLength	DenStateFracLength	CastBeforeSum, States
InputFormat	InputWordLength	InputFracLength	
MultiplicandFormat	MultiplicandWordLength	MultiplicandFracLength	CastBeforeSum
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed,   Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
NumStateFormat	NumStateWordLength	NumStateFracLength	States   OutputFormat
OutputWordLength	OutputFracLength	OutputMode	

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

In this table you see the properties associated with df1t implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.


Property Name	Brief Description
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.
DenFracLength is always available, but it is	
read-only until you set CoeffAutoScale to	
false.	


Property Name	Brief Description
DenStateFracLength	Specifies the fraction length used to   interpret the states associated with   denominator coefficients in the filter.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
MultiplicandFracLength	Sets the fraction length for values   (multiplicands) used in multiply operations   in the filter.
MultiplicandWordLength	Sets the word length applied to the values   input to a multiply operation (the   multiplicands).
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set
AccumMode to SpecifyPrecision.	


Property Name	Brief Description
NumProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   numerator coefficients. Available to be   changed when you set ProductMode to   SpecifyPrecision.
NumSamplesProcessed	Reports the number of samples actually   processed by the filter in a filtering   operation. When PersistentMemory is   false, this property reports the number of   samples filtered for each input data set.   Setting PersistentMemory to true causes   this property to report the total number of   samples processed for all data sets, not each   one.
NumStateFracLength	For IIR filters, this defines the binary point   location applied to the numerator states of   the filter. Specifies the fraction length used   to interpret the states associated with   numerator coefficient operations in the filter.
OutputFracLength	Determines how the filter interprets the   filter output data. You can change the value   of OutputFracLength when you set   OutputMode to SpecifyPrecision.

$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly   halfway between the two nearest allowable   quantized values are rounded up only if   the least significant bit (after rounding)
would be set to 1.	


Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a second-order direct-form I transposed filter structure for a dfilt object, hd, with the following code:

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)
hd =
 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]
 NumSamplesProcessed: 0
```

Now convert the filter to single-precision filtering arithmetic.

```
set(hd,'arithmetic','single')
hd
hd =
```

FilterStructure: 'Direct-Form I Transposed'Arithmetic: 'fixed'Numerator: [0.3000 0.6000 0.3000]
Denominator: [1 0 0.2000]
PersistentMemory: false
States: Numerator: [2x1 fi]
Denominator:[2x1 fi]
NumSamplesProcessed: 0
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow
MultiplicandWordLength: ..... 16
MultiplicandFracLength: ..... 15
StateWordLength: ..... 16
StateAutoScale: true
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: 40CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'dfilt, dfilt.df1, dfilt.df2, dfilt.df2t
See Also

## Purpose <br> Syntax <br> Description <br> Construct a discrete-time, second-order section, direct-form I transposed filter object that uses fixed-point or single-precision floating-point arithmetic <br> Refer to dfilt.df1tsos in the Signal Processing Toolbox. <br> hd = dfilt.df1tsos(s) returns a discrete-time, second-order section, direct-form I, transposed filter object hd, with coefficients given in the s matrix. <br> Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows: <br> - To change to single-precision filtering, enter <br> set(hd, 'arithmetic','single'); <br> - To change to fixed-point filtering, enter set(hd,'arithmetic','fixed'); <br> For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22. <br> hd = dfilt.df1tsos(b1,a1, b2, a2,...) returns a discrete-time, second-order section, direct-form I, transposed filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc. <br> hd $=d f i l t . d f 1 t \operatorname{sos}(\ldots, g)$ includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. If $g$ is not specified, all gains default to one. <br> hd = dfilt.df1tsos returns a default, discrete-time, second-order section, direct-form I, transposed filter object, hd. This filter passes the input through to the output unchanged. <br> Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the direct-form I transposed filter implemented using second-order sections by dfilt.df1tsos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Relafed Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
DenStateFormat	DenStateWordLength	DenStateFracLength	CastBeforeSum, States
InputFormat	InputWordLength	InputFracLength	
MultiplicandFormat	MultiplicandWordLength	MultiplicandFracLength	CastBeforeSum
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed,   Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
NumStateFormat	NumStateWordLength	NumStateFracLength	States
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	CoeffAutoScale, ScaleValues
StageInputFormat	StageInputWordLength	StageInputFracLength	StageInputAutoScale
StageOutputFormat	StageOutputWordLength	StageOutputFracLength	StageOutputAutoScale

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

In this table you see the properties associated with SOS implementation of transposed direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.


Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.   DenFracLength is always available, but it is   read-only until you set CoeffAutoScale to   false.
DenProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   denominator coefficients. You can change   this property value when you set   ProductMode to SpecifyPrecision.


Property Name	Brief Description
DenStateFracLength	Specifies the fraction length used to   interpret the states associated with   denominator coefficients in the filter.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
MultiplicandFracLength	Sets the fraction length for values   (multiplicands) used in multiply operations   in the filter.
MultiplicandWordLength	Sets the word length applied to the values   input to a multiply operation (the   multiplicands)
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set   AccumMode to SpecifyPrecision.
NumProdFracLength	Holds the numerator coefficient values for   the filter.
Specifies how the filter algorithm interprets	
the results of product operations involving	
numerator coefficients. Available to be	
changed when you set ProductMode to	
SpecifyPrecision.	


Property Name	Brief Description
NumSamplesProcessed	Reports the number of samples actually   processed by the filter in a filtering   operation. When PersistentMemory is   false, this property reports the number of   samples filtered for each input data set.   Setting PersistentMemory to true causes   this property to report the total number of   samples processed for all data sets, not each   one.
NumStateFracLength	For IIR filters, this defines the binary point   location applied to the numerator states of   the filter. Specifies the fraction length used   to interpret the states associated with   numerator coefficient operations in the filter.
NumStateWordLength	For IIR filters, this defines the word length   applied to the numerator states of the filter.   Specifies the word length used to interpret   the states associated with numerator   coefficient operations in the filter.
OutputFracLength	Determines how the filter interprets the   filter output data. You can change the value   of OutputFracLength when you set   OutputMode to SpecifyPrecision.


Property Name	Brief Description
OutputMode	Sets the mode the filter uses to scale the   filtered data for output. You have the   following choices:
- AvoidOverflow—directs the filter to set	
the output data word length and fraction	
length to avoid causing the data to	
overflow.	
-BestPrecision—directs the filter to set   the output data word length and fraction   length to maximize the precision in the   output data.	
$\quad$SpecifyPrecision-lets you set the   word and fraction lengths used by the   output data from filtering.	
OutputWordLength	Determines the word length used for the   output data.
OverflowMode	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose   from either saturate (limit the output to the   largest positive or negative representable   value) or wrap (set overflowing values to the   nearest representable value using modular   arithmetic). The choice you make affects   only the accumulator and output arithmetic.   Coefficient and input arithmetic always   saturates. Finally, products never overflow-   they maintain full precision.


Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable
	quantized values are rounded up only if
the least significant bit (after rounding)	
	would be set to 1.


Property Name	Brief Description
ScaleValues	Scaling for the filter objects in SOS filters.
Signed	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
SosMatrix	Holds the filter coefficients as property   values. Displays the matrix in the format   [sections x coefficients/section datatype].   A [15x6 double] SOS matrix represents a   filter with 6 coefficients per section and 15   sections, using data type double to represent   the coefficients.
StageInputAutoScale	Tells the filter whether to set the stage input   data format to minimize the occurrence of   overflow conditions.
StageInputFracLength	Lets you set the fraction length for stage   inputs in SOS filters, if you set   StageInputAutoScale to false.
StageInputWordLength	Lets you set the word length for stage inputs   in SOS filters, if you set   StageInputAutoScale to false.
StageOutputAutoScale	Tells the filter whether to set the stage   output data format to minimize the   occurrence of overflow conditions.
StageOutputFracLength	Lets you set the fraction length for stage   outputs in SOS filters, if you set   StageOutputAutoScale to false.
StageOutputWordLength	Lets you set the word length for stage   outputs in SOS filters, if you set   StageOutputAutoScale to false.


Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

With the following code, this example specifies a second-order section, direct-form I transposed dfilt object for a filter. Then we convert the filter to fixed-point operation.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)
hd =
 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]
 NumSamplesProcessed: 0
set(hd,'arithmetic','fixed')
hd
```

hd $=$
$\left.\begin{array}{rl}\text { FilterStructure: } & \text { 'Direct-Form I Transposed' } \\ \text { Arithmetic: } & \text { fixed' } \\ \text { Numerator: } & {[0.30000 .6000} \\ 0.3000]\end{array}\right\} \begin{aligned} \text { Denominator: } & {[100.2000] } \\ \text { PersistentMemory: } & \text { false } \\ \text { States: } & \text { Numerator: }[2 \times 1 \mathrm{fi}] \\ & \text { Denominator: }[2 \times 1 \mathrm{fi}] \\ \text { NumSamplesProcessed: } & 0\end{aligned}$

CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'

MultiplicandWordLength: 16
MultiplicandFracLength: 15
StateWordLength: 16
StateAutoScale: true

ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos

Purpose	Construct a discrete-time, direct-form II filter object with fixed-point or single-precision floating-point operation
Syntax	Refer to dfilt.df2 in the Signal Processing Toolbox.
Description	hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter object hd, with numerator coefficients $b$ and denominator coefficients $a$.
	Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
	- To change to single-precision filtering, enter set(hd,'arithmetic','single');
	- To change to fixed-point filtering, enter set(hd, 'arithmetic','fixed');
	For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
	hd = dfilt.df2 returns a default, discrete-time, direct-form II filter object hd, with $b=1$ and $a=1$. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the direct-form II filter implemented by dfilt.df2. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.
For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode,   CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale,   Signed, Denominator


Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
InputFormat	InputWordLength	InputFracLength	
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode,   CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties <br> In this table you see the properties associated with the df2 implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.


Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.   DenFracLength is always available, but it is   read-only until you set CoeffAutoScale to   false.
Denominator	Holds the denominator coefficients for IIR   filters.
DenProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   denominator coefficients. You can change   this property value when you set   ProductMode to SpecifyPrecision.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
	Specifies the fraction length the filter uses to   interpret input data.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Specifies the word length applied to } \\ \text { interpret input data. }\end{array} \\ \hline \text { NumAccumFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of addition operations involving } \\ \text { numerator coefficients. You can change the } \\ \text { value of this property after you set } \\ \text { AccumMode to SpecifyPrecision. }\end{array} \\ \hline \text { Numerator } & \begin{array}{l}\text { Holds the numerator coefficient values for } \\ \text { the filter. }\end{array} \\ \hline \text { NumFracLength } & \begin{array}{l}\text { Sets the fraction length used to interpret the } \\ \text { value of numerator coefficients. }\end{array} \\ \hline \text { NumProdFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of product operations involving } \\ \text { numerator coefficients. Available to be } \\ \text { changed when you set ProductMode to }\end{array} \\ \hline \text { SpecifyPrecision. }\end{array}\right\}$
$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\} \begin{array}{l}\text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if   the least significant bit (after rounding)
would be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a second-order direct-form II filter structure for a dfilt object, hd, with the following code:

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2(b,a)
hd =
 FilterStructure: 'Direct Form II'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 NumberOfSamplesProcessed: 0
 ResetStates: 'on'
 States: [2x1 double]
```

To convert the filter to fixed-point arithmetic, change the value of the Arithmetic property

```
set(hd,'arithmetic','fixed')
```

to specify the fixed-point option.

## See Also

```
dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t
```

Purpose Construct a discrete-time, second-order section, direct-form II filter object that allows fixed-point or single-precision floating-point arithmetic
Refer to dfilt.df2sos in the Signal Processing Toolbox.
hd = dfilt.df2sos(s) returns a discrete-time, second-order section, direct-form II filter object hd, with coefficients given in the s matrix.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.df2sos(b1,a1, b2, a2,...) returns a discrete-time, second-order section, direct-form II object, hd, with coefficients for the first section given in the b 1 and a 1 vectors, for the second section given in the b 2 and a 2 vectors, etc.
hd = dfilt.df2sos (...,g) includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. If g is not specified, all gains default to one.
hd = dfilt.df2sos returns a default, discrete-time, second-order section, direct-form II filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the direct-form II filter implemented with second-order sections by dfilt.df2sos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length Property	Fraction Length Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed, sosMatrix
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode, ProductWordLength, sosMatrix
InputFormat	InputWordLength	InputFracLength	
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed, sosMatrix
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength, ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	CoeffAutoScale, ScaleValues
StageInputFormat	StageInputWordLength	StageInputFracLength	StageInputAutoScale
StageOutputFormat	StageOutputWordLength	StageOutputFracLength	StageOutputAutoScale
StateFormat	StateWordLength	StateFracLength	CastBeforeSum, States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties

In this table you see the properties associated with second-order section implementation of direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.


Property Name	Brief Description
CastBeforeSum	Specifies whether to cast numeric data to the   appropriate accumulator format (as shown   in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.
DenFracLength is always available, but it is	
read-only until you set CoeffAutoScale to	
false.	

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { InputFracLength } & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\ \text { interpret input data. }\end{array} \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Specifies the word length applied to } \\ \text { interpret input data. }\end{array} \\ \hline \text { NumAccumFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of addition operations involving } \\ \text { numerator coefficients. You can change the } \\ \text { value of this property after you set }\end{array} \\ \text { AccumMode to SpecifyPrecision. }\end{array}\right\}$
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { RoundMode } & \begin{array}{l}\text { Sets the mode the filter uses to quantize } \\ \text { numeric values when the values lie between } \\ \text { representable values for the data format } \\ \text { (word and fraction lengths). }\end{array} \\ & \begin{array}{l}\text { - convergent-Round up to the next } \\ \text { allowable quantized value. }\end{array} \\ & \begin{array}{l}\text { - ceil-Round to the nearest allowable } \\ \text { quantized value. Numbers that are exactly }\end{array} \\ & \begin{array}{l}\text { halfway between the two nearest allowable } \\ \text { quantized values are rounded up only if the }\end{array} \\ \text { least significant bit (after rounding) would } \\ \text { be set to 1. }\end{array}\right\}$
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { Signed } & \begin{array}{l}\text { Specifies whether the filter uses signed or } \\ \text { unsigned fixed-point coefficients. Only } \\ \text { coefficients reflect this property setting. }\end{array} \\ \hline \text { SosMatrix } & \begin{array}{l}\text { Holds the filter coefficients as property } \\ \text { values. Displays the matrix in the format } \\ \text { [sections x coefficients/section datatype]. }\end{array} \\ \text { A [15x6 double] SOS matrix represents a } \\ \text { filter with 6 coefficients per section and 15 } \\ \text { sections, using data type double to represent } \\ \text { the coefficients. }\end{array}\right\}$

Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a second-order section, direct-form II dfilt object for a Butterworth filter converted to second-order sections, with the following code:

```
[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(s,g)
hd =
```

FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'double'
sosMatrix: [15x6 double]
ScaleValues: [16x1 double]
PersistentMemory: false
States: [2x15 double]
NumSamplesProcessed: 0

With the SOS filter constructed, now change the filter operation to single-precision filtering, and then to fixed-point filtering.

```
set(hd,'arithmetic','single')
hd
hd =
```

FilterStructure: 'Direct-Form II, Second-Order Sections'

```
 Arithmetic: 'single'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 single]
 NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
```

InputWordLength: ..... 16
InputFracLength: ..... 15
StageInputWordLength: ..... 16
StageInputAutoScale: true
StageOutputWordLength: ..... 16
StageOutputAutoScale: true
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow
StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'FullPrecision'

AccumMode: 'KeepMSB'<br>AccumWordLength: 40<br>CastBeforeSum: true<br>RoundMode: 'convergent'<br>OverflowMode: 'wrap'<br>See Also<br>dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos

Fixed-Point Filter Structure

```
Purpose
Syntax Refer to dfilt.df2t in the Signal Processing Toolbox.
Description
Construct a discrete-time, direct-form II transposed filter object that can perform single-precision or fixed-point filtering
Refer to dfilt.df2t in the Signal Processing Toolbox.
hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed filter object hd, with numerator coefficients b and denominator coefficients a .
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed filter object hd, with \(b=1\) and \(a=1\). This filter passes the input through to the output unchanged.
```

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the direct-form II transposed filter implemented by dfilt.df2t. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length Property	Fraction Length Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed, Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode, ProductWordLength
InputFormat	InputWordLength	InputFracLength	
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed, Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength, ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the

## Properties

DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

In this table you see the properties associated with df2t implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { Arithmetic } & \begin{array}{l}\text { Defines the arithmetic the filter uses. Gives } \\ \text { you the options double, single, and fixed. } \\ \text { In short, this property defines the operating } \\ \text { mode for your filter. }\end{array} \\ \hline \text { CastBeforeSum } & \begin{array}{l}\text { Specifies whether to cast numeric data to the } \\ \text { appropriate accumulator format (as shown } \\ \text { in the signal flow diagrams) before } \\ \text { performing sum operations. }\end{array} \\ \hline \text { CoeffAutoScale } & \begin{array}{l}\text { Specifies whether the filter automatically } \\ \text { chooses the proper fraction length to } \\ \text { represent filter coefficients without } \\ \text { overflowing. Turning this off by setting the } \\ \text { value to false enables you to change the }\end{array} \\ \text { NumFracLength and DenFracLength } \\ \text { properties to specify the precision used. }\end{array}\right\}$

Property Name	Brief Description
DenProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   denominator coefficients. You can change   this property value when you set   ProductMode to SpecifyPrecision.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set
AccumMode to SpecifyPrecision.	


Property Name	Brief Description
NumSamplesProcessed	Reports the number of samples actually processed by the filter in a filtering operation. When PersistentMemory is false, this property reports the number of samples filtered for each input data set. Setting PersistentMemory to true causes this property to report the total number of samples processed for all data sets, not each one.
OutputFracLength	Determines how the filter interprets the filter output data. You can change the value of OutputFracLength when you set OutputMode to SpecifyPrecision.
OutputMode	Sets the mode the filter uses to scale the filtered data for output. You have the following choices:   - AvoidOverflow-directs the filter to set the output data word length and fraction length to avoid causing the data to overflow.   - BestPrecision-directs the filter to set the output data word length and fraction length to maximize the precision in the output data.   - SpecifyPrecision-lets you set the word and fraction lengths used by the output data from filtering.
OutputWordLength	Determines the word length used for the output data.


Property Name	Brief Description
OverflowMode	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose   from either saturate (limit the output to the   largest positive or negative representable   value) or wrap (set overflowing values to the   nearest representable value using modular   arithmetic). The choice you make affects   only the accumulator and output arithmetic.   Coefficient and input arithmetic always   saturates. Finally, products never overflow-   they maintain full precision.
	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.
For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to	
SpecifyPrecision.	


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

Examples
Create a fixed-point filter by specifying a second-order direct-form II transposed filter structure for a dfilt object, and then converting the double-precision arithmetic setting to fixed-point.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a)
hd =
 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [2x1 double]
 NumSamplesProcessed: 0
```

```
set(hd,'arithmetic','fixed')
hd
hd =
 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputFracLength: 15
 StateWordLength: 16
 StateAutoScale: true
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
```


## See Also

dfilt, dfilt.df1, dfilt.df1t, dfilt.df2

Purpose	Construct a fixed-point or single-precision floating-point, discrete-time,   second-order section direct-form II transposed filter object
Syntax	Refer to dfilt.df2tsos in the Signal Processing Toolbox.
Description	hd $=$ dfilt.df2sos(s) returns a discrete-time, second-order section,   direct-form II, transposed filter object hd, with coefficients given in the matrix   s.
Make this filter a fixed-point or single-precision filter by changing the value of   the Arithmetic property for the filter hd as follows:	

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.df2tsos(b1,a1, b2, a2,...) returns a discrete-time, second-order section, direct-form II, transposed filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.
hd = dfilt.df2tsos(...,g) includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. If g is not specified, all gains default to one.
hd = dfilt.df2tsos returns a default, discrete-time, second-order section, direct-form II, transposed filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the second-order section transposed direct-form II filter implemented by dfilt.dftsos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
InputFormat	InputWordLength	InputFracLength	AccumMode, CastBeforeSum
NumAccumFormat	AccumWordLength	NumAccumFracLength	CoeffAutoScale, Signed,   Numerator
NumFormat	CoeffWordLength	NumFracLength	ProductWordLength,   ProductMode
NumProdFormat	CoeffWordLength	NumProdFracLength	OutputMode
OutputFormat	OutputWordLength	OutputFracLength	CoeffAutoScale,   ScaleValues
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	StageInputAutoScale
StageInputFormat	StageInputWordLength	StageInputFracLength	StageOutputAutoScale
StageOutputFormat	StageOutputWordLength	StageOutputFracLength	States   StateFormat
StateWordLength	StateFracLength		

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties

In this table you see the properties associated with second-order section implementation of transposed direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.


Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.   DenFracLength is always available, but it is   read-only until you set CoeffAutoScale to   false.
DenProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   denominator coefficients. You can change   this property value when you set   ProductMode to SpecifyPrecision.
	Prod

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { FilterStructure } & \begin{array}{l}\text { Describes the signal flow for the filter object, } \\ \text { including all of the active elements that } \\ \text { perform operations during filtering-gains, } \\ \text { delays, sums, products, and input/output. }\end{array} \\ \hline \text { InputFracLength } & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\ \text { interpret input data. }\end{array} \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Specifies the word length applied to } \\ \text { interpret input data. }\end{array} \\ \hline \text { NumAccumFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of addition operations involving } \\ \text { numerator coefficients. You can change the } \\ \text { value of this property after you set }\end{array} \\ \text { AccumMode to SpecifyPrecision. }\end{array}\right\}$
$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. }\end{array}\right\} \begin{array}{l}\text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { RoundMode } & \begin{array}{l}\text { Sets the mode the filter uses to quantize } \\ \text { numeric values when the values lie between } \\ \text { representable values for the data format } \\ \text { (word and fraction lengths). }\end{array} \\ & \begin{array}{l}\text { - convergent-Round up to the next } \\ \text { allowable quantized value. }\end{array} \\ & \begin{array}{l}\text { - ceil-Round to the nearest allowable } \\ \text { quantized value. Numbers that are exactly }\end{array} \\ & \begin{array}{l}\text { halfway between the two nearest allowable }\end{array} \\ & \text { quantized values are rounded up only if } \\ \text { the least significant bit (after rounding) }\end{array}\right\}$
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { ScaleValues } & \text { Scaling for the filter objects in SOS filters. } \\ \hline \text { Signed } & \begin{array}{l}\text { Specifies whether the filter uses signed or } \\ \text { unsigned fixed-point coefficients. Only } \\ \text { coefficients reflect this property setting. }\end{array} \\ \hline \text { SosMatrix } & \begin{array}{l}\text { Holds the filter coefficients as property } \\ \text { values-you use set and get to modify } \\ \text { them. Displays the matrix in the format } \\ \text { [sections x coefficients/section data type]. } \\ \text { A [15x6 double] SOS matrix represents } \\ \text { a filter with 6 coefficients per section and 15 } \\ \text { sections, using data type double to represent } \\ \text { the coefficients. }\end{array} \\ \hline \text { StageInputFracLength } & \begin{array}{l}\text { Lets you set the fraction length for stage } \\ \text { inputs in SOS filters, if you set } \\ \text { StageInputAutoScale to false. }\end{array} \\ \hline \text { StageInputWordLength } & \begin{array}{l}\text { Lets you set the word length for stage inputs } \\ \text { in SOS filters, if you set }\end{array} \\ \text { StageInputAutoScale to false. }\end{array}\right\}$

Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Construct a second-order section Butterworth filter for fixed-point filtering. Start by specifying a Butterworth filter, and then convert the filter to second-order sections, with the following code:

```
[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2tsos(s,g)
hd =
```

```
 FilterStructure: [1x48 char]
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 double]
 NumSamplesProcessed: 0
```

Now change the setting of the property Arithmetic to convert the filter to fixed-point operation.

```
hd.arithmetic='fixed'
hd =
 FilterStructure: [1x48 char]
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
```

StageInputWordLength: ..... 16
StageInputFracLength: ..... 15
StageOutputWordLength: ..... 16
StageOutputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow'
StateWordLength: ..... 16
StateAutoScale: true
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true

```
RoundMode: 'convergent'
OverflowMode: 'wrap
```

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos
Fixed-Point Filter Structure
Purpose

Construct a discrete-time, direct-form antisymmetric FIR filter object for
Syntax Refer to dfilt.dfasymfir in the Signal Processing Toolbox.

Refer to dfilt.dfasymfir in the Signal Processing Toolbox.
Description fixed-point or single-precision floating-point filtering
hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, antisymmetric FIR filter object hd, with numerator coefficients b.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, antisymmetric FIR filter object hd, with $b=1$. This filter passes the input through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because dfilt.dfasymfir assumes the coefficients in the second half are antisymmetric to those in the first half. For example, in the figure coefficients, $b(4)=-b(3), b(5)=-b(2)$, and $b(6)=-b(1)$.

The figure below shows the signal flow for the odd-order antisymmetric FIR filter implemented by dfilt.dfasymfir. The even-order filter uses similar flow. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.

## dfilt.dfasymfir



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	
InputFormat	InputWordLength	InputFracLength	
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
OutputFormat	OutputWordLength	OutputFracLength	
ProductFormat	ProductWordLength	ProductFracLength	
TapSumFormat	InputWordLength	InputFracLength	InputFormat

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with an antisymmetric FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Name	Values	Description
AccumFracLength	Any positive or   negative integer   number of bits   [27]	Specifies the fraction length used to interpret   data output by the accumulator.
AccumWordLength	Any integer   number of bits[33]	Sets the word length used to store data in the   accumulator.
Arithmetic	fixed for   fixed-point filters	Setting this to fixed allows you to modify other   filter properties to customize your fixed-point   filter.
CoeffAutoScale	[true], false	Specifies whether the filter automatically   chooses the proper fraction length to represent   filter coefficients without overflowing. Turning   this off by setting the value to false enables you   to change the NumFracLength property value to   specify the precision used.
CoeffWordLength	Any integer   number of bits   $[16]$	Specifies the word length to apply to filter   coefficients.


Name	Values	Description
FilterInternals	[FullPrecision],   SpecifyPrecision	Controls whether the filter automatically sets   the output word and fraction lengths, product   word and fraction lengths, and the accumulator   word and fraction lengths to maintain the best   precision results during filtering. The default   value, FullPrecision, sets automatic word and   fraction length determination by the filter.   SpecifyPrecision makes the output and   accumulator-related properties available so you   can set your own word and fraction lengths for   them.
InputFracLength	Any positive or   negative integer   number of bits   [15]	Specifies the fraction length the filter uses to   interpret input data. Also controls   TapSumFracLength.
InputWordLength	Any integer   number of bits   [16]	Specifies the word length applied to interpret   input data. Also determines TapSumWordLength.
NumFracLength	Any positive or   negative integer   number of bits [14]	Sets the fraction length used to interpret the   numerator coefficients.
OutputFracLength	Any positive or   negative integer   number of bits   [29]	Determines how the filter interprets the filter   output data. You can change the value of   OutputFracLength when you set
number of bits		
[33]		


Name	Values	Description
OverflowMode	saturate, [wrap]	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose from   either saturate (limit the output to the largest   positive or negative representable value) or wrap   (set overflowing values to the nearest   representable value using modular arithmetic).   The choice you make affects only the   accumulator and output arithmetic. Coefficient   and input arithmetic always saturates. Finally,   products never overflow-they maintain full   precision.
ProductFracLength	Any positive or   negative integer   number of bits [27]	Specifies the fraction length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.
ProductWordLength	Any integer   number of bits   [33]	Specifies the word length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.


Name	Values	Description
RoundMode	[convergent], ceil,fix,floor, round	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths).   - convergent-Round up to the next allowable quantized value.   - ceil—Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1.   - fix-Round negative numbers up and positive numbers down to the next allowable quantized value.   - floor-Round down to the next allowable quantized value.   - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.   The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.


Name	Values	Description
[true], false	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.	
States	fi object to match   the filter   arithmetic setting	Contains the filter states before, during, and   after filter operations. States act as filter   memory between filtering runs or sessions.   Notice that the states use fi objects, with the   associated properties from those objects. For   details, refer to fixed-point objects in your   Fixed-Point Toolbox documentation or in the   online Help system.

## Examples

## Odd Order

Specify a fifth-order direct-form antisymmetric FIR filter structure for a dfilt object, hd, with the following code:

```
b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hd = dfilt.dfasymfir(b)
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0080 0.0600-0.4400 0.4400 -0.0600 0.0080]
 PersistentMemory: false
set(hd,'arithmetic','fixed')
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0080 0.0600-0.4400 0.4400 -0.0600 0.0080]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
```


## InputWordLength: 16

InputFracLength: 15

FilterInternals: 'FullPrecision'
Now look at the coefficients after converting hd to fixed-point format.

```
get(hd,'numerator')
ans =
 -0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080
```


## Even Order

Specify a fourth-order direct-form antisymmetric FIR filter structure for dfilt object hd, with the following code:

```
b = [-0.01 0.1 0.0 -0.1 0.01];
hd = dfilt.dfasymfir(b)
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
 PersistentMemory: false
hd.arithmetic='fixed'
hd =
```

    FilterStructure: 'Direct-Form Antisymmetric FIR'
            Arithmetic: 'fixed'
            Numerator: \([-0.01000 .10000-0.1000\) 0.0100]
    PersistentMemory: false
    CoeffWordLength: 16
        CoeffAutoScale: true
            Signed: true
    ```
 InputWordLength: 16
 InputFracLength: 15
 FilterInternals: 'FullPrecision'
get(hd,'numerator')
ans =
 -0.0100 0.1000 0 -0.1000 0.0100
```

See Also
dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfirSyntax

Fixed-Point Filter Structure
Purpose

Construct a discrete-time, fixed-point or single-precision floating-point,Refer to dfilt.dffir in the Signal Processing Toolbox.
Description

hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse direct-form FIR filter object

Refer to dfilt.dffir in the Signal Processing Toolbox. response (FIR) filter object hd, with numerator coefficients $b$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic', 'fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter object hd, with $b=1$. This filter passes the input through to the output unchanged.

The figure below shows the signal flow for the direct-form FIR filter implemented by dfilt.dffir. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| AccumFormat | AccumWordLength | AccumFracLength |  |
| InputFormat | InputWordLength | InputFracLength |  |
| NumFormat | CoeffWordLength | NumFracLength | CoeffAutoScale, <br> Signed, Numerator |
| OutputFormat | OutputWordLength | OutputFracLength |  |
| ProductFormat | ProductWordLength | ProductFracLength |  |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with direct-form FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

| Name | Values | Description |
| :--- | :--- | :--- |
| AccumFracLength | Any positive or <br> negative integer <br> number of bits <br> [30] | Specifies the fraction length used to interpret <br> data output by the accumulator. |
| AccumWordLength | Any integer <br> number of bits[34] | Sets the word length used to store data in the <br> accumulator. |
| Arithmetic | fixed for <br> fixed-point filters | Setting this to fixed allows you to modify other <br> filter properties to customize your fixed-point <br> filter. |
| CoeffAutoScale | [true], false | Specifies whether the filter automatically <br> chooses the proper fraction length to represent <br> filter coefficients without overflowing. Turning <br> this off by setting the value to false enables you <br> to change the NumFracLength property value to <br> specify the precision used. |
| CoeffWordLength | Any integer <br> number of bits <br> [16] | Specifies the word length to apply to filter <br> coefficients. |


| Name | Values | Description |
| :---: | :---: | :---: |
| FilterInternals | [FullPrecision], SpecifyPrecision | Controls whether the filter automatically sets the output word and fraction lengths, product word and fraction lengths, and the accumulator word and fraction lengths to maintain the best precision results during filtering. The default value, FullPrecision, sets automatic word and fraction length determination by the filter. SpecifyPrecision makes the output and accumulator-related properties available so you can set your own word and fraction lengths for them. |
| InputFracLength | Any positive or negative integer number of bits [15] | Specifies the fraction length the filter uses to interpret input data. |
| InputWordLength | Any integer number of bits [16] | Specifies the word length applied to interpret input data. |
| NumFracLength | Any positive or negative integer number of bits [14] | Sets the fraction length used to interpret the numerator coefficients. |
| OutputFracLength | Any positive or negative integer number of bits [32] | Determines how the filter interprets the filter output data. You can change the value of OutputFracLength when you set FilerInternals to SpecifyPrecision. |
| OutputWordLength | Any integer number of bits [39] | Determines the word length used for the output data. You make this property editable by setting FilterInternals to SpecifyPrecision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| OverflowMode | saturate, [wrap] | Sets the mode used to respond to overflow <br> conditions in fixed-point arithmetic. Choose from <br> either saturate (limit the output to the largest <br> positive or negative representable value) or wrap <br> (set overflowing values to the nearest <br> representable value using modular arithmetic). <br> The choice you make affects only the <br> accumulator and output arithmetic. Coefficient <br> and input arithmetic always saturates. Finally, <br> products never overflow-they maintain full <br> precision. |
| ProductFracLength | Any positive or <br> negative integer <br> number of bits [30] | Specifies the fraction length to use for <br> multiplication operation results. This property <br> becomes writable (you can change the value) <br> when you set ProductMode to SpecifyPrecision. |
| ProductWordLength | Any integer <br> number of bits <br> [32] | Specifies the word length to use for <br> multiplication operation results. This property <br> becomes writable (you can change the value) <br> when you set ProductMode to SpecifyPrecision. |


| Name | Values | Description |
| :---: | :---: | :---: |
| RoundMode | [convergent], ceil,fix,floor, round | Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). <br> - convergent-Round up to the next allowable quantized value. <br> - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 . <br> - fix-Round negative numbers up and positive numbers down to the next allowable quantized value. <br> - floor-Round down to the next allowable quantized value. <br> - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. <br> The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| [true ], false | Specifies whether the filter uses signed or <br> unsigned fixed-point coefficients. Only <br> coefficients reflect this property setting. |  |
| States | fi object to match <br> the filter <br> arithmetic setting | Contains the filter states before, during, and <br> after filter operations. States act as filter <br> memory between filtering runs or sessions. <br> Notice that the states use fi objects, with the <br> associated properties from those objects. For <br> details, refer to fixed-point objects in your <br> Fixed-Point Toolbox documentation or in the <br> online Help system. |

## Examples

Specify a second-order direct-form FIR filter structure for a dfilt object hd, with the following code that constructs the filter in double-precision format and then converts the filter to fixed-point operation:

```
b = [0.05 0.9 0.05];
hd = dfilt.dffir(b)
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
```

Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'FullPrecision'
hd.filterInternals='specifyPrecision'
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.0500 0.9000 0.0500]
PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'SpecifyPrecision'
OutputWordLength: ..... 34
OutputFracLength: ..... 30
ProductWordLength: ..... 32
ProductFracLength: ..... 30
AccumWordLength: ..... 34
AccumFracLength: ..... 30
RoundMode: 'convergent'OverflowMode: 'wrap'
See Alsodfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir

| Purpose | Construct a discrete-time, direct-form FIR transposed filter object for fixed-point or single-precision floating-point filtering |
| :---: | :---: |
| Syntax | Refer to dfilt.dffirt in the Signal Processing Toolbox. |
| Description | hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed filter object hd, with numerator coefficients $b$. |
|  | Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows: |
|  | - To change to single-precision filtering, enter set(hd, 'arithmetic', 'single'); |
|  | - To change to fixed-point filtering, enter set(hd,'arithmetic','fixed'); |
|  | For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22. |
|  | hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR transposed filter object hd, with $b=1$. This filter passes the input through to the output unchanged. |
| Fixed-Point Filter Structure | The figure below shows the signal flow for the transposed direct-form FIR filter implemented by dfilt.dffirt. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow. |



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| AccumFormat | AccumWordLength | AccumFracLength |  |
| InputFormat | InputWordLength | InputFracLength |  |
| NumFormat | CoeffWordLength | NumFracLength | CoeffAutoScale, Signed, <br> Numerator |
| OutputFormat | OutputWordLength | OutputFracLength |  |
| ProductFormat | ProductWordLength | ProductFracLength |  |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the transposed direct-form FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

| Name | Values | Description |
| :--- | :--- | :--- |
| AccumFracLength | Any positive or <br> negative integer <br> number of bits <br> [30] | Specifies the fraction length used to interpret <br> data output by the accumulator. |
| AccumWordLength | Any integer <br> number of bits [34] | Sets the word length used to store data in the <br> accumulator. |
| Arithmetic | fixed for <br> fixed-point filters | Setting this to fixed allows you to modify other <br> filter properties to customize your fixed-point <br> filter. |
| CoeffAutoScale | [true], false | Specifies whether the filter automatically <br> chooses the proper fraction length to represent <br> filter coefficients without overflowing. Turning <br> this off by setting the value to false enables you <br> to change the NumFracLength property value to <br> specify the precision used. |
| CoeffWordLength | Any integer <br> number of bits <br> $[16]$ | Specifies the word length to apply to filter <br> coefficients. |


| Name | Values | Description |
| :--- | :--- | :--- |
| FilterInternals | [FullPrecision], <br> SpecifyPrecision | Controls whether the filter automatically sets <br> the output word and fraction lengths, product <br> word and fraction lengths, and the accumulator <br> word and fraction lengths to maintain the best <br> precision results during filtering. The default <br> value, FullPrecision, sets automatic word and <br> fraction length determination by the filter. <br> SpecifyPrecision makes the output and <br> accumulator-related properties available so you <br> can set your own word and fraction lengths for <br> them. |
| InputFracLength | Any positive or <br> negative integer <br> number of bits <br> [15] | Specifies the fraction length the filter uses to <br> interpret input data. |
| InputWordLength | Any integer <br> number of bits <br> [16] | Specifies the word length applied to interpret <br> input data. |
| NumFracLength | Any positive or <br> negative integer <br> number of bits [14] | Sets the fraction length used to interpret the <br> numerator coefficients. |
| OutputFracLength | Any positive or <br> negative integer <br> number of bits <br> [30] | Determines how the filter interprets the filter <br> output data. You can change the value of <br> OutputFracLength when you set <br> FilerInternals to SpecifyPrecision. |
| OutputWordLength | Any integer <br> number of bits <br> [34] | Determines the word length used for the output <br> data. You make this property editable by setting <br> Filter Internals to SpecifyPrecision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| OverflowMode | saturate, [wrap] | Sets the mode used to respond to overflow <br> conditions in fixed-point arithmetic. Choose from <br> either saturate (limit the output to the largest <br> positive or negative representable value) or wrap <br> (set overflowing values to the nearest <br> representable value using modular arithmetic). <br> The choice you make affects only the |
|  |  | accumulator and output arithmetic. Coefficient <br> and input arithmetic always saturates. Finally, <br> products never overflow-they maintain full <br> precision. |
|  |  |  |


| Name | Values | Description |
| :---: | :---: | :---: |
| RoundMode | [convergent], ceil,fix,floor, round | Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). <br> - convergent-Round up to the next allowable quantized value. <br> - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. <br> - fix-Round negative numbers up and positive numbers down to the next allowable quantized value. <br> - floor-Round down to the next allowable quantized value. <br> - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. <br> The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| Signed | [true], false | Specifies whether the filter uses signed or <br> unsigned fixed-point coefficients. Only <br> coefficients reflect this property setting. |
| States | fi object to match <br> the filter <br> arithmetic setting | Contains the filter states before, during, and <br> after filter operations. States act as filter <br> memory between filtering runs or sessions. <br> Notice that the states use fi objects, with the <br> associated properties from those objects. For <br> details, refer to fixed-point objects in your <br> Fixed-Point Toolbox documentation or in the <br> online Help system. |

## Examples

Specify a second-order direct-form FIR transposed filter structure for a dfilt object, hd, with the following code:

```
b = [0.05 0.9 0.05];
hd = dfilt.dffirt(b)
hd =
 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'double'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
```

Now use the filter property Arithmetic to change the filter to fixed-point format.

```
set(hd,'arithmetic','fixed')
hd
hd =
 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
```

CoeffWordLength: ..... 16
CoeffAutoScale: ..... true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'FullPrecision
hd.filterInternals='specifyPrecision'
hd =
FilterStructure: 'Direct-Form FIR Transposed'

```Arithmetic: 'fixed'Numerator: [0.0500 0.9000 0.0500]
```

PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale: ..... true
Signed: true
InputWordLength: ..... 16
InputFracLength ..... 15
FilterInternals: 'SpecifyPrecision
OutputWordLength: ..... 34
OutputFracLength: ..... 30
ProductWordLength: ..... 32
ProductFracLength: ..... 30
AccumWordLength: ..... 34
AccumFracLength: ..... 30
RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also<br>dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir

Purpose

Construct a discrete-time, direct-form symmetric FIR filter object that usesSyntaxDescription fixed-point or single-precision floating-point filtering
Refer to dfilt.dfsymfir in the Signal Processing Toolbox.
hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR filter object hd, with numerator coefficients $b$.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric FIR filter object hd, with $b=1$. This filter passes the input through to the output unchanged.

Note Only the coefficients in the first half of vector $b$ are used because dfilt.dfsymfir assumes the coefficients in the second half are symmetric to those in the first half. In the figure below, for example, $b(3)=0, b(4)=b(2)$ and $\mathrm{b}(5)=\mathrm{b}(1)$.

Fixed-Point Filter Structure

In the following figure you see the signal flow diagram for the symmetric FIR filter that dfilt.dfsymfir implements.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	
InputFormat	InputWordLength	InputFracLength	
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
OutputFormat	OutputWordLength	OutputFracLength	
ProductFormat	ProductWordLength	ProductFracLength	
TapSumFormat	InputWordLength	InputFracLength	

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.
$\begin{array}{ll}\text { Properties } & \text { In this table you see the properties associated with the symmetric FIR } \\ \text { implementation of dfilt objects. }\end{array}$

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3..

Name	Values	Description
AccumFracLength	Any positive or   negative integer   number of bits   [27]	Specifies the fraction length used to interpret   data output by the accumulator.
AccumWordLength	Any integer   number of bits[33]	Sets the word length used to store data in the   accumulator.
Arithmetic	fixed for   fixed-point filters	Setting this to fixed allows you to modify other   filter properties to customize your fixed-point   filter.
[true], false	Specifies whether the filter automatically   chooses the proper fraction length to represent   filter coefficients without overflowing. Turning   this off by setting the value to false enables you   to change the NumFracLength property value to   specify the precision used.	
CoeffWordLength	Any integer   number of bits   [16]	Specifies the word length to apply to filter   coefficients.


Name	Values	Description
FilterInternals	[FullPrecision],   SpecifyPrecision	Controls whether the filter automatically sets   the output word and fraction lengths, product   word and fraction lengths, and the accumulator   word and fraction lengths to maintain the best   precision results during filtering. The default   value, FullPrecision, sets automatic word and   fraction length determination by the filter.   SpecifyPrecision makes the output and   accumulator-related properties available so you   can set your own word and fraction lengths for   them.
InputFracLength	Any positive or   negative integer   number of bits   [15]	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Any integer   number of bits   [16]	Specifies the word length applied to interpret   input data.
NumFracLength	Any positive or   negative integer   number of bits [14]	Sets the fraction length used to interpret the   numerator coefficients.
OutputFracLength	Any positive or   negative integer   number of bits   [29]	Determines how the filter interprets the filter   output data. You can change the value of   OutputFracLength when you set   FilerInternals to SpecifyPrecision.
OutputWordLength	Any integer   number of bits   [33]	Determines the word length used for the output   data. You make this property editable by setting   Filter Internals to SpecifyPrecision.


Name	Values	Description
OverflowMode	saturate, [wrap]	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose from   either saturate (limit the output to the largest   positive or negative representable value) or wrap   (set overflowing values to the nearest   representable value using modular arithmetic).   The choice you make affects only the   accumulator and output arithmetic. Coefficient   and input arithmetic always saturates. Finally,   products never overflow-they maintain full   precision.
ProductFracLength	Any positive or   negative integer   number of bits [29]	Specifies the fraction length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.
ProductWordLength	Any integer   number of bits   [33]	Specifies the word length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.


Name	Values	Description
RoundMode	[convergent], ceil,fix,floor, round	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths).   - convergent-Round up to the next allowable quantized value.   - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 .   - fix-Round negative numbers up and positive numbers down to the next allowable quantized value.   - floor-Round down to the next allowable quantized value.   - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.   The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.


Name	Values	Description
Signed	[true], false	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
States	fi object to match   the filter   arithmetic setting	Contains the filter states before, during, and   after filter operations. States act as filter   memory between filtering runs or sessions.   Notice that the states use fi objects, with the   associated properties from those objects. For   details, refer to fixed-point objects in your   Fixed-Point Toolbox documentation or in the   online Help system.

## Examples

## Odd Order

Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt object hd, with the following code:

```
b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd = dfilt.dfsymfir(b)
hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
 PersistentMemory: false
set(hd,'arithmetic','fixed')
hd
hd =
```

```
 FilterStructure: 'Direct-Form Symmetric FIR'
```

    FilterStructure: 'Direct-Form Symmetric FIR'
            Arithmetic: 'fixed'
            Arithmetic: 'fixed'
            Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
            Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
    PersistentMemory: false
    ```
 PersistentMemory: false
```

CoeffWordLength: ..... 16
CoeffAutoScale: ..... true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'FullPrecision'
hd.filterinternals='specifyPrecision'
hd =
FilterStructure: 'Direct-Form Symmetric FIR'
Arithmetic: 'fixed'

```Numerator: \([-0.00800 .06000 .44000 .44000 .0600-0.0080]\)
```

PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'SpecifyPrecision
OutputWordLength: ..... 36
OutputFracLength: ..... 31
ProductWordLength: ..... 33
ProductFracLength: ..... 31
AccumWordLength: ..... 36
AccumFracLength: ..... 31
RoundMode: 'convergent
OverflowMode: 'wrap'

To use hd for fixed-point filtering, change the value of the property Arithmetic to fixed with the following command:

```
hd.arithmetic = 'fixed'
```


## Even Order

Specify a fourth-order, fixed-point, direct-form symmetric FIR filter structure for a dfilt object hd, with the following code:

```
b = [-0.01 0.1 0.8 0.1 -0.01];
hd = dfilt.dfsymfir(b)
hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
 PersistentMemory: false
set(hd,'arithmetic','fixed')
hd
hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 FilterInternals: 'FullPrecision'
hd.filterinternals='specifyPrecision'
```


## dfilt.dfsymfir

hd =FilterStructure: 'Direct-Form Symmetric FIR'Arithmetic: 'fixed'Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'SpecifyPrecision'
OutputWordLength: ..... 36
OutputFracLength: ..... 30
ProductWordLength: ..... 33
ProductFracLength: ..... 30
AccumWordLength: ..... 36
AccumFracLength: ..... 30
RoundMode: 'convergent'
OverflowMode: 'wrap'
See Alsodfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt

Purpose	Construct a discrete-time, lattice allpass filter object that uses fixed-point or single-precision floating-point arithmetic
Syntax	Refer to dfilt.latticeallpass in the Signal Processing Toolbox.
Description	hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter object hd, with lattice coefficients, $k$.
	Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
	- To change to single-precision filtering, enter set(hd,'arithmetic','single');
	- To change to fixed-point filtering, enter set(hd,'arithmetic','fixed');
	For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
	hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass filter object hd, with $\mathrm{k}=[\mathrm{]}$. This filter passes the input through to the output unchanged.
Fixed-Point Filter Structure	The figure below shows the signal flow for the allpass lattice filter implemented by dfilt.latticeallpass. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	AccumMode
InputFormat	InputWordLength	InputFracLength	


Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
LatticeFormat	CoeffWordLength	LatticeFracLength	CoeffAutoScale
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ProductFormat	ProductWordLength	ProductFracLength	ProductMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the allpass lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

## dfilt.latticeallpass

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumFracLength	Specifies the fraction length used to   interpret data output by the accumulator.   This is a property of FIR filters and lattice   filters. IIR filters have two similar   properties-DenAccumFracLength and   NumAccumFracLength-that let you set the   precision for numerator and denominator   operations separately.
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to
SpecifyPrecision.	


Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   LatticeFracLength property value to   specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
Lattice	Any lattice structure coefficients. No default   value.
LatticeFracLength	Sets the fraction length applied to the lattice   coefficients.
NumSamplesProcessed	Reports the number of samples actually   processed by the filter in a filtering   operation. When PersistentMemory is   false, this property reports the number of   samples filtered for each input data set.   Setting PersistentMemory to true causes   this property to report the total number of   samples processed for all data sets, not each   one.
	Ser

## dfilt.latticeallpass

$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductFracLength	For the output from a product operation, this   sets the fraction length used to interpret the   data. This property becomes writable (you   can change the value) when you set   ProductMode to SpecifyPrecision.
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.

## dfilt.latticeallpass

Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a third-order lattice allpass filter structure for a dfilt object hd, with the following code:

```
k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);
```

Now convert hd to fixed-point arithmetic form.

```
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Lattice Allpass'
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
```


## dfilt.latticeallpass

Signed: true<br>InputWordLength: 16<br>InputFracLength: 15<br>OutputWordLength: 16<br>OutputMode: 'AvoidOverflow'<br>StateWordLength: 16<br>StateFracLength: 15<br>ProductMode: 'FullPrecision'<br>AccumMode: 'KeepMSB'<br>AccumWordLength: 40<br>CastBeforeSum: true<br>RoundMode: 'convergent'<br>OverflowMode: 'wrap'<br>See Also \(\begin{aligned} \& dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax,<br>\& dfilt.latticemamin\end{aligned}\)

9-432

Purpose	Construct a discrete-time, lattice, autoregressive filter object that uses fixed-point or single-precision floating-point arithmetic
Syntax	Refer to dfilt.latticear in the Signal Processing Toolbox.
Description	hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive filter object hd, with lattice coefficients, $k$.
	Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
	- To change to single-precision filtering, enter set(hd,'arithmetic','single');
	- To change to fixed-point filtering, enter set(hd,'arithmetic','fixed');
	For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
	hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive filter object hd, with $\mathrm{k}=[\mathrm{]}$. This filter passes the input through to the output unchanged.
Fixed-Point Filter Structure	The figure below shows the signal flow for the autoregressive lattice filter implemented by dfilt. latticear. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	AccumMode
InputFormat	InputWordLength	InputFracLength	


Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
LatticeFormat	CoeffWordLength	LatticeFracLength	CoeffAutoScale
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ProductFormat	ProductWordLength	ProductFracLength	ProductMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumFracLength	Specifies the fraction length used to   interpret data output by the accumulator.   This is a property of FIR filters and lattice   filters. IIR filters have two similar   properties-DenAccumFracLength and   NumAccumFracLength-that let you set the   precision for numerator and denominator   operations separately.
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to
SpecifyPrecision.	


Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically chooses the proper fraction length to represent filter coefficients without overflowing. Turning this off by setting the value to false enables you to change the LatticeFracLength to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter coefficients.
FilterStructure	Describes the signal flow for the filter object, including all of the active elements that perform operations during filtering-gains, delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to interpret input data.
InputWordLength	Specifies the word length applied to interpret input data.
Lattice	Any lattice structure coefficients.
LatticeFracLength	Sets the fraction length applied to the lattice coefficients.
NumSamplesProcessed	Reports the number of samples actually processed by the filter in a filtering operation. When PersistentMemory is false, this property reports the number of samples filtered for each input data set. Setting PersistentMemory to true causes this property to report the total number of samples processed for all data sets, not each one.

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. }\end{array}\right\} \begin{array}{l}\text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductFracLength	For the output from a product operation, this   sets the fraction length used to interpret the   data. This property becomes writable (you   can change the value) when you set   ProductMode to SpecifyPrecision.
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a third-order lattice autoregressive filter structure for a dfilt object, hd, with the following code that creates a fixed-point filter.

```
k = [.66 .7 .44];
hd1=dfilt.latticear(k)
hd1 =
 FilterStructure: 'Lattice Autoregressive (AR)'
 Arithmetic: 'double'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [3x1 double]
 NumSamplesProcessed: 0
hd1.arithmetic='fixed'
hd1 =
```

FilterStructure: 'Lattice Autoregressive (AR)'

```
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 NumSamplesProcessed: 0
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 StateWordLength: 16
 StateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
specifyall(hd1)
hd1
hd1 =
```

```
 FilterStructure: 'Lattice Autoregressive (AR)'
```

            FilterStructure: 'Lattice Autoregressive (AR)'
                        Arithmetic: 'fixed'
                        Arithmetic: 'fixed'
                    Lattice: [0.6600 0.7000 0.4400]
                    Lattice: [0.6600 0.7000 0.4400]
            PersistentMemory: false
            PersistentMemory: false
                    States: [1x1 embedded.fi]
                    States: [1x1 embedded.fi]
    NumSamplesProcessed: 0

```
NumSamplesProcessed: 0
```

CoeffWordLength: ..... 16
CoeffAutoScale: fals
LatticeFracLength: ..... 15
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'SpecifyPrecision'
OutputFracLength: ..... 12
StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'SpecifyPrecision'
ProductWordLength: ..... 32
ProductFracLength: ..... 30
AccumMode: 'SpecifyPrecision'
AccumWordLength: ..... 40
AccumFracLength: ..... 30
CastBeforeSum: trueRoundMode: 'convergent'OverflowMode: 'wrap'dfilt, dfilt.latticeallpass, dfilt.latticearma, dfilt.latticemamax,
See Alsodfilt.latticemamin
Purpose
SyntaxRefer to dfilt.latticearma in the Signal Processing Toolbox.
Description
Fixed-Point
Filter Structure

The figure below shows the signal flow for the autoregressive lattice filter implemented by dfilt.latticearma. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length Property	Related Properties
InputFormat	InputWordLength	InputFracLength	
LadderAccumFormat	AccumWordLength	LadderAccumFracLength	AccumMode
LadderFormat	CoeffWordLength	LadderFracLength	CoeffAutoScale
LadderProdFormat	ProductWordLength	LadderProdFracLength	ProductMode
LatticeAccumFormat	AccumWordLength	LatticeAccumFracLength	AccumMode
LatticeFormat	CoeffWordLength	LatticeFracLength	CoeffAutoScale
LatticeProdFormat	ProductWordLength	LatticeProdFracLength	ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label LatticeProdFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that lattice coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the LatticeProdFormat refers to the properties ProductWordLength, LatticeProdFracLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the autoregressive moving-average lattice implementation of dfilt objects.

[^4]
## dfilt.latticearma

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { AccumFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\ \text { interpret data output by the accumulator. } \\ \text { This is a property of FIR filters and lattice } \\ \text { filters. IIR filters have two similar } \\ \text { properties-DenAccumFracLength and } \\ \text { NumAccumFracLength-that let you set the } \\ \text { precision for numerator and denominator } \\ \text { operations separately. }\end{array} \\ \hline \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator outputs } \\ \text { stored values. Choose from full precision } \\ \text { (FullPrecision), or whether to keep the }\end{array} \\ \text { most significant bits (KeepMSB) or least } \\ \text { significant bits (KeepLSB) when output } \\ \text { results need shorter word length than the } \\ \text { accumulator supports. To let you set the } \\ \text { word length and the precision (the fraction } \\ \text { length) used by the output from the } \\ \text { accumulator, set AccumMode to }\end{array}\right\}$

Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to the   appropriate accumulator format (as shown   in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   LatticeFracLength property to specify the   precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
Ladder	Stores the ladder coefficients for lattice   ARMA (dfilt. latticearma) filters.
	SRE


Property Name	Brief Description
LadderAccumFracLength	Sets the fraction length used to interpret the   output from sum operations that include the   ladder coefficients. You can change this   property value after you set AccumMode to   SpecifyPrecision.
LadderFracLength	Determines the precision used to represent   the ladder coefficients in ARMA lattice   filters.
Lattice	Stores the lattice structure coefficients.
LatticeFracLength	Sets the fraction length applied to the lattice   coefficients.
NumSamplesProcessed	Reports the number of samples actually   processed by the filter in a filtering   operation. When PersistentMemory is   false, this property reports the number of   samples filtered for each input data set.   Setting PersistentMemory to true causes   this property to report the total number of   samples processed for all data sets, not each   one.
OutputFracLength	Determines how the filter interprets the   filter output data. You can change the value   of OutputFracLength when you set   OutputMode to SpecifyPrecision.

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\} \begin{array}{l}\text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

See Also
dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticemamin, dfilt.latticemamin
Fixed-Point Filter Structure
Purpose

Construct a discrete-time, lattice, moving-average filter object with maximum
Syntax Refer to dfilt.latticemamax in the Signal Processing Toolbox.

Refer to dfilt.latticemamax in the Signal Processing Toolbox.
Description

hd = dfilt.latticemamax(k) returns a discrete-time, lattice, phase that uses fixed-point or single-precision floating-point arithmetic moving-average filter object hd, with lattice coefficients $k$.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set (hd, 'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic', 'fixed');

For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.

Note When the k coefficients define a maximum phase filter, the resulting filter in this structure is maximum phase. When your coefficients do not define a maximum phase filter, placing them in this structure does not produce a maximum phase filter.
hd = dfilt.latticemamax returns a default discrete-time, lattice, moving-average filter object hd, with $\mathrm{k}=[$ ]. This filter passes the input through to the output unchanged.

The figure below shows the signal flow for the maximum phase implementation of a moving-average lattice filter implemented by dfilt.latticemamax. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	AccumMode
InputFormat	InputWordLength	InputFracLength	
LatticeFormat			


Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ProductFormat	ProductWordLength	ProductFracLength	ProductMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the maximum phase, moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { AccumFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\ \text { interpret data output by the accumulator. } \\ \text { This is a property of FIR filters and lattice } \\ \text { filters. IIR filters have two similar } \\ \text { properties-DenAccumFracLength and } \\ \text { NumAccumFracLength-that let you set the } \\ \text { precision for numerator and denominator } \\ \text { operations separately. }\end{array} \\ \hline \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator outputs } \\ \text { stored values. Choose from full precision } \\ \text { (FullPrecision), or whether to keep the }\end{array} \\ \text { most significant bits (KeepMSB) or least } \\ \text { significant bits (KeepLSB) when output } \\ \text { results need shorter word length than the } \\ \text { accumulator supports. To let you set the } \\ \text { word length and the precision (the fraction } \\ \text { length) used by the output from the } \\ \text { accumulator, set AccumMode to }\end{array}\right\}$

Property Name	Brief Description		
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   LatticeFracLength property to specify the   precision used.		
CoeffWordLength	Specifies the word length to apply to filter   coefficients.		
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.		
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.		
InputWordLength	Specifies the word length applied to   interpret input data.		
Lattice	Any lattice structure coefficients.		
LatticeFracLength	Sets the fraction length applied to the lattice   coefficients.		
NumSamplesProcessed	Reports the number of samples actually   processed by the filter in a filtering   operation. When PersistentMemory is   false, this property reports the number of   samples filtered for each input data set.   Setting PersistentMemory to true causes   this property to report the total number of   samples processed for all data sets, not each   one.		(
:---			

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. }\end{array}\right\} \begin{array}{l}\text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductFracLength	For the output from a product operation, this   sets the fraction length used to interpret the   data. This property becomes writable (you   can change the value) when you set   ProductMode to SpecifyPrecision.
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a fourth-order lattice, moving-average, maximum phase filter structure for a dfilt object, hd, with the following code:

```
k = [.66 .7 .44 .33];
hd = dfilt.latticemamax(k)
hd =
```

```
 FilterStructure: 'Lattice maximum phase'
```

            FilterStructure: 'Lattice maximum phase'
            Lattice: [1x4 double]
            Lattice: [1x4 double]
    NumberOfSamplesProcessed: 0
    NumberOfSamplesProcessed: 0
            ResetStates: 'on'
            ResetStates: 'on'
                States: [4x1 double]
    ```
 States: [4x1 double]
```


## See Also

dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamin

Fixed-Point Filter Structure

```PurposeSyntax Refer to dfilt.latticemamin in the Signal Processing Toolbox.
Construct a fixed-point or single-precision floating-point discrete-time, lattice, moving-average filter object with minimum
Refer to dfilt.latticemamin in the Signal Processing Toolbox.
hd = dfilt.latticemamin(k) returns a discrete-time, lattice, moving-average, minimum phase, filter object hd, with lattice coefficients k .
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic', 'fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
Note When the k coefficients define a minimum phase filter, the resulting filter in this structure is minimum phase. When your coefficients do not define a minimum phase filter, placing them in this structure does not produce a minimum phase filter.
```

hd = dfilt.latticemamin returns a default discrete-time, lattice, moving-average, minimum phase, filter object hd, with $k=[]$. This filter passes the input through to the output unchanged.

The figure below shows the signal flow for the minimum phase implementation of a moving-average lattice filter implemented by dfilt. latticemamin. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	AccumMode
InputFormat	InputWordLength	InputFracLength	
LatticeFormat			


Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ProductFormat	ProductWordLength	ProductFracLength	ProductMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the minimum phase, moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

## dfilt.latticemamin

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
AccumFracLength	Specifies the fraction length used to   interpret data output by the accumulator.   This is a property of FIR filters and lattice   filters. IIR filters have two similar   properties-DenAccumFracLength and   NumAccumFracLength-that let you set the   precision for numerator and denominator   operations separately.
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to
SpecifyPrecision.	


Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically chooses the proper fraction length to represent filter coefficients without overflowing. Turning this off by setting the value to false enables you to change the LatticeFracLength property to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter coefficients.
FilterStructure	Describes the signal flow for the filter object, including all of the active elements that perform operations during filtering-gains, delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to interpret input data.
InputWordLength	Specifies the word length applied to interpret input data.
Lattice	Any lattice structure coefficients.
LatticeFracLength	Sets the fraction length applied to the lattice coefficients.
NumSamplesProcessed	Reports the number of samples actually processed by the filter in a filtering operation. When PersistentMemory is false, this property reports the number of samples filtered for each input data set. Setting PersistentMemory to true causes this property to report the total number of samples processed for all data sets, not each one.

## dfilt.latticemamin

$\left.\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. }\end{array}\right\} \begin{array}{l}\text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductFracLength	For the output from a product operation, this   sets the fraction length used to interpret the   data. This property becomes writable (you   can change the value) when you set   ProductMode to SpecifyPrecision.
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. on is the   default setting.

## dfilt.latticemamin

Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a third-order lattice, moving-average, minimum phase, filter structure for a dfilt object, hd, with the following code:
k = [. 66 . 7 .44];
hd = dfilt.latticemamin(k)
hd =
FilterStructure: 'Lattice Moving-Average (MA) For Minimum
Phase'
Arithmetic: 'double'
Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false
States: [3x1 double]
NumSamplesProcessed: 0
set(hd,'arithmetic','fixed')
specifyall(hd)
hd
hd =FilterStructure: 'Lattice Moving-Average (MA) For MinimumPhase'
Arithmetic: 'fixed'Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false
States: [1x1 embedded.fi]
NumSamplesProcessed: 0
CoeffWordLength: ..... 16
CoeffAutoScale: fals
LatticeFracLength: ..... 15
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'SpecifyPrecision
OutputFracLength: ..... 12
StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'SpecifyPrecision
ProductWordLength: ..... 32
ProductFracLength: ..... 30
AccumMode: 'SpecifyPrecision'
AccumWordLength: ..... 40
AccumFracLength: ..... 30
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
See Alsodfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,dfilt.latticemamax

## Purpose

Syntax Refer to dfilt. parallel in the Signal Processing Toolbox.
Construct a discrete-time, parallel structure filter object
hd = dfilt.parallel(hd1,hd2,...) returns a discrete-time filter object hd, which is a structure of two or more dfilt filter objects, hd1, hd2, and so on arranged in parallel.

You can also use the standard notation to combine filters into a parallel structure.

```
parallel(hd1,hd2,...)
```

In this syntax, hd1, hd2, and so on can be a mix of dfilt objects, mfilt objects, and adaptfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the parallel structure must be the same arithmetic format-double, single, or fixed. hd, the filter returned, inherits the format of the individual filters.

## See Also

dfilt, dfilt.cascade
dfilt.cascade, dfilt. parallel in your Signal Processing Toolbox documentation
Purpose Construct a discrete-time, scalar filter object that uses fixed-point orSyntaxDescription
Propertiessingle-precision floating-point arithmetic
Refer to dfilt.scalar in the Signal Processing Toolbox.
dfilt.scalar(g) returns a discrete-time, scalar filter object with gain g , where $g$ is a scalar.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set (hd, 'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 8-22.
dfilt.scalar returns a default, discrete-time scalar gain filter object hd, with gain 1.
In this table you see the properties associated with the scalar implementation of dfilt objects.
Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.
To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 8-3.

Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   CoeffFracLength property to specify the   precision used.
CoeffFracLength	Set the fraction length the filter uses to   interpret coefficients. CoefffracLength is   always available, but it is read-only until   you set CoeffAutoScale to false.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
Gain	Returns the gain for the scalar filter. Scalar   filters do not alter the input data except by   adding gain.


Property Name	Brief Description
InputFracLength	Specifies the fraction length the filter uses to interpret input data.
InputWordLength	Specifies the word length applied to interpret input data.
NumSamplesProcessed	Reports the number of samples actually processed by the filter in a filtering operation. When PersistentMemory is false, this property reports the number of samples filtered for each input data set. Setting PersistentMemory to true causes this property to report the total number of samples processed for all data sets, not each one.
OutputFracLength	Determines how the filter interprets the filter output data. You can change the value of OutputFracLength when you set OutputMode to SpecifyPrecision.
OutputMode	Sets the mode the filter uses to scale the filtered data for output. You have the following choices:   - AvoidOverflow-directs the filter to set the output data word length and fraction length to avoid causing the data to overflow.   - BestPrecision-directs the filter to set the output data word length and fraction length to maximize the precision in the output data.   - SpecifyPrecision-lets you set the word and fraction lengths used by the output data from filtering.


Property Name	Brief Description
OutputWordLength	Determines the word length used for the   output data.
OverflowMode	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose   from either saturate (limit the output to the   largest positive or negative representable   value) or wrap (set overflowing values to the   nearest representable value using modular   arithmetic). The choice you make affects   only the accumulator and output arithmetic.   Coefficient and input arithmetic always   saturates. Finally, products never overflow-   they maintain full precision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.
Lets you decide whether your filter retains	
states from previous filtering runs. on is the	
default setting.	


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next
allowable quantized value.	
- ceil—Round to the nearest allowable	
	quantized value. Numbers that are exactly
halfway between the two nearest allowable	
quantized values are rounded up only if	
the least significant bit (after rounding)	
would be set to 1.	


Property Name	Brief Description
Signed	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help
system.	

Create a direct-form I filter object hd_filt and a scalar object with a gain of 3 hd_gain and cascade them together.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd_filt = dfilt.df1(b,a)
hd_gain = dfilt.scalar(3)
hd=cascade(hd_gain, hd_filt)
fvtool(hd_filt,hd_gain,hd)
hd_filt =
 FilterStructure: 'direct-form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [4x1 double]
 NumSamplesProcessed: 0
 hd_gain =
 FilterStructure: 'Scalar'
 Arithmetic: 'double'
 Gain: 3
 PersistentMemory: false
```

States: []
NumSamplesProcessed: 0
hd =
FilterStructure: Cascade
Section(1): Scalar
Section(2): Direct Form I
PersistentMemory: false
NumSamplesProcessed: 0

-1) Figure No. 1: Filter Visualization Tool - Magnitude Response (dB)	- $\mid$ 미 $x$
File Edit Analysis Insert View Window Help	



To view the sections of the cascaded filter, use
hd.section(1)
ans =
FilterStructure: 'Scalar' Arithmetic: 'double' Gain: 3
PersistentMemory: false
States: []
NumSamplesProcessed: 0
and
hd.section(2)
ans =
FilterStructure: 'Direct Form I'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]
Denominator: [1 0 0.2000]
PersistentMemory: false
States: [4x1 double]
NumSamplesProcessed: 0
See Also
dfilt, dfilt.cascade

Purpose Display a filter object with properties and values

Syntax | $\operatorname{disp(q)}$ |
| :--- |
| $\operatorname{disp(f)}$ |
| $\operatorname{disp}(h q)$ |

Description Similar to omitting the closing semicolon from an expression on the command line, except that disp does not display the variable name. disp lists the property names and property values for any filter object, such as a dfilt object or adaptfilt object.

The following examples illustrate the default display for an adaptive filter ha and a multirate filter hm .

```
ha=adaptfilt.rls
ha =
 Algorithm: 'Direct Form FIR RLS Adaptive Filter'
 FilterLength: 10
 Coefficients: [0 0 0 0 0 0 0 0 0 0]
 States: [9x1 double]
 ForgettingFactor: 1
 KalmanGain: []
 InvCov: [10x10 double]
 PersistentMemory: false
 NumSamplesProcessed: 0
disp(ha)
 Algorithm: 'Direct-Form FIR RLS Adaptive Filter'
 FilterLength: 10
 Coefficients: [0 0 0 0 0 0 0 0 0 0]
 States: [9x1 double]
 ForgettingFactor: 1
 KalmanGain: []
 InvCov: [10x10 double]
 PersistentMemory: false
 NumSamplesProcessed: 0
```

```
hm=mfilt.cicdecim(6)
hm =
 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 DifferentialDelay: 1
 NumberOfSections: 2
 InputBitWidth: 16
 OutputBitWidth: 16
 BitsPerStage: 16
 DecimationFactor: 6
 PersistentMemory: false
 States: [2x2 int32]
NumSamplesProcessed: 0
disp(hm)
 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 DifferentialDelay: 1
 NumberOfSections: 2
 InputBitWidth: 16
 OutputBitWidth: 16
 BitsPerStage: 16
 DecimationFactor: 6
 PersistentMemory: false
 States: [2x2 int32]
 NumSamplesProcessed: 0
```

See Also ..... set

Purpose
Cast a fixed-point filter to a version that uses double-precision arithmetic

## Syntax <br> hd = double(h)

Description

## Examples

hd = double( h ) returns a new filter hd that has the same structure and coefficients as h , but whose arithmetic property is set to double to use double-precision arithmetic for filtering. double( $h$ ) is not the same as the reffilter(h) function:

- hd, the filter returned by double has the quantized coefficients of h represented in double-precision floating-point format
- The reference filter returned by reffilter has double-precision, floating-point coefficients that have not been quantized.

You might find double(h) useful to isolate the effects of quantizing the coefficients of a filter by using double to create a filter hd that operates in double-precision but uses the quantized filter coefficients.

Use the same filter, once with fixed-point arithmetic and once with floating-point, to compare fixed-point filtering with double-precision floating-point filtering.

```
h = dfilt.dffir(firgr(27,[0 .4 .6 1],
[1 1 0 0])); % Lowpass filter.
h.arithmetic = 'fixed'; % Set h to use fixed-point arithmetic
 % to filter. Quantize the coeffs.
hd = double(h); % Cast h to double-precision
 % floating-point coefficients.
n = 0:99; x = sin(0.7*pi*n(:)); % Set up an input signal.
y = filter(h,x); % Fixed-point output.
yd = filter(hd,x); % Floating-point output.
norm(yd-double(y),inf)
ans =
 9.2014e-004
```

norm shows that the largest difference (maximum error) between the output values from the fixed versus floating filtering comparison is about 0.0009either good or less good depending on your application.
See Also reffilter

Purpose Design elliptical or Cauer digital filters using the specifications in a filter design object

Syntax

```
hd = ellip(d)
hd = ellip(d,'matchexactly',match)
```

Description hd = ellip(d) designs a Butterworth IIR digital filter using the specifications supplied in the object h .
hd = ellip(d,'matchexactly', match) returns an elliptical IIR filter where the filter response matches the specified response exactly for one filter band. match, which specifies which filter band to match, is one of

- passband-match the passband specification exactly in the final filter.
- stopband-match the specified stopband performance exactly in the final filter.
- both-match both the passband and stopband specifications. This is the default setting.

Use the matchexactly input option only when your filter object designs minimum order elliptical filters. This condition applies when you do not specify the filter order in your filter design object. Lowpass, highpass, bandpass, and bandstop filter design objects support a SpecificationType string that does not include the filter order as an input specification.

## Examples These example demonstrate using ellip to design filters based on filter design

 objects.Example 1-construct the default bandpass filter design object and design an elliptic filter.

```
d = fdesign.bandpass;
hd = ellip(d,'matchexactly','passband');
hd =
```

FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'double' sosMatrix: [4x6 double]
ScaleValues: [5x1 double]

```
 PersistentMemory: false
 States: [2x4 double]
NumSamplesProcessed: 0
```

Example 2-construct a lowpass object with order, passband-edge frequency, stopband-edge frequency, and passband ripple specifications, and then design an elliptic filter.

```
d = fdesign.lowpass('n,fp,fst,ap',6,20,25,.8,80);
ellip(d); % Opens fvtool to display the filter.
```



Example 3-construct a lowpass object with filter order, passband edge frequency, passband ripple, and stopband attenuation specifications, and then design an elliptic filter.

```
d = fdesign.lowpass('n,fp,ap,ast',6,20,.8,60,80);
```

ellip(d); \% Automatically starts fvtool to display the filter.


See Also butter, cheby1, cheby2

## Purpose

## Syntax

Description

## Examples

Use an FIR fractional decimator, with $\mathrm{L}=5$ and $\mathrm{M}=7$, to show what euclidfactors does.

```
hm=mfilt.firfracdecim(5,7)
hm =
 FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
 Numerator: [1x168 double]
 RateChangeFactors: [5 7]
 PersistentMemory: false
 States: [62x1 double]
 NumSamplesProcessed: 0
[lo,mo]=euclidfactors(hm)
lo =
 4
mo =
 3
Indeed, (lo*L)-(mo*M) = (4*5)-(3*7) = -1.
```


## See Also

## equiripple

Purpose	Design equiripple single-rate filters or multirate FIR filters from the specifications in a filter design object
Syntax	```hd = equiripple(d) hd = equiripple(d,'densityfactor',df)```
Description	hd = equiripple(d) designs an equiripple FIR digital filter or multirate filter using the specifications supplied in the object d. Equiripple filter designs minimize the maximum ripple in the pass- and stopbands.   hd is either a dfilt object (a single-rate digital filter) or an mfilt object (a multirate digital filter) depending on the SpecificationType property of the filter design object $d$ and the design object type-halfband or interp.   hd = equiripple(d,'densityfactor ', df) returns an equiripple FIR filter where you specify the density factor, df , as an input argument.
Examples	Here is an example of designing a single-rate equiripple filter from a halfband filter design object. ```d = fdesign.halfband hd = equiripple(d); fvtool(hd);```

Displaying the filter in FVTool shows the equiripple nature of the filter.

equiripple also designs multirate filters. This example generates a halfband interpolator filter.

```
d = fdesign.interp(2);
hd = equiripple(d);
```

See Also firls, kaiserwin

## fcfwrite

Purpose	Write a file that contains filter coefficients for multirate filters, adaptive filters, or discrete-time filter objects
Syntax	fcfwrite(h)
	fcfwrite(h,filename)
	fcfwrite(...,'fmt')
Description	fcfwrite(h) writes a filter coefficient ASCII file to a directory you choose, or your current MATLAB working directory. h can be a single filter object or a vector of filter objects. On execution, fcfwrite opens the Export Filter Coefficients to .FCF File dialog to let you assign a file name for the output file. You can choose the destination directory within this dialog as well.
	The default file name is untitled.fcf. When you have the Filter Design Toolbox, you can use fcfwrite (h) to write filter coefficient files for multirate filters, adaptive filters, and discrete-time filters.
	fcfwrite(h, filename) writes the filter coefficients and general information to a text file called filename in your present MATLAB working directory and opens the file in the MATLAB editor for you to review or modify.
	If you do not include a file extension in filename, fcfwrite adds the extension fcf to filename.
	fcfwrite(...,'fmt') writes the filter coefficients in the format specified by the input argument $f m t$. Valid fmt values are hex for hexadecimal, dec for decimal, or bin for binary representation of the filter coefficients.
Examples	To demonstrate fcfwrite, create a fixed-point IIR filter at the command line, and then write the filter coefficients to a file named iirfilter.fcf.

```
d=fdesign.lowpass
d =
 ResponseType: 'Minimum-order lowpass'
 SpecificationType: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
```

```
Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60
```

```
hd=butter(d)
hd =
```

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [13x6 double]
ScaleValues: [14x1 double]
PersistentMemory: false
States: [2x13 double]
NumSamplesProcessed: 0
set(hd,'arithmetic','fixed');
fcfwrite(hd,'iirfilter.fcf');
Here is the output from fcfwrite as it appears in the MATLAB editor. Not shown here is the filename-iirfilter.fcf as specified.

```
%
% Generated by MATLAB(R) 7.0 and the Signal Processing Toolbox
% 6.2.
%
% Generated on: 15-Jun-2004 14:05:48
%
File Format: Decimal
Discrete-Time IIR Filter (real)
Filter Structure : Direct-Form II, Second-Order Sections
Filter Order : 25
Stable : Yes
Linear Phase : No
Arithmetic : fixed
```


## fcfwrite

Numerator	$:$ S16Q13
Denominator	$:$ S16Q14
Scale Values	: S16Q14
Input	S16Q15
Stage Input	: S16Q8
Stage Output	: S16Q10
Output	: S16Q10
State	: S16Q15
Numerator Prod	: S32Q28
Denominator Prod	: S32Q29
Numerator Accum	: S40Q28
Denominator Accum	: S40Q29
Round Mode	: convergent
Overflow Mode	: wrap
Cast Before Sum	: true

SOS matrix:

1	2	1	1	-0.22222900390625	0.88262939453125
1	2	1	1	-0.19903564453125	0.68621826171875
1	2	1	1	-0.18060302734375	0.5303955078125
1	2	1	1	-0.1658935546875	0.40570068359375
1	2	1	1	-0.154052734375	0.305419921875
1	2	1	1	-0.14453125	0.22479248046875
1	2	1	1	-0.136962890625	0.16015625
1	2	1	1	-0.13092041015625	0.10906982421875
1	2	1	1	-0.126220703125	0.06939697265625
1	2	1	1	-0.12274169921875	0.0399169921875
1	2	1	1	-0.12030029296875	0.01947021484375
1	2	1	1	-0.118896484375	0.0074462890625
1	1	0	1	-0.0592041015625	0

[^5]0.2445068359375
0.23577880859375
0.22930908203125
0.22479248046875
0.22216796875
0.47039794921875

To write two or more filters out to one file, provide the filters as a vector to fcfwrite:
fcfwrite([hd hd1 hd2])

## See Also

adaptfilt, dfilt, mfilt
dfilt, fcfwrite in the Signal Processing Toolbox documentation

## Purpose Open the Filter Design and Analysis Tool

## Syntax <br> fdatool

Description
fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to:

- Design filters
- Quantize filters
- Analyze filters
- Modify existing filter designs
- Create multirate filters
- Realize Simulink models of quantized, direct-form, FIR filters
- Perform digital frequency transformations of filters

Refer to "Using FDATool with the Filter Design Toolbox" for more information about using the analysis, design, and quantization features of FDATool. For general information about using FDATool, refer to "Filter Design and Analysis Tool" in your Signal Processing Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed, FDATool incorporates additional features that are provided by Filter Design Toolbox. With Filter Design Toolbox installed, FDATool lets you design and analyze quantized filters, as well as convert quantized filters to various filter structures, transform filters, design multirate filters, and realize models of filters.


Use the Set quantization parameters option to configure the quantization settings for a quantized filter.

Set Quantization Parameters-provides access to the properties of the quantizers that compose a quantized filter. When you click Set Quantization Parameters, you see FDATool displaying the quantization options at the bottom of the dialog, as shown in the figure.

Transform Filter-clicking this button opens the Frequency Transformations pane so you can use digital frequency transformations to change the magnitude response of your filter.

Create a multirate filter-clicking this button switches FDATool to multirate filter design mode so you can design interpolators, decimators, and fractional rate change filters.

Realize Model-starting from your quantized, direct-form, FIR filter, clicking this button creates a Simulink model of your filter structure in new model window.


Other options in the menu bar let you convert the filter structure to a new structure, change the order of second-order sections in a filter, or change the scaling applied to the filter, among many possibilities.

## Remarks By incorporating many advanced filter design methods from Filter Design Toolbox, FDATool provides more design methods than the SPTool Filter Designer.

See Also fdatool, fvtool, sptool in your Signal Processing Toolbox documentation

## Purpose Create a filter design object for designing discrete-time filters

```
Syntax d = fdesign.type
d = fdesign.type(specificationtype)
d = fdesign.type(specificationtype,specvalue1,specvalue2,...)
d = fdesign.type(...,fs)
d = fdesign.type(...,magunits)
```


## Description Filter Design Objects

d = fdesign.type returns a filter design object h , of filter type type. To create filters from d, use one of the design methods listed in "Using Filter Design Methods With Design Objects" on page 9-505.
type can be one of the entries in the following table that specify the filter response desired, such as a bandstop filter or an interpolator.

fdesign Type String	Description
bandpass	fdesign. bandpass creates an object to   design bandpass filters.
bandstop	fdesign. bandstop creates an object to   design bandstop filters.
decim	fdesign. decim creates an object to design   decimators.
halfband	fdesign. halfband creates an object to   design halfband filters.
highpass	fdesign.highpass creates an object to   design highpass filters.
interp	fdesign.interp creates an object to   design interpolators.
lowpass	fdesign. lowpass creates an object to   design lowpass filters.


fdesign Type String	Description
nyquist	fdesign. nyquist creates an object to   design nyquist filters.
src	fdesign. src creates an object to design   sample-rate converters.

Note fdesign does not design filters. It returns a filter object that you use with a filter design method to design a filter.

Use the doc fdesign.type syntax at the MATLAB prompt to get help on a specific structure. Using doc in a syntax like
doc fdesign.lowpass
doc fdesign.bandstop
gets more information about the lowpass or bandstop structure objects.
Each type has a property SpecificationType that defines the specifications to use to design your filter. You can use defaults or specify the SpecificationType property when you construct the design object. With the SpecificationType property, you provide filter constraints such as the filter order or the passband attenuation to use when you construct your filter from the design object.

## fdesign

Properties fdesign returns an object. Every filter design object has the following properties.

Property Name	Default Value	Description
ResponseType	Depends on the chosen type	Defines the type of filter to design, such as an interpolator or bandpass filter. This is a read-only value.
SpecificationType	Depends on the chosen type	Defines the filter characteristics used to define the desired filter performance, such as the cutoff frequency Fstop or the filter order N .
Description	Depends on the filter type you choose	Contains descriptions of the filter specifications used to define the object, and the filter specifications you use when you create a filter from the object. This is a read-only value.
NormalizedFrequency	Logical true	Determines whether the filter calculation uses normalized frequency from 0 to 1 , or the frequency band from 0 to $\mathrm{Fs} / 2$, the sampling frequency. Accepts either true or false without single quotation marks.

In addition to these properties, filter design objects may have other properties as well, depending on whether they design dfilt objects or mfilt objects.

Added Properties for mfilt Objects	Description
DecimationFactor	Specifies the amount to decrease   the sampling rate. Always   a positive integer.
InterpolationFactor	Specifies the amount to increase   the sampling rate. Always   a positive integer.
PolyphaseLength	Polyphase length is the length of   each polyphase subfilter that   composes the decimator or   interpolator or src filters. Total   filter length is the product of pl   and the rate change factors. pl   must be an even integer.

d = fdesign.type(specificationtype) In specificationtype, you specify the variables to use that define your filter design, such as the passband frequency or the stopband attenuation. These variables are applied to the filter design method you choose to design your filter.

For example, when you create a default lowpass filter design object d, fdesign sets the passband frequency Fpass, the stopband frequency Fstop, the stopband attenuation Astop, and the passband attenuation Apass (ripple in the passband) for d :

```
d = fdesign.lowpass
d =
 ResponseType: 'Minimum-order lowpass'
 SpecificationType: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
```

Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60
For a lowpass filter, SpecificationType must be one of the following strings:

SpecificationType String	Description
Fp, Fst, Ap, Ast	Define the filter by specifying the passband   cutoff, the stopband cutoff, the ripple in the   passband, and the attenuation in the stopband.   This is the default string for a lowpass filter.
N, Fc	Set the filter order and the cutoff frequency to   define the filter.
N, Fp, Ap	Set the filter order, passband cutoff frequency,   and passband ripple.
N, Fst, Ast	Define the filter by setting the order, stopband   frequency, and stopband attenuation.
N, Fp, Ap, Ast	Set the order, passband cutoff frequency,   passband ripple, and stopband attenuation.
N, Fp, Fst, Ap	Set the filter order, passband cutoff frequency,   stopband frequency, and passband ripple.

Other filter object types, such as Nyquist or highpass, accept a different set of strings for SpecificationType. Refer to the Help system for details about the strings for each filter type.

One important note is that the SpecificationType string you choose controls which design method works for the design object. For the lowpass filter design object d from earlier, you can use butter, cheby1, cheby2, or ellip to design a filter. However, if the SpecificationType string had been ' $n$, fp, fst, ap', you could only use the ellip design method to design your filter.

When you implement this lowpass filter hd using a filter design method such as Butterworth (the butter design function), the constraints in fp, fst, ap, and
ast (the default string and filter specification) define the response of the final minimum-order lowpass filter:

```
hd = butter(d)
hd =
```

```
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 PersistentMemory: false
 States: [2x13 double]
NumSamplesProcessed: 0
```

FVTool shows that hd is a lowpass filter that meets the design specification.
d = fdesign.type(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.type(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units
- $d B$-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converted to dB if necessary) regardless of how you specify the magnitudes.

## Using Filter Design Methods With Design Objects

After you create a filter design object, you use a filter design method to implement your filter with a selected algorithm. The following methods are available for filter design objects, but all methods do not apply to all object types. Also, the specification string you use to define the object changes the algorithms available to design a filter. Enter doc butter, for example, to get

## fdesign

more information about using the Butterworth design method with your filter design object.

Design Function	Description
butter	Implement a Butterworth filter   resulting in an SOS filter with   direct-form II structure.
cheby1	Implement a Chebysher Type I   filter, resulting in a direct-form II   second-order filter.
cheby2	Implement a Chebyshev Type II   filter, resulting in an SOS filter   with direct-form II structure
ellip	Implement an elliptic filter   resulting in an SOS filter with   direct-form II structure
equiripple	Implement an equiripple filter.
firls	Implement a least-squares filter.
kaiserwin	Implement a filter that uses a   Kaiser window.

When you use any of the design methods without providing an output argument, the resulting filter design appears in FVTool by default.
Along with filter design methods, fdesign works with supporting methods that help you create filter design objects or determine which design methods work for a given design object.

Supporting Function	Description
setspecs	Set all of the specifications   simultaneously.
designmethods	Return the design methods.

## fdesign

You can set filter specification values by passing them after the SpecificationType argument, or by passing the values without the SpecificationType string.

Filter object constructors take the input arguments in the same order as setspecs and the order in the strings for SpecificationType. Enter doc setspecs at the prompt for more information about using setspecs.

When the first input to fdesign is not a valid SpecificationType string like ' $\mathrm{n}, \mathrm{fc}$ ', fdesign assumes that the input argument is a filter specification and applies it using the default SpecificationType string-fp,fst, ap, ast for a lowpass object, for example.

## Examples

These examples show a few default filter objects constructed from the MATLAB command prompt, and how to design a Butterworth filter.

Example 1—Halfband filter object with filter order and stopband attenuation provided as input arguments. Add the linear magunits option so you specify the attenuation in decimal-0.0001.

```
n = 80;
ast = 1e-4;
fs = 48000
d=fdesign.halfband('n,ast',n,ast,fs,'linear')
d =
 ResponseType: [1x51 char]
 SpecificationType: 'N,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 80
 Astop: 80
d.description
ans =
```

[^6]
## fdesign

```
'Stopband Attenuation (dB)'
Example 2-Interpolator Filter Object
 d = fdesign.interp
 d =
 ResponseType: 'Minimum-order halfband'
 SpecificationType: 'TW,Ast'
 Description: {2x1 cell}
 InterpolationFactor: 2
 NormalizedFrequency: true
 Fs: 'Normalized'
 TransitionWidth: 0.1000
 Astop: 80
d.Description
ans =
 'Transition Width'
 'Stopband Attenuation (dB)'
Example 3-Highpass Filter Object
d=fdesign.highpass
d =
 ResponseType: 'Minimum-order highpass'
 SpecificationType: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fstop: 0.4500
 Fpass: 0.5500
 Astop: 60
 Apass: 1
```

```
d.Description
ans =
 'Stopband Frequency'
 'Passband Frequency'
 'Stopband Attenuation (dB)'
 'Passband Ripple (dB)'
```

Notice the correspondence between the properties SpecificationType and Description-in Description you see in words the definitions of the variables shown in SpecificationType.

Example 4-Lowpass Butterworth Filter Design
Use a filter design object to construct a lowpass Butterworth filter with default SpecificationType $f p, f s t, a p$, ast-the edge frequencies of the passband and stopband, the attenuation in the passband, and the attenuation in the stopband. Start by creating the design object $d$ and providing the filter order and cutoff frequency values.

```
d = fdesign.lowpass(0.4,0.5,1,80);
d
d =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: \(\{4 \times 1\) cell\}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80
```

Determine which design methods apply to d.
designmethods(d)
Design Methods for class fdesign.lowpass:

## fdesign

```
butter
cheby1
cheby2
ellip
```

Now use d and the butter design method to design a Butterworth filter.

```
hd = butter(d,'matchexactly','passband');
fvtool(hd);
```

The resulting filter magnitude response shown by FVTool appears below.


If you had a default Nyquist filter design object d

```
d = fdesign.nyquist
```

you could find out which design methods apply to d by entering
designmethods(d)

Design methods for class fdesign.nyquist:
kaiserwin
Notice that only the Kaiser window-based design method applies to default Nyquist filter objects.

See Also
butter, cheby1, cheby2, designmethods, ellip, equiripple, fdatool, fdesign.bandpass, fdesign.bandstop, fdesign.decim, fdesign.halfband, fdesign.highpass, fdesign.interp, fdesign.lowpass, fdesign.nyquist, fdesign.src, firls, fvtool, kaiserwin, setspecs

## fdesign.bandpass

## Purpose

Construct a filter design object that has bandpass filter specifications

```
Syntax d = fdesign.bandpass
d = fdesign.bandpass(spectype)
d = fdesign.bandpass(spectype,specvalue1,specvalue2,...)
d = fdesign.bandpass(fstop1,fpass1,fpass2,fstop2,astop1,...
 apass,astop2)
d = fdesign.bandpass(...,fs)
d = fdesign.bandpass(...,magunits)
```

Description $d=$ fdesign.bandpass constructs a bandpass filter design object $d$, applying default values for the properties Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, and Astop2-one possible set of values you use to specify a bandpass filter.

Using fdesign.bandpass with a design method generates a dfilt object.
d = fdesign.bandpass(spectype) constructs object d and sets its SpecificationType property to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below and used to define the bandpass filter. The strings are not case sensitive.

- fst1,fp1,fp2,fst2, ast1, ap, ast2 (default spectype)
- $\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2$
- $n, f p 1, f p 2, a p$
- n,fst1,fst2,ast
- n,fp1,fp2,ast1,ap, ast2
- $n$,fst1,fp1,fp2,fst2, ap

The string entries are defined as follows:

- ap-amount of ripple allowed in the pass band. Also called Apass.
- ast1-attenuation in the first stop band in dB (the default units). Also called Astop1.
- ast2-attenuation in the second stop band in dB (the default units). Also called Astop2.


## fdesign.bandpass

- fc1-cutoff frequency for the point 3 dB point below the passband value for the first cutoff. Specified in normalized frequency units.
- fc2-cutoff frequency for the point 3 dB point below the passband value for the second cutoff. Specified in normalized frequency units.
- fp1-frequency at the edge of the start of the pass band. Specified in normalized frequency units. Also called Fpass1.
- fp2-frequency at the edge of the end of the pass band. Specified in normalized frequency units. Also called Fpass2.
- fst1-frequency at the edge of the start of the first stop band. Specified in normalized frequency units. Also called Fstop1.
- fst2-frequency at the edge of the start of the second stop band. Specified in normalized frequency units. Also called Fstop2.
- n-filter order.

Graphically, the filter specifications look like this.


Regions between specification values like fst1 and fp1 are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandpass filter design object change depending on the SpecificationType string. Paired with each string in the

## fdesign.bandpass

following table are the design methods for bandpass design objects that use that string.

SpecificationType String	Applicable Design Method
fst1,fp1, fp2,fst2, ast1, ap, ast2	butter,cheby1,cheby2,ellip
$\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2$	butter
n,fp1,fp2,ap	cheby 1
n,fst1, fst2, ast	cheby2
n, fp1, fp2, ast1, ap, ast2	ellip
n,fst1,fp1,fp2,fst2,ap	ellip

d = fdesign.bandpass(spectype, specvalue1, specvalue2, ...) constructs an object d and sets its specifications at construction time.
d = fdesign.bandpass(fstop1,fpass1,fpass2,fstop2,astop1,... apass, astop2) constructs d, an object with the default SpecificationType property string, using the specifications provided as input arguments.
d = fdesign.bandpass(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.bandpass(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units
- $d B$-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.

## fdesign.bandpass

```
get(d)
 ResponseType: 'Minimum-order bandpass'
 Description: {7x1 cell}
 SpecificationType: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 NormalizedFrequency: 0
 Fs: 48
 Fstop1: 10
 Fpass1: 12
 Fpass2: 14
 Fstop2: 16
 Astop1: 80
 Apass: 0.5000
 Astop2: 60
```


## Examples

These examples show how to construct a bandpass filter design object. First, create a default object without using input arguments.

```
d = fdesign.bandpass
d =
 ResponseType: 'Minimum-order bandpass'
 SpecificationType: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
NormalizedFrequency: true
 Fs: 'Normalized'
 Fstop1: 0.3500
 Fpass1: 0.4500
 Fpass2: 0.5500
 Fstop2: 0.6500
 Astop1: 60
 Apass: 1
 Astop2: 60
```

Now, pass the filter specifications that correspond to the default SpecificationType-fst1,fp1,fp2,fst2,ast1,ap,ast2-without specifying the SpecificationType string. Notice that we add fs as the final input argument to specify the sampling frequency of 48 Hz .

```
d = fdesign.bandpass(10, 12, 14, 16, 80, .5, 60, 48)
```

d $=$

## fdesign.bandpass

```
 ResponseType: 'Minimum-order bandpass'
 SpecificationType: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
NormalizedFrequency: false
 Fs: 48
 Fstop1: 10
 Fpass1: 12
 Fpass2: 14
 Fstop2: 16
 Astop1: 80
 Apass: 0.5000
 Astop2: 60
```

Next create a design object by passing a specification type string 'n,fc1,fc2'the resulting object uses default values for $\mathrm{n}, \mathrm{fc} 1$, and fc 2 .

```
d = fdesign.bandpass('n,fc1,fc2')
d =
 ResponseType: 'Bandpass with cutoff'
 SpecificationType: 'N,Fc1,Fc2'
 Description: {3x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff1: 0.4000
 Fcutoff2: 0.6000
```

Create the same filter, passing the specification values to the object rather than accepting the default values for n , fc 1 , and fc2. Notice that you can include the sampling frequency fs as the final input argument, and that you specify the cutoff frequencies in Hz since fs is in Hz .

```
d = fdesign.bandpass('n,fc1,fc2', 10, 9600, 14400, 48000)
d =
 ResponseType: 'Bandpass with cutoff'
 SpecificationType: 'N,Fc1,Fc2'
 Description: {3x1 cell}
NormalizedFrequency: false
 Fs: 48000
```


## fdesign.bandpass

FilterOrder: 10
Fcutoff1: 9600
Fcutoff2: 14400
See Also fdesign, fdesign.bandstop, fdesign.highpass, fdesign.lowpass

## fdesign.bandstop

## Purpose

Construct a filter design object that has bandstop filter specifications

```
Syntax d = fdesign.bandstop
d = fdesign.bandstop(spectype)
d = fdesign.bandstop(spectype,specvalue1,specvalue2,...)
d = fdesign.bandstop(fstop1,fpass1,fpass2,fstop2,astop1,...
 apass,astop2)
d = fdesign.bandstop(...,fs)
d = fdesign.bandstop(...,magunits)
```

Description $\quad d=$ fdesign.bandstop constructs a bandstop filter design object $d$, applying default values for the properties Fpass1, Fstop1, Fstop2, Fpass2, Apass1, Astop1 and Apass2.

Using fdesign. bandstop with a design method generates a dfilt object.
d = fdesign.bandstop(spectype) constructs object d and sets its
'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive.

- fp1,fst1,fst2,fp2,ap1, ast, ap2 (default spectype)
- $\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2$
- $n, f p 1, f p 2, a p$
- n,fst1,fst2,ast
- $n, f p 1, f p 2, a s t, a p$
- n,fp1,fst1,fst2,fp2,ap

The string entries are defined as follows:

- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the first stop band in dB (the default units). Also called Astop1.
- fc1-cutoff frequency for the point 3 dB point below the passband value for the first cutoff. Specified in normalized frequency units.


## fdesign.bandstop

- fc2-cutoff frequency for the point 3 dB point below the passband value for the second cutoff. Specified in normalized frequency units.
- fp1—frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass1.
- fp2-frequency at the end of the pass band. Specified in normalized frequency units. Also called Fpass2.
- fst1-frequency at the end of the first stop band. Specified in normalized frequency units. Also called Fstop1.
- fst2-frequency at the start of the second stop band. Specified in normalized frequency units. Also called Fstop2.
- n-filter order.

Graphically, the filter specifications look like this:


Regions between specification values like $\mathrm{fp1} 1$ and fst1 are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandstop filter design object change depending on the SpecificationType string. Paired with each string in the

## fdesign.bandstop

following table are the design methods for bandstop design objects that use that string.

SpecificationType String	Applicable Design Method
fp1,fst1,fst2,fp2,ap1, ast, ap2	butter, cheby1, cheby2, ellip
n, fc1, fc2	butter
n,fp1,fp2,ap	cheby 1
n,fst1, fst2, ast	cheby2
n,fp1,fp2,ap,ast	ellip
n,fp1,fst1,fst2,fp2,ap	ellip

d = fdesign.bandstop(spectype,spec1,spec2,...) constructs an object d and sets its specifications at construction time.
d = fdesign.bandstop(fpass1,fstop1,fstop2,fpass2,apass1,... astop, apass2) constructs an object d with the default 'SpecificationType' property string, using the specifications you provide as input arguments.
d = fdesign.bandstop(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.bandstop(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units
- $d B$-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in $d B$. Note that fdesign stores all magnitude specifications in $d B$ (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
get (d)

```
 ResponseType: 'Minimum-order bandstop'
 Description: {7x1 cell}
 SpecificationType: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 NormalizedFrequency: 1
 Fs: 'Normalized'
 Fpass1: 0.3500
 Fstop1: 0.4500
 Fstop2: 0.5500
 Fpass2: 0.6500
 Apass1: 1
 Astop: 60
 Apass2: 1
```


## Examples

These examples show how to construct a bandpass filter design object. First, create a default object without using input arguments.

```
d = fdesign.bandstop
d =
```

```
 ResponseType: 'Minimum-order bandstop'
 Description: {7x1 cell}
 SpecificationType: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 NormalizedFrequency: 1
 Fs: 'Normalized'
 Fpass1: 0.3500
 Fstop1: 0.4500
 Fstop2: 0.5500
 Fpass2: 0.6500
 Apass1: 1
 Astop: 60
 Apass2: 1
```

Now create an object by passing a specification type string ' $n, f c 1, f c 2$ '-the resulting object uses default values for $n, f c 1$, and fc2.

```
d=fdesign.bandstop('n,fc1,fc2')
d =
 ResponseType: 'Bandstop with cutoff'
```


## fdesign.bandstop

```
 SpecificationType: 'N,Fc1,Fc2'
 Description: {3x1 cell}
NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff1: 0.4000
 Fcutoff2: 0.6000
designmethods(d)
Design Methods for class fdesign.bandstop:
butter
cheby1
cheby2
ellip
```

Create another bandstop filter, passing the specification values to the object rather than accepting the default values for $\mathrm{n}, \mathrm{fc} 1$, and fc2. Notice that you can add fs as the final input argument to specify the sampling frequency of 48 kHz.

```
d = fdesign.bandstop('n,fc1,fc2', 10, 9600, 14400, 48000)
```

d $=$

```
 ResponseType: 'Bandstop with cutoff'
 SpecificationType: 'N,Fc1,Fc2'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff1: 9600
 Fcutoff2: 14400
```

For this bandstop filter, pass the filter specifications that correspond to the default SpecificationType-fp1,fst1,fst2,fp2,ap1,ast,ap2.

```
d = fdesign.bandstop(0.3,0.4,0.6,0.7,0.5,60,1)
```


## fdesign.bandstop

```
d =
 ResponseType: 'Minimum-order bandstop'
 SpecificationType: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass1: 0.3000
 Fstop1: 0.4000
 Fstop2: 0.6000
 Fpass2: 0.7000
 Apass1: 0.5000
 Astop: 60
 Apass2: 1
```

And for the final example, pass the magnitude specifications in squared units, using the magunits option squared.

```
d = fdesign.bandstop(0.4,0.5,0.6,0.7,0.98,0.01,0.99,'squared')
d =
 ResponseType: 'Minimum-order bandstop'
 SpecificationType: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass1: 0.4000
 Fstop1: 0.5000
 Fstop2: 0.6000
 Fpass2: 0.7000
 Apass1: 0.0877
 Astop: 20
 Apass2: 0.0436
```

See Also fdesign, fdesign.bandpass, fdesign.highpass, fdesign.lowpass

## fdesign.decim

Purpose
Construct a filter design object that has decimator filter specifications

## Syntax

Description

```
d = fdesign.decim(m)
d = fdesign.decim(m,spectype)
d = fdesign.decim(m,spectype,specvalue1,specvalue2,...
d = fdesign.decim(m,tw,ast)
d = fdesign.decim(...,fs)
d = fdesign.decim(...,magunits)
``` default values for the properties tw and ast. Specify m , the decimation factor as an integer. When you omit the input argument \(m\), fdesign, decim sets the decimation factor \(m\) to 2 .

Using fdesign.decim with a design method generates an mfilt object.
d = fdesign.decim(m,spectype) constructs object d and sets its
'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive. Notice that the decimation factor \(m\) is not in the specification strings.
- tw,ast (default spectype)
- pl,tw
- pl
- pl,ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- pl-polyphase filter length. Polyphase length is the length of each polyphase subfilter that composes the decimator. Total filter length is the product of pl and the decimation factor. pl must be an even integer.
- tw-width of the transition region between the pass and stop bands.

The filter design methods that apply to a decimating filter design object change depending on the SpecificationType string. Paired with each string in the
following table are the design methods for decimating filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline tw, ast & equiripple, kaiserwin \\
\hline \(\mathrm{pl}, \mathrm{tw}\) & kaiserwin \\
\hline pl & window \\
\hline pl, ast & kaiserwin \\
\hline
\end{tabular}
d = fdesign.decim(m,spectype,spec1,spec2,...) constructs an object \(d\) and sets its specifications at construction time.
d = fdesign.decim(m, 'tw, ast') constructs an object d with the default 'SpecificationType' property string, using the default specification values.
d = fdesign.decim(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
\(d=\) fdesign.decim(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- dB -specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in \(d B\). Note that fdesign stores all magnitude specifications in \(d B\) (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
```

get(d)
ResponseType: 'Minimum-order halfband'
Description: {2x1 cell}
SpecificationType: 'TW,Ast'

```

\section*{fdesign.decim}
```

 DecimationFactor: 2
 NormalizedFrequency: 1
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

\section*{Examples}

These examples show how to construct a decimation filter design object. First, create a default object without using input arguments.
```

d = fdesign.decim(2)
d =
ResponseType: 'Minimum-order halfband'
Description: {2x1 cell}
SpecificationType: 'TW,Ast'
DecimationFactor: 2
NormalizedFrequency: 1
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

Now create an object by passing a specification type string 'pl,ast'-the resulting object uses default values for pl and ast.
```

d=fdesign.decim(3,'pl,ast')
d =
ResponseType: [1x50 char]
SpecificationType: 'PL,Ast'
Description: {2x1 cell}
DecimationFactor: 3
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 24
Astop: 80

```

Create another decimating filter object, passing the specification values to the object rather than accepting the default values for tw and ast.
```

d=fdesign.decim(3,.01,80)

```
```

d =
ResponseType: 'Minimum-order nyquist'
SpecificationType: 'TW,Ast'
Description: {2x1 cell}
DecimationFactor: 3
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.0100
Astop: 80

```

Now pass the filter specifications that correspond to the SpecificationTypepl,ast.
    d=fdesign.decim(3, 'pl, ast' \(, 42,80\) )
    \(\mathrm{d}=\)
            ResponseType: [1x50 char]
            SpecificationType: 'PL,Ast'
                    Description: \{2x1 cell\}
            DecimationFactor: 3
                NormalizedFrequency: true
                    Fs: 'Normalized'
            PolyphaseLength: 42
            Astop: 80

Now design a decimator using the kaiserwin design method.
```

hm = kaiserwin(d)

```

Pass a new specification type for the filter, specifying the filter order.
```

hs = fdesign.decim(5,'pl,ast',12)
hs =
ResponseType: [1x50 char]
SpecificationType: 'PL,Ast'
Description: {2x1 cell}
DecimationFactor: 5
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 12

```

\section*{fdesign.decim}

Astop: 80
In this example, you specify a sampling frequency as the last input argument.
```

hs = fdesign.decim(2,'PL,TW',18,.1,5)
hs =
ResponseType: [1x47 char]
SpecificationType: 'PL,TW'
Description: {2x1 cell}
DecimationFactor: 2
NormalizedFrequency: false
Fs: 5
PolyphaseLength: 18
TransitionWidth: 0.1000

```

In this last example, use the linear option for the filter and specify the stopband ripple attenuation in linear format.
```

hs = fdesign.decim(4,'TW,Ast',.1,1e-3,5,'linear') % 1e-3 = 60dB
hs =

```
            ResponseType: 'Minimum-order nyquist'
        SpecificationType: 'Tw,Ast'
            Description: \(\{2 \times 1\) cell \(\}\)
        DecimationFactor: 4
        NormalizedFrequency: false
            Fs: 5
        TransitionWidth: 0.1000
            Astop: 60
See Also
fdesign, fdesign.halfband, fdesign.interp, fdesign.nyquist,

Purpose
Syntax

Description

Construct a filter design object that has halfband filter specifications
```

d = fdesign.halfband
d = fdesign.halfband(spectype)
d = fdesign.halfband(spectype,specvalue1,specvalue2,...)
d = fdesign.halfband(tw,ast)
d = fdesign.halfband(...,fs)
d = fdesign.halfband(...,magunits)

```
d = fdesign. halfband constructs a halfband filter design object d, applying default values for the properties tw and ast.

Using fdesign. halfband with a design method generates a dfilt object.
d = fdesign.halfband (spectype) constructs object d and sets its 'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive.
- tw, ast (default spectype)
- n,tw
- n
- n, ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- n—filter order.
- tw-width of the transition region between the pass and stop bands.

Specified in normalized frequency units.
The filter design methods that apply to a halfband filter design object change depending on the SpecificationType string. Paired with each string in the

\section*{fdesign.halfband}
following table are the design methods for halfband filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline tw, ast & equiripple, kaiserwin \\
\hline\(n, t w\) & equiripple, kaiserwin, firls \\
\hline\(n\) & window \\
\hline\(n\), ast & equiripple, kaiserwin \\
\hline
\end{tabular}
d = fdesign.halfband(spectype,spec1,spec2,...) constructs an object \(d\) and sets its specifications at construction time.
d = fdesign.halfband(tw,ast) constructs an object d assuming the default 'SpecificationType' property string 'tw, ast', using the default specification values for the input arguments tw and ast.
\(\mathrm{d}=\mathrm{fdesign}\). halfband (...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.halfband(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
get(d)
```

ResponseType: 'Minimum-order halfband'
Description: {2x1 cell}

```
```

 SpecificationType: 'TW,Ast'
 DecimationFactor: 2
 NormalizedFrequency: 1
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

\section*{Examples}

These examples show how to construct a halfband filter design object. First, create a default object without using input arguments.
```

d=fdesign.halfband
d =
ResponseType: 'Minimum-order halfband'
SpecificationType: 'TW,Ast'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

Now create an object by passing a specification type string ' \(n\),ast'-the resulting object uses default values for n and ast.
```

d=fdesign.halfband('n,ast')
d =
ResponseType: 'Halfband with filter order and stopband
attenuation'
SpecificationType: 'N,Ast'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 10
Astop: 80

```

Create another halfband filter object, passing the specification values to the object rather than accepting the default values for \(n\) and ast.
```

d = fdesign.halfband('n,ast', 42, 80)

```

\section*{fdesign.halfband}
```

d =

```
```

 ResponseType: 'Halfband with filter order and stopband attenuation'
    ```
            ResponseType: 'Halfband with filter order and stopband attenuation'
        SpecificationType: 'N,Ast'
        SpecificationType: 'N,Ast'
            Description: {2x1 cell}
            Description: {2x1 cell}
NormalizedFrequency: true
NormalizedFrequency: true
                            Fs: 'Normalized
                            Fs: 'Normalized
            FilterOrder: 42
            FilterOrder: 42
                            Astop: 80
```

 Astop: 80
    ```

For another example, pass the filter values that correspond to the default SpecificationType-n, ast.
```

d = fdesign.halfband(.01, 80)

```
d \(=\)
```

 ResponseType: 'Minimum-order halfband'
 SpecificationType: 'TW,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.0100
Astop: 80%

```

This example designs an equiripple FIR filter, starting by passing a new specification type and specification values to fdesign.halfband.
```

hs = fdesign.halfband('n,ast',80,70);
hs
hs =
ResponseType: [1x51 char]
SpecificationType: 'N,Ast'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 80
Astop: 70
equiripple(h); % Opens FVTool automatically.

```

In the final example, pass the for the filter, and then design a least-squares FIR filter from the object, using firls as the design method.
```

hs = fdesign.halfband('n,tw', 42, .04)
hs =
ResponseType: [1x47 char]
SpecificationType: 'N,TW'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 42
TransitionWidth: 0.0400
designmethods(hs)
Design Methods for class fdesign.halfband:
equiripple
kaiserwin
firls
hd=firls(hs)
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1\times43 double]
PersistentMemory: false
States: [42\times1 double]
NumSamplesProcessed: 0

```
See Also fdesign, fdesign.decim, fdesign.interp, fdesign.nyquist, fdesign.src

\section*{fdesign.highpass}

\section*{Purpose}

Construct a filter design object that has highpass filter specifications
```

Syntax d = fdesign.highpass
d = fdesign.highpass(spectype)
d = fdesign.highpass(spectype,specvalue1,specvalue2,...)
d = fdesign.highpass(fst,fp,ast,ap)
d = fdesign.highpass(...,fs)
d = fdesign.highpass(...,magunits)

```

Description \(d=\) fdesign.highpass constructs a bandstop filter design object \(d\), applying default values for the properties fst, fp , ast and ap.

Using fdesign. highpass with a design method generates a dfilt object.
d = fdesign.highpass(spectype) constructs object d and sets its 'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive.
- fst,fp, ast, ap (default spectype)
- \(\mathrm{n}, \mathrm{fc}\)
- \(n, f p\),ap
- n,fst, ast
- n,fp, ast, ap
- n,fst,fp,ap

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the stop band in dB (the default units). Also called Astop.
- fc-cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fp-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the end of the stop band. Specified in normalized frequency units. Also called Fstop.
- n-filter order.

Graphically, the filter specifications look like this:


Regions between specification values like fst1 and fp are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a highpass filter design object change depending on the SpecificationType string. Paired with each string in the following table are the design methods for highpass filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline \(\mathrm{fst}, \mathrm{fp}\), ast, ap & butter, cheby1, cheby2, ellip \\
\hline \(\mathrm{n}, \mathrm{fc}\) & butter \\
\hline \(\mathrm{n}, \mathrm{fp}, \mathrm{ap}\) & cheby1 \\
\hline \(\mathrm{n}, \mathrm{fst}\), ast & cheby2 \\
\hline \(\mathrm{n}, \mathrm{fp}\), ast, ap & ellip \\
\hline \(\mathrm{n}, \mathrm{fst}, \mathrm{fp}, \mathrm{ap}\) & ellip \\
\hline
\end{tabular}

\section*{fdesign.highpass}
d = fdesign.highpass(spectype,spec1,spec2,...) constructs an object \(d\) and sets its specification values at construction time.
d = fdesign.highpass(fst,fp,ast,ap) constructs an object d with the values for the default 'SpecificationType' property string, using the specifications you provide as input arguments.
d = fdesign.highpass(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.highpass(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in \(d B\). Note that fdesign stores all magnitude specifications in \(d B\) (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
```

get(d)
ResponseType: 'Minimum-order highpass'
Description: {4x1 cell}
SpecificationType: 'Fst,Fp,Ast,Ap'
NormalizedFrequency: 1
Fs: 'Normalized'
Fstop: 0.4500
Fpass: 0.5500
Astop: 60
Apass: 1

```

Examples These examples how to construct a highpass filter design object. First, create a default without using input arguments.

\footnotetext{
d=fdesign.highpass
}
\(d=\)
```

 ResponseType: 'Minimum-order highpass'
 SpecificationType: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
Fs: 'Normalized'
Fstop: 0.4500
Fpass: 0.5500
Astop: 60
Apass: 1

```

This time, pass the specifications that correspond to the default SpecificationType string.
```

hs = fdesign.highpass(.4, .5, 80,1);
hs =

```
            ResponseType: 'Minimum-order highpass'
        SpecificationType: 'Fst,Fp,Ast,Ap'
            Description: \{4x1 cell\}
NormalizedFrequency: true
                            Fs: 'Normalized'
                            Fstop: 0.4000
                            Fpass: 0.5000
                    Astop: 80
                    Apass: 1

Now create an object by passing a specification type string ' \(\mathrm{n}, \mathrm{fc}\) '-the resulting object uses default values for n and fc .
```

d=fdesign.highpass('n,fc')
d =
ResponseType: 'Highpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'

```

\section*{fdesign.highpass}

FilterOrder: 10
Fcutoff: 0.5000
Create the same filter, passing the values for \(n\) and fc rather than accepting the default values. Notice that you can add include the sampling frequency fs as the final input argument. Adding fs puts all the frequency specifications into linear frequency format, rather than normalized frequency.
```

d=fdesign.highpass('n,fc',10,9600,48000)
d =
ResponseType: 'Highpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: false
Fs: 48000
FilterOrder: 10
Fcutoff: 9600

```

Finally, pass values for the filter specifications that match the default SpecificationType string-fp \(=10\), fst \(=12\), ast \(=80\) and ap \(=0.5\). Add the sampling frequency on the end.
```

d=fdesign.highpass(10, 12, 80, 0.5,48000)
d =
ResponseType: 'Minimum-order highpass'
SpecificationType: 'Fst,Fp,Ast,Ap'
Description: {4x1 cell}
NormalizedFrequency: false
Fs: 48000
Fstop: 10
Fpass: 12
Astop: 80

```

To demonstrate the magunits input option, pass the magnitude specifications in squared units and include the squared input argument for magunits.
```

hs = fdesign.highpass(.4, .5, .02, .98, 'squared');
hd = cheby1(hs);

```
```

fvtool(hd,'MagnitudeDisplay','Magnitude Squared');

```

The figure below show the filter response.


\section*{See Also}

\section*{fdesign.interp}

Purpose
Construct a filter design object that has interpolator filter specifications

\author{
Syntax
}

Description
```

d = fdesign.interp(l)
d = fdesign.interp(l,spectype)
d = fdesign.interp(l,spectype,specvalue1,specvalue2,)
d = fdesign.interp(l,transitionwidth,astop)
d = fdesign.interp(...,fs)
d = fdesign.interp(...,magunits)

```
d = fdesign.interp(l) constructs an interpolating filter design object d, applying default values for the properties tw and ast. Specify 1 , the interpolation factor as an integer. When you omit the input argument 1 , fdesign. interp sets the interpolation factor 1 to 2 . By default, the filter object designs a minimum-order halfband filter.

Using fdesign.interp with a design method generates an mfilt object.
d = fdesign.interp(l, spectype) constructs object d and sets its 'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive. Notice that the interpolation factor \(l\) is not in the specification strings.
- tw,ast (default spectype)
- pl,tw
- pl
- pl,ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- pl-polyphase filter length. Polyphase length is the length of each polyphase subfilter that composes the interpolator. Total filter length is the product of pl and the interpolation factor. pl must be an even integer.
- tw-width of the transition region between the pass and stop bands. Specified in normalized frequency units.

The filter design methods that apply to an interpolating filter design object change depending on the SpecificationType string. Paired with each string
in the following table are the design methods for interpolating filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline tw, ast & equiripple, kaiserwin \\
\hline pl, tw & kaiserwin \\
\hline pl & window \\
\hline pl, ast & kaiserwin \\
\hline
\end{tabular}
d = fdesign.interp(l,spectype,spec1,spec2,...) constructs an object \(d\) and sets its specifications at construction time.
d = fdesign.interp(l,'tw,ast') constructs an object d with the default 'SpecificationType' property string, using the default specification values.
d = fdesign.interp(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.interp(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- dB -specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB. Note that fdesign stores all magnitude specifications in dB (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
get(d)
```

 ResponseType: 'Minimum-order halfband'
 SpecificationType: 'TW,Ast'

```

\section*{fdesign.interp}
```

 Description: {2x1 cell}
 InterpolationFactor: 2
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

\section*{Examples}

These examples show how to construct an interpolator filter design object. First, create a default object without using input arguments.
```

d = fdesign.interp
d =
ResponseType: 'Minimum-order halfband'
SpecificationType: 'TW,Ast'
Description: {2x1 cell}
InterpolationFactor: 2
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

Now create an object by passing a specification type string ' \(n\),ast'- the resulting object uses default values for \(n\) and ast.
```

d=fdesign.interp(5,'pl,ast')
d =
ResponseType: [1x50 char]
SpecificationType: 'PL,Ast'
Description: {2x1 cell}
InterpolationFactor: 5
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 24
Astop: 80
d.responseType

```
ans \(=\)

Nyquist with filter order and stopband attenuation
Create another interpolating filter object, passing the specification values to the object rather than accepting the default values for \(n\) and ast.
```

d = fdesign.interp(4, 'pl,ast', 42, 80)
d =
ResponseType: 'Nyquist with filter order and stopband attenuation'
SpecificationType: 'Pl,Ast'
Description: {2x1 cell}
InterpolationFactor: 4
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 42
Astop: 80

```

Now pass the filter specifications that correspond to the default SpecificationType-n, ast.
```

d = fdesign.interp(5, .01, 80)
d =
ResponseType: 'Minimum-order nyquist'
SpecificationType: 'TW,Ast'
Description: {2x1 cell}
InterpolationFactor: 5
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.0100
Astop: 80

```

Use d to design an interpolator using the kaiserwin design method.
```

hm=kaiserwin(d)
hm =

```
            FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
                    Numerator: [1x1010 double]
InterpolationFactor: 5

\section*{fdesign.interp}
```

 PersistentMemory: false
 States: [201x1 double]
 NumSamplesProcessed: 0

```

Finally, include the sampling frequency input argument when you create the interpolator design object. Specify the magunits option with the value linear. In this case, you enter the attenuation in linear units- \(1 \mathrm{e}-3\).
```

hs = fdesign.interp(4,'tw,ast',0.1,1e-3,5,'linear') %
1e-3 = 60dB

```

\author{
See Also \\ fdesign, fdesign.decim, fdesign.halfband, fdesign.nyquist, fdesign.src
}

\section*{Purpose}

Construct a filter design object that has lowpass filter specifications

\section*{Syntax \\ Description}
```

d = fdesign.lowpass
d = fdesign.lowpass(spectype)
d = fdesign.lowpass(spectype,specvalue1,specvalue2,)
d = fdesign.lowpass(fp,fst,ap,ast)
d = fdesign.lowpass(...,fs)
d = fdesign.lowpass(...,magunits)

```
d = fdesign. lowpass constructs a bandstop filter design object d, applying default values for the properties fp , fst, ap, and ast.

Using fdesign. lowpass with a design method generates a dfilt object.
d = fdesign.lowpass(spectype) constructs object d and sets its 'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive.
- fp,fst,ap,ast (default spectype)
- \(\mathrm{n}, \mathrm{fc}\)
- \(n, f p, a p\)
- n,fst, ast
- n, fp,ap,ast
- n, fp,fst, ap

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the stop band in dB (the default units). Also called Astop.
- fc-cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fp-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the end of the stop band. Specified in normalized frequency units. Also called Fstop.

\section*{fdesign.lowpass}
- n—filter order.

Graphically, the filter specifications look like this:


Regions between specification values like fp and fst are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a lowpass filter design object change depending on the SpecificationType string. Paired with each string in the following table are the design methods for lowpass filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline \(\mathrm{fp}, \mathrm{fst}, \mathrm{ap}\), ast & butter, cheby1, cheby2, ellip \\
\hline \(\mathrm{n}, \mathrm{fc}\) & butter \\
\hline \(\mathrm{n}, \mathrm{fp}, \mathrm{ap}\) & cheby1 \\
\hline \(\mathrm{n}, \mathrm{fst}\), ast & cheby2 \\
\hline \(\mathrm{n}, \mathrm{fp}, \mathrm{ap}\), ast & ellip \\
\hline \(\mathrm{n}, \mathrm{fp}, \mathrm{fst}, \mathrm{ap}\) & ellip \\
\hline
\end{tabular}
d = fdesign.lowpass(spectype,spec1,spec2,...) constructs an object \(d\) and sets its specification values at construction time.
d = fdesign.lowpass(fp,fst,ap, ast) constructs an object d with values for the default 'SpecificationType' property string options, using the specifications you provide as input arguments.
d = fdesign.lowpass(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.lowpass(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- dB -specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in \(d B\). Note that fdesign stores all magnitude specifications in \(d B\) (converted to dB if necessary) regardless of how you specify the magnitudes.

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
```

get(d)
ResponseType: 'Minimum-order lowpass'
Description: {4x1 cell}
SpecificationType: 'Fp,Fst,Ap,Ast'
NormalizedFrequency: 1
Fs: 'Normalized'
Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60

```

\section*{Examples}

These examples how to construct a lowpass filter design object. First, create a default lowpass filter object without using input arguments.

\footnotetext{
d=fdesign.lowpass
}

\section*{fdesign.lowpass}
```

d =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60

```

Now create an object by passing specifications for the passband and stopband edge frequencies and the passband and stopband attenuations-the resulting object uses the input values for \(\mathrm{fp}, \mathrm{fst}, \mathrm{ap}\), and ast.
```

hs = fdesign.lowpass(.4,.5,1,80);
hs
hs =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: $\{4 \times 1$ cell\}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80

```

Create another filter object, passing the values for n and fc rather than accepting the default values. Notice that you can add include the sampling frequency fs as the final input argument.
```

d=fdesign.lowpass('n,fc',10, 9600,48000)
d =
ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'

```
```

 Description: {2x1 cell}
 NormalizedFrequency: false
Fs: 48000
FilterOrder: 10
Fcutoff: 9600

```

Finally, pass values for the filter specifications that match the default SpecificationType string entries-fp \(=0.4\), fst \(=0.5\), ast \(=80\) and ap \(=1.0\). Add the sampling frequency on the end.
hs = fdesign.lowpass(.4, .5,1,80)
hs =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: \{4x1 cell\}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80
Finally, the next examples add the sampling frequency specification in Hz , and then the magunits option.
```

hs = fdesign.lowpass('N,Fp,Ap', 10, 9600, .5, 48000);

```
and
```

hs = fdesign.lowpass(.4, .5, .98, .02, 'squared');

```

Using the last example filter object, create a highpass filter.
hd = cheby1(hs);
See Also
fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.highpass

\section*{fdesign.nyquist}

\section*{Purpose Construct a filter design object that has Nyquist filter specifications}
```

Syntax d = fdesign.nyquist
d = fdesign.nyquist(spectype)
d = fdesign.nyquist(spectype,specvalue1,specvalue2,)
d = fdesign.nyquist('tw,ast')
d = fdesign.nyquist(...,fs)
d = fdesign.nyquist(...,magunits)

```

Description \(\quad d=\) fdesign.nyquist constructs a Nyquist filter design object d, applying default values for the properties tw and ast. By default, the filter object designs a minimum-order Nyquist filter.

Using fdesign. nyquist with a design method generates a dfilt object.
d = fdesign.nyquist(spectype) constructs object d and sets its 'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive.
- tw,ast (default spectype)
- n,tw
- n
- n,ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- n—filter order.
- tw-width of the transition region between the pass and stop bands.

Specified in normalized frequency units.
The filter design methods that apply to an interpolating filter design object change depending on the SpecificationType string. Paired with each string
in the following table are the design methods for interpolating filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline tw, ast & kaiserwin \\
\hline \(\mathrm{n}, \mathrm{tw}\) & kaiserwin \\
\hline n & window \\
n , ast & kaiserwin \\
\hline
\end{tabular}
d = fdesign.nyquist(spectype,spec1,spec2,...) constructs an object \(d\) and sets its specifications at construction time.
d = fdesign.nyquist('tw,ast') constructs an object d with the default 'SpecificationType' property string, using the default specification values.
\(\mathrm{d}=\mathrm{fdesign} . n y q u i s t(. . ., \mathrm{fs})\) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
\(d=\) fdesign.nyquist(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- dB -specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB. Note that fdesign stores all magnitude specifications in \(d B\) (converted to dB if necessary) regardless of how you specify the magnitudes.
As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
get (d)
```

 ResponseType: 'Minimum-order halfband'
 SpecificationType: 'TW,Ast'

```

\section*{fdesign.nyquist}
```

 Description: {2x1 cell}
 InterpolationFactor: 2
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

\section*{Examples}

These examples show how to construct a Nyquist filter design object. First, create a default object without using input arguments.
```

d=fdesign.nyquist
d =
ResponseType: 'Minimum-order nyquist'
SpecificationType: 'TW,Ast'
Description: {'Stopband Attenuation (dB)'}
Band: 2
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

Now create an object by passing a specification type string ' \(n\),ast'-the resulting object uses default values for n and ast.
```

d=fdesign.nyquist('n,ast')
d =
ResponseType: 'Nyquist with filter order and stopband attenuation'
SpecificationType: 'N,Ast'
Description: {'Stopband Attenuation (dB)'}
Band: 2
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 10
Astop: 80

```

Create another Nyquist filter object, passing the specification values to the object rather than accepting the default values for \(n\) and ast.
```

d=fdesign.nyquist('n,ast',42,80)
d =

```

\section*{fdesign.nyquist}
```

 ResponseType: 'Nyquist with filter order and stopband attenuation'
 SpecificationType: 'N,Ast'
 Description: {'Stopband Attenuation (dB)'}
 Band: 2
 NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 42
Astop: 80

```
Finally, pass the filter specifications that correspond to the default
SpecificationType-tw, ast. When you pass only the values,
fdesign. nyquist assumes the default SpecificationType string.
hs = fdesign.nyquist (4, .01, 80)
hs =
    ResponseType: 'Minimum-order nyquist'
        SpecificationType: 'TW,Ast'
            Description: \{2x1 cell\}
                    Band: 4
NormalizedFrequency: true
                            Fs: 'Normalized'
            TransitionWidth: 0.0100
            Astop: 80

Now design a Nyquist filter using the kaiserwin design method.
```

hd=kaiserwin(hs)
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x103 double]
PersistentMemory: false
States: [102x1 double]
NumSamplesProcessed: 0

```

See Also fdesign, fdesign.decim, fdesign.halfband, fdesign.interp, fdesign.src
```

Purpose Construct a filter design object that has sample rate converter filter specifications

```

\author{
Syntax
}
```

d = fdesign.src(l,m)
d = fdesign.src(l,m,spectype)
d = fdesign.src(l,m,spectype,specvalue1,specvalue2,...)
d = fdesign.src(l,m,'tw,ast')
d = fdesign.src(....fs)
d = fdesign.src(...., magunits)

```

Description \(d=\) fdesign.src (l,m) constructs a sample rate change filter design object \(d\), applying default values for the properties tw and ast. Specify 1 , the interpolation factor as an integer. When you omit the input argument 1 , fdesign. src sets the interpolation factor 1 to 3 . When you omit m, the decimation factor, fdesign. src sets \(m\) to 2 . By default, the filter object designs a minimum-order Nyquist filter to perform the fractional sample rate change.

Using fdesign.src with a design method generates an mfilt object.
d = fdesign.src(l,m,spectype) constructs object d and sets its 'SpecificationType' to spectype. Entries in the spectype string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spectype are shown below. The strings are not case sensitive. Notice that the interpolation factor 1 and the decimation factor \(m\) are not in the specification strings.
- tw, ast (default spectype)
- pl,tw
- pl
- pl,ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- pl-polyphase filter length. Polyphase length is the length of each polyphase subfilter that composes the sample rate changer. Total filter length is whichever of the following is larger-the product of pl and the decimation factor, or the product of pl and the interpolation factor. pl must be an even integer.
- tw-width of the transition region between the pass and stop bands. Specified in normalized frequency units.

The filter design methods that apply to an interpolating filter design object change depending on the SpecificationType string. Paired with each string in the following table are the design methods for interpolating filter design objects that use that string.
\begin{tabular}{l|l}
\hline SpecificationType String & Applicable Design Method \\
\hline tw, ast & kaiserwin \\
\hline pl, tw & kaiserwin \\
\hline pl & window \\
\hline pl, ast & kaiserwin \\
\hline
\end{tabular}
d = fdesign.src(l,m,spectype,spec1,spec2,...) constructs an object \(d\) and sets its specifications at construction time.
\(d=f d e s i g n . s r c(l, m, ' t w, a s t ')\) constructs an object \(d\) with the default SpecificationType property string, using the default specification values as well.
d = fdesign.src(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.src(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converted to dB if necessary) regardless of how you specify the magnitudes.

\section*{fdesign.src}

As you change the specifications, the ResponseType property changes as well. You see the ResponseType property when you get the filter object information.
get(d)
```

 ResponseType: 'Minimum-order halfband'
 SpecificationType: 'TW,Ast'
Description: {2x1 cell}
InterpolationFactor: 2
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

\section*{Examples}

These examples show how to construct a filter design object that changes the sample rate of an input signal. First, create a default object without using input arguments.
```

d=fdesign.src
d =
ResponseType: 'Minimum-order nyquist'
SpecificationType: 'TW,Ast'
Description: {2x1 cell}
InterpolationFactor: 3
DecimationFactor: 2
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80

```

Now create an object by passing the specifications that match the default type string 'tw,ast'-the resulting object uses your input values for tw and ast. In the absence of a SpecificationType string, fdesign. src assumes the default string and assigns the input arguments accordingly.
```

hs = fdesign.src(5, 3, .05, 40)
hs =

```
```

 ResponseType: 'Minimum-order nyquist'
 SpecificationType: 'TW,Ast'
 Description: {2x1 cell}
 InterpolationFactor: 5
DecimationFactor: 3
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.0500
Astop: 40

```

Create another sample rate changing filter object, passing the specification values to the object rather than accepting the default values for pl . By not entering both pl and ast you let fdesign use the default ast value while using the filter polyphase length you provided.
```

hs = fdesign.src(2, 3,'pl,ast',12)
hs =
ResponseType: [1x50 char]
SpecificationType: 'PL,Ast'
Description: {2x1 cell}
InterpolationFactor: 2
DecimationFactor: 3
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 12
Astop: 80

```

For this example, pass the sampling frequency input argument to fdesign.src.
```

hs = fdesign.src(3, 2,'pl,tw',14,.1,5)
hs =
ResponseType: [1x46 char]
SpecificationType: 'PL,TW'
Description: {2x1 cell}
InterpolationFactor: 3
DecimationFactor: 2

```

\section*{fdesign.src}
```

NormalizedFrequency: false
Fs: 5
PolyphaseLength: 14
TransitionWidth: 0.1000

```

Now design a sample rate changer using the kaiserwin design method.
```

hm=kaiserwin(hs)
Warning: Filter order is too low. Design may be inaccurate.
hm =

```
    FilterStructure: [1x47 char]
            Numerator: [1×42 double]
        RateChangeFactors: [3 2]
        PersistentMemory: false
        States: [13x1 double]
NumSamplesProcessed: 0

Notice that MATLAB warns that your filter may not meet your requirements. Changing such features as the polyphase length or the transition width can help eliminate the warning and improve the filter design.

You can specify the stopband ripple in linear units, rather than in dB , by including the magunits input option set to linear, and providing the ripple decimal form.
```

hs = fdesign.src(4, 7,'tw,ast',.1,1e-3,5,'linear') % 1e-3 = 60dB
hs =

```
```

 ResponseType: 'Minimum-order nyquist'
 SpecificationType: 'TW,Ast'
 Description: {2x1 cell}
 InterpolationFactor: 4
 DecimationFactor: 7
 NormalizedFrequency: false
 Fs: 5
 TransitionWidth: 0.1000
 Astop: 60
    ```

\section*{fdesign.src}

\section*{See Also fdesign, fdesign.decim, fdesign.halfband, fdesign.interp, fdesign.nyquist}

\section*{fftcoeffs}
```

Purpose Return the frequency-domain coefficients used when filtering with discrete-time and adaptive filter objects

```
```

Syntax

```
Syntax
c = fftcoeffs(hd)
c = fftcoeffs(hd)
c = fftcoeffs(ha)
c = fftcoeffs(ha)
Description
```


Examples

```
This example demonstrates returning the FFT coefficients from the discrete-time filter hd.
```

```
b = [0.05 0.9 0.05];
```

b = [0.05 0.9 0.05];
len = 50;
len = 50;
hd = dfilt.fftfir(b,len)
hd = dfilt.fftfir(b,len)
hd =
hd =
FilterStructure: 'Overlap-Add FIR'
FilterStructure: 'Overlap-Add FIR'
Numerator: [0.0500 0.9000 0.0500]
Numerator: [0.0500 0.9000 0.0500]
BlockLength: 50
BlockLength: 50
NonProcessedSamples: []
NonProcessedSamples: []
PersistentMemory: false
PersistentMemory: false
c=fftcoeffs(hd)
c=fftcoeffs(hd)
c =
c =
Columns 1 through 4
Columns 1 through 4
1.0000 0.9920-0.1204i 0.9681-0.2386i 0.9289 - 0.3523i
1.0000 0.9920-0.1204i 0.9681-0.2386i 0.9289 - 0.3523i
Columns 5 through 8
Columns 5 through 8
0.8753-0.4594i 0.8084-0.5580i 0.7297-0.6464i 0.6408-0.7233i
0.8753-0.4594i 0.8084-0.5580i 0.7297-0.6464i 0.6408-0.7233i
Columns 9 through 12

```
    Columns 9 through 12
```

```
0.5435-0.7874i 0.4398-0.8381i 0.3317-0.8747i 0.2211 - 0.8971i
Columns 13 through 16
    0.1099-0.9054i 0-0.9000i -0.1070-0.8815i -0.2097-0.8506i
Columns 17 through 20
-0.3066-0.8084i -0.3967 - 0.7558i -0.4790-0.6939i -0.5528 - 0.6240i
Columns 21 through 24
-0.6176-0.5472i -0.6730-0.4645i -0.7185-0.3771i -0.7541 - 0.2860i
Columns 25 through 28
-0.7796-0.1921i -0.7949-0.0965i -0.8000 -0.7949 + 0.0965i
Columns 29 through 32
-0.7796 + 0.1921i -0.7541 + 0.2860i -0.7185 + 0.3771i -0.6730 + 0.4645i
Columns 33 through 36
-0.6176 + 0.5472i -0.5528 + 0.6240i -0.4790 + 0.6939i -0.3967 + 0.7558i
Columns 37 through 40
-0.3066 + 0.8084i -0.2097 + 0.8506i -0.1070 + 0.8815i 0 + 0.9000i
Columns 41 through 44
    0.1099 + 0.9054i 0.2211 + 0.8971i 0.3317 + 0.8747i 0.4398 + 0.8381i
Columns 45 through 48
0.5435 + 0.7874i 0.6408 + 0.7233i 0.7297 + 0.6464i 0.8084 + 0.5580i
Columns 49 through 52
    0.8753 + 0.4594i 0.9289 + 0.3523i 0.9681 + 0.2386i 0.9920 + 0.1204i
```

Similarly, you can use fftcoeffs with the adaptive filters algorithms listed above. Start by constructing an adaptive filter ha.
d = 16; \quad Number of samples of delay.

a $=$ [1-0.7]; $\%$ Denominator coefficients of channel.
ntr= 1000; \% Number of iterations.

fftcoeffs

```
s = sign(randn(1,ntr+d)) +...
j*sign(randn(1,ntr+d)); % Baseband QPSK signal.
n = 0.1*(randn(1,ntr+d) + j*randn(1,ntr+d)); % Noise signal.
r = filter(b,a,s)+n; % Received signal.
x = r(1+d:ntr+d); % Input signal (received signal).
d = s(1:ntr); % Desired signal (delayed QPSK signal).
del = 1; % Initial FFT input powers.
mu = 0.1; % Step size.
lam = 0.9; %Averaging factor.
d = 8; % Block size.
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,n);
```

Here are the coefficients before you filter a signal.

```
\(c=f f t c o e f f s(h a)\)
C \(=\)
```

Columns 1 through 13

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Columns 14 through 16

| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Filtering a signal y produces complex nonzero coefficients that you use fftcoeffs to see.

```
[y,e] = filter(ha,x,d);
c=fftcoeffs(ha)
c =
    Columns 1 through 4
    0.1425-0.0957i 0.0487-0.0503i -0.0479 + 0.0315i 0.0769 - 0.0435i
```

| 0.7264-0.7605i | -0.7423-0.6382i | $0.1758+0.6679 i$ | 0.2018-0.6544i |
| :---: | :---: | :---: | :---: |
| $-0.1604+0.0747 i$ | -0.0709 + 0.2610i | $-0.1634+0.2929 i$ | -0.1488 + 0.3610i |
| $-0.0396+0.0416 i$ | $0.0985+0.0095 i$ | $0.0733+0.0011 i$ | $0.0700+0.0348 i$ |
| Columns 5 through 8 | | | |
| $-0.0604+0.1767 i$ | 0.0732-0.0648i | $-0.0870+0.0383 i$ | 0.0298-0.0852i |
| $-0.1665+0.3741 i$ | 0.3174 - 0.5234i | $-0.1990+0.4150 i$ | 0.3657-0.4760i |
| $-0.2198+0.4273 i$ | $-0.2690+0.3981 i$ | $-0.2820+0.3095 i$ | $-0.3633+0.3517 i$ |
| -0.0537-0.0855i | $-0.0190+0.0336 i$ | 0.0091-0.0061i | $-0.0299+0.0001 i$ |
| Columns 9 through 12 | | | |
| $-0.0437+0.0676 i$ | 0.0499-0.0164i | $-0.0397+0.0165 i$ | 0.0455-0.0085i |
| -0.3293 + 0.3076i | 0.4986-0.3949i | $-0.3300+0.3448 i$ | 0.5492-0.2633i |
| -0.2671 + 0.3238i | $-0.3813+0.2999 i$ | $-0.4130+0.2333 i$ | $-0.2910+0.2823 i$ |
| $-0.0300+0.0236 i$ | $-0.0103+0.0438 i$ | $0.0244+0.0476 i$ | $0.1043+0.0359 i$ |
| Columns 13 through 16 | | | |
| $-0.0602+0.1189 i$ | -0.0227-0.1076i | $-0.0282+0.0634 i$ | 0.0170-0.0464i |
| $-0.4385+0.0549 i$ | 0.5232-0.1904i | -0.6414-0.1717i | $0.5580+0.6477 i$ |
| $-0.4511+0.3217 i$ | $-0.4301+0.1765 i$ | $-0.2805+0.1270 i$ | $-0.2531+0.0299 i$ |
| 0.1076-0.0383i | $-0.0166+0.0020 i$ | 0.0004 - 0.0376i | 0.0071-0.0714i |

See Also

adaptfilt.fdaf, adaptfilt.pbfdaf, adaptfilt.pbufdaf, adaptfilt.ufdaf

filtmsb

```
Purpose Return the most significant bit (MSB) of a cascaded integrator-comb (CIC) filter
```

Syntax

```
    filtmsb(hm)
```

Description

Examples

```
filtmsb (hm) returns the most significant bit (MSB) of the filter output and is a function of the parameters
- R -the interpolation factor
- M—the differential delay
- N-the number of stages in the filter
- InputBitWidth—the width of the input in bits
of filter hm. Since the output of the integrators can grow without bound, the MSB returned represents the maximum number of bits that can propagate through the filter without losing data. This MSB is not only the MSB at the filter output; it is also the MSB for all stages.
Using the mfilt.cicinterp filter constructor, create a multirate filter and determine the most significant bit.
```

```
hm=mfilt.cicinterp
```

hm=mfilt.cicinterp
hm =
hm =
FilterStructure: 'Cascaded Integrator-Comb Interpolator'
FilterStructure: 'Cascaded Integrator-Comb Interpolator'
DifferentialDelay: 1
DifferentialDelay: 1
NumberOfSections: 2
NumberOfSections: 2
InputBitWidth: 16
InputBitWidth: 16
OutputBitWidth: 16
OutputBitWidth: 16
InterpolationFactor: 2
InterpolationFactor: 2
PersistentMemory: false
PersistentMemory: false
States: [2x2 int32]
States: [2x2 int32]
NumSamplesProcessed: 0
NumSamplesProcessed: 0
filtmsb(hm)
filtmsb(hm)
ans =

```
ans =
```

See Also gain, mfilt

filter

Purpose Apply filter objects to data and access states and filtering information

Syntax
 Fixed-Point Filter Syntaxes

```
y = filter(hq,x)
[y,zf] = filter(hq,x)
[...] = filter(hq,x,zi)
[...] = filter(hq,x,zi,dim)
[y,zf,s,z,v] = filter(hq,x...)
```


Adaptive Filter Syntax

```
[y,e] = filter(ha,x,d)
```


Multirate Filter Syntax

[y] = filter(hm, x, dim)
Description This reference page contains three sections that describe the syntaxes for the filter objects:

- Fixed-Point Filter Syntaxes
- "Adaptive Filter Syntaxes" on page 9-568
- "Multirate Filter Syntaxes" on page 9-568

Fixed-Point Filter Syntaxes

$y=$ filter (hq, x) filters a vector of real or complex input data x through a fixed-point filter hq, producing filtered output data y. The vectors x and y have the same length.

If x is a matrix, $y=$ filter ($h q, x$) filters each column of x to produce a matrix y. If x is a multidimensional array, $y=f i l t e r(h q, x)$ filters x along the first nonsingleton dimension of x.
$[y, z f]=$ filter (hq, x) produces an additional output argument zf. zf contains the final values for the state vector calculated from zero initial conditions for the state. The form zf takes depends on the data to be filtered and the number of stages in the filter, as detailed in Table 9-3, Final State Form Depends on Filtered Data and Filter Structure.
[...] = filter(hq, x,zi) specifies the initial conditions for the state vector in zi. The form for specifying zi is described in Table 9-2, Initial State Format Depends on the Filter Structure. To specify the same initial condition for all state components, enter zi as a scalar. You can set zi to zero, [], or \{\} to specify zero (the default) initial conditions.

The form of the initial and final states associated with a fixed-point filter hq depends on the filter structure and the data to be filtered. The following tables give the form for either entering the initial states or retrieving the final states of the quantized filter.

Table 9-2: Initial State Format Depends on the Filter Structure

| Number of Filter
 Sections | Format of the Initial State |
| :--- | :--- |
| 1 | A column vector of length s_{1} |
| n | A 1-by- n cell array of vectors of length s_{i},
 $i=1,2, \ldots, n$ |

Table 9-3: Final State Form Depends on Filtered Data and Filter Structure

| Filtered Data | Number of
 Filter Sections | Form of the Final State |
| :--- | :--- | :--- |
| Vector | 1 | A column vector of length s_{1} |
| Vector | n | A 1-by- n cell array of vectors of
 length $s_{i}, i=1,2, \ldots, n$ |
| Multidimensional
 array | 1 | An s_{1}-by-c matrix |
| Multidimensional
 array | n | 1 -by- n cell array of s_{i}-by-c
 matrices $, i=1,2, \ldots, n$ |

The variables in these tables are described as follows:

- s_{i} is the number of states in the i th section of the filter.
- c is $\operatorname{prod}(\operatorname{size}(x)) / \operatorname{size}(x, \operatorname{dim})$, where dim is the first nonsingleton dimension into which you are filtering.

filter

To figure out the dimensions of the initial or final conditions, run the filter once with empty initial conditions (IC). After you run with empty ICs, the final conditions are the right size for the initial conditions:

$$
[y, z f]=\text { filter }(h q, x) ;
$$

Look at the size and data type of $z f$. The initial conditions, $z i$, will be the same size as z f.
[...] = filter(hq, x,zi,dim) applies the quantized filter hq to the input data located along the specific dimension of x specified by dim. When you provide the dim input argument, the filter operates along the dimension specified by dim. When your input data x is a vector or matrix and dim is 1 , each column of x is treated as a one input channel. When dim is 2 , the filter treats each row of the input x as a channel.
[$y, z f, s, z, v]=$ filter (hq, x...) returns s, a MATLAB structure containing quantization information; z, the filter state sequence; and v, the number of overflows at each time step of the filter. When you include four or five output arguments, the input argument x must be a vector. z is a cell array containing the sequence of states at each time step, having 1 element per filter and 1 column per time step. The initial conditions of the k -th filter section are in the first column of $z\{k\}: z i\{k\}=z\{k\}(:, 1)$. The final conditions of the $k-t h$ filter section are in the last column of $z\{k\}: z f\{k\}=z\{k\}(:, e n d)$. Overflows for the k-th section are in $v\{k\}$.

Adaptive Filter Syntaxes

[y,e] = filter(ha, x,d) filters a vector of real or complex input data x through an adaptive filter object ha, producing the estimated desired response data y and the prediction error e, both resulting from the process of adapting the filter. The vectors x and y have the same length. Use d for the desired signal. Note that d and x must be the same length signal chains.

Multirate Filter Syntaxes

[y] = filter(hm, x, dim) filters a vector of real or complex input data x through a multirate filter object hm, returning y, the results of the filtering operation.

When you are filtering multichannel data, dim lets you specify which dimension of the input matrix to filter along-whether a row represents a channel or a column represents a channel. When you provide the dim input argument, the filter operates along the dimension specified by dim. When your input data x is a vector or matrix and dim is 1 , each column of x is treated as a one input channel. When dim is 2 , the filter treats each row of the input x as a channel.

To filter multichannel data in a loop environment, you must use the dim input argument to set the processing dimension.

You specify the initial conditions for each channel individually, when needed, by setting hm . states to a matrix of nstates (hm) rows (one row containing the states for one channel of input data) and size ($x, 2$) columns (one column containing the filter states for each channel).

The number of data samples in your input data set x does not need to be a multiple of the rate change factor r for the object. When the rate change factor is not an even divisor of the number of input samples x, filter processes the samples as shown in the following figure, where the rate change factor is 3 and the number of input samples is 23 . Decimators always take the first input sample to generate the first output sample. After that, the next output sample comes after each r number of input samples.

Examples

Filter a signal using a filter with various initial conditions (IC).

```
x = randn(100,1); % Original signal.
b = fir1(50,.4); % 50th-order linear-phase FIR filter.
hd = dfilt.dffir(b); % Direct-form FIR implementation.
% Do not set specific initial conditions.
```


filter

```
y1 = filter(hd,x); % 'PersistentMemory' is 'false' (default).
zf = hd.States; % Final conditions.
% Use nonzero initial conditions by setting ICs.
hd.persistentmemory = true;
hd.States = 1; % Uses scalar expansion.
y2 = filter(hd,x);
stem([y1 y2]) % Different sequences at the beginning.
% Filter streaming data
reset(hd); % Clear filter history.
y3 = filter(hd,x); % Filter the entire signal in one block.
reset(hd); % Clear filter history.
yloop = [];
xblock = reshape(x,[20 5]);
% Filtering the signal section-by-section is equivalent to
% filtering the entire signal at once.
for i=1:5,
yloop = [yloop; filter(hd,xblock(:,i))];
```


Algorithm

Quantized Filters

The filter command implements fixed- or floating-point arithmetic on the quantized filter structure you specify. The state vector z associated with the filter is a vector whose components are derived from the values of each of the input signals to each delay in the filter. The length of z is the same as the number of delays in the filter.

The implementation of filter depends on the filter structure. For example, the operation of filter at sample m for a direct-form II transposed filter is given by the quantized time domain difference equations for y and the states z_{i}
shown below. Square brackets denote the quantization that takes place for the input data x, the output data y, the coefficients, the products, and the sums.

$$
\begin{aligned}
y(m) & =\left[\frac{\left[[[b(1)][x(m)]]+z_{1}(m-1)\right]}{[a(1)]}\right] \\
z_{1}(m) & =\left[[[b(2)][x(m)]]+z_{2}(m-1)-[[a(2)] y(m)]\right] \\
\vdots & =\vdots \\
z_{n-2}(m) & =\left[\left[[[b(n-1)][x(m)]]+z_{n-1}(m-1)\right]-[[a(n-1)] y(m)]\right] \\
z_{n-1}(m) & =[[[b(n)][x(m)]]-[[a(n)] y(m)]]
\end{aligned}
$$

Notice that for this df2t filter structure, you divide by $a(1)$. For efficient computation, choose $a(1)$ to be a power of 2 .

Note dfilt/filter does not normalize the filter coefficients automatically. Function filter supplied by MATLAB does normalize the coefficients.

Adaptive Filters

The algorithm used by filter when you apply an adaptive filter object to a signal depends on the algorithm you chose for your adaptive filter. To learn more about each adaptive filter algorithm, refer to the literature reference provided on the appropriate adaptfilt.algorithm reference page.

Multirate Filters

The algorithm applied by filter when you apply a multirate filter objects to signals depends on the algorithm you chose for the filter-the form of the multirate filter, such as decimator or interpolator. To learn more about each filter algorithm, refer to the literature reference provided on the appropriate multirate filter reference page.

[^7]
filtstates.cic

Purpose Object for storing the states of CIC filters

```Description filtstates.cic objects hold the states information for CIC filters. Once youcreate a CIC filter, the states for the filter are stored in filtstates.cicobjects, and you can access them and change them as you would any propertyof the filter. This arrangement parallels that of the filtstates object that IIRdirect-form I filters use (refer to filtstates for more information).
Each States property in the CIC filter comprises two properties-Numerator and Comb-that hold filtstates.cic objects. Within the filtstates.cic objects are the numerator-related and comb-related filter states. The states are column vectors, where each column represents the states for one section of the filter. For example, a CIC filter with four decimator sections and four interpolator sections has filtstates. cic objects that contain four columns of states each.
```


Examples

```
To show you the filtstates.cic object, create a CIC decimator and filter a signal.
```

```
hm=mfilt.cicdecim(5,2,4)
```

hm=mfilt.cicdecim(5,2,4)
hm =
hm =
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 2
NumberOfSections: 4
DecimationFactor: 5
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
SectionWordLengthMode: 'MinWordLengths'
hm.persistentMemory=true
hm =
FilterStructure: 'Cascaded Integrator-Comb Decimator' Arithmetic: 'fixed'

```
```

 DifferentialDelay: 2
 NumberOfSections: 4
 DecimationFactor: 5
 PersistentMemory: true
 States: Integrator: [4x1 States]
 Comb: [4x1 States]
 InputOffset: 0
 InputWordLength: 16
 InputFracLength: 15
 SectionWordLengthMode: 'MinWordLengths'

```

Use hm to filter some input data.
```

fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1kHz.
y=filter(hm,x)

```
hm has nonzero states now.
```

s=hm.states

```
s =
    Integrator: [4x1 States]
            Comb: [4x1 States]
s.Integrator
ans =
    \(1.0 \mathrm{e}+003\) *
        0.0043
        -2.0347
        -0.4175
        0.8206
s.Comb

\section*{filtstates.cic}
```

ans =
1.0e+003 *
-3.1301
-0.8493
-2.5474
1.7888
-1.6253
3.1981
0.4729
3.4559

```

You can use int to see the states as 32-bit integers.
```

int(s.Integrator)
ans =
142435
-8334019
-427469
210081

```
    whos shows you the filtstates.cic object.
    whos
        Name Size Bytes Class
        Fs 1x1
        ans \(4 \times 1\)
        hm 1x1
        \(\mathrm{n} \quad 1 \times 10240\)
        \(\mathrm{s} \quad 1 \times 1\)
        \(x \quad 1 \times 10240\)
        \(\mathrm{y} \quad 1 \times 2048\)
        8 double array
        16 int32 array
        mfilt.cicdecim
        81920 double array
        filtstates.cic
    81920 double array
        embedded.fi
Grand total is 20488 elements using 163864 bytes

See Also
mfilt, mfilt.cicdecim, mfilt.cicinterp
filtstates in the Signal Processing Toolbox documentation

\section*{fircband}

Purpose Perform constrained-band equiripple FIR filter design
```

Syntax b = fircband(n,f,a,w,c)
b = fircband(n,f,a,s)
b = fircband(...,'1')
b = fircband(...,'minphase')
b = fircband(..., 'check')
b = fircband(...,{lgrid})
[b,err] = fircband(...)
[b,err,res] = fircband(...)

```

Description fircband is a minimax filter design algorithm that you use to design the following types of real FIR filters:
- Types 1-4 linear phase
- Type 1 is even order, symmetric
- Type 2 is odd order, symmetric
- Type 3 is even order, antisymmetric
- Type 4 is odd order, antisymmetric
- Minimum phase
- Maximum phase,
- Minimum order (even or odd), extra ripple
- Maximal ripple
- Constrained ripple
- Single-point band (notching and peaking)
- Forced gain
- Arbitrary shape frequency response curve filters
\(\mathrm{b}=\mathrm{fircband}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{w}, \mathrm{c})\) designs filters having constrained error magnitudes (ripples). c is a cell array of strings of the same length as w. The entries of \(c\) must be either ' \(c\) ' to indicate that the corresponding element in \(w\) is a constraint (the ripple for that band cannot exceed that value) or 'w ' indicating that the corresponding entry in \(w\) is a weight. There must be at least one unconstrained band-c must contain at least one w entry. For instance,

Example 1 below uses a weight of one in the passband, and constrains the stopband ripple not to exceed 0.2 (about 14 dB ).

A hint about using constrained values: if your constrained filter does not touch the constraints, increase the error weighting you apply to the unconstrained bands.

Notice that, when you work with constrained stopbands, you enter the stopband constraint according to the standard conversion formula for powerthe resulting filter attenuation or constraint equals \(20 * \log\) (constraint) where constraint is the value you enter in the function. For example, to set 20 dB of attenuation, use a value for the constraint equal to 0.1 . This applies to constrained stopbands only.
\(b=f i r c b a n d(n, f, a, s)\) is used to design filters with special properties at certain frequency points. \(s\) is a cell array of strings and must be the same length as \(f\) and a. Entries of \(s\) must be one of:
- 'n'-normal frequency point.
- 's'-single-point band. The frequency band is given by a single point. You must specify the corresponding gain at this frequency point in a.
- ' \(f\) '-forced frequency point. Forces the gain at the specified frequency band to be the value specified.
- 'i'-indeterminate frequency point. Use this argument when bands abut one another (no transition region).
b = fircband (...,'1') designs a type 1 filter (even-order symmetric). You could also specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), or type 4 (odd-order antisymmetric) filters. Note there are restrictions on a at \(f=0\) or \(f=1\) for types 2,3 , and 4 .
b = fircband(...,'minphase') designs a minimum-phase FIR filter. There is also 'maxphase'.
b = fircband (..., 'check') produces a warning when there are potential transition-region anomalies in the filter response.
b = fircband (..., \{lgrid \(\}\) ), where \(\{\operatorname{lgrid}\}\) is a scalar cell array containing an integer, controls the density of the frequency grid.

\section*{fircband}
[b,err] = fircband(...) returns the unweighted approximation error magnitudes. err has one element for each independent approximation error.
[b,err, res] = fircband (...) returns a structure res of optional results computed by fircband, and contains the following fields:.
\begin{tabular}{l|l}
\hline Structure Field & Contents \\
\hline res.fgrid & \begin{tabular}{l} 
Vector containing the frequency grid used in \\
the filter design optimization
\end{tabular} \\
\hline res.des & Desired response on fgrid \\
\hline res.wt & \begin{tabular}{l} 
Actual frequency response on the frequency \\
grid
\end{tabular} \\
\hline res.h & \begin{tabular}{l} 
Error at each point (desired response - actual \\
response) on the frequency grid
\end{tabular} \\
\hline res.error & \begin{tabular}{l} 
Vector of indices into fgrid of extremal \\
frequencies
\end{tabular} \\
\hline res.iextr & \begin{tabular}{l} 
Vector of extremal frequencies
\end{tabular} \\
\hline res.fextr & \begin{tabular}{l} 
Filter order
\end{tabular} \\
\hline res.order & \begin{tabular}{l} 
Transition-region anomaly check. One element \\
per band edge. Element values have the \\
following meanings:
\end{tabular} \\
\hline res.edgecheck & \begin{tabular}{l}
\(1=\) OK \\
\(0=\) probable transition-region anomaly
\end{tabular} \\
\(-1=\) edge not checked
\end{tabular}
\begin{tabular}{l|l}
\hline Structure Field & Contents \\
\hline res.iterations & \begin{tabular}{l} 
Number of Remez iterations for the \\
optimization
\end{tabular} \\
\hline res.evals & \begin{tabular}{l} 
Number of function evaluations for the \\
optimization
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Two examples of designing filters with constrained bands.
Example 1—design a 12th-order lowpass filter with a constraint on the filter response.
\[
\text { b = fircband(12,[0 0.4 0.5 1], [11 } \left.100],\left[\begin{array}{ll}
1 & 0.2
\end{array}\right],\{' w ' ~ ' c '\}\right) ; ~
\]

Using fvtool to display the result \(b\) shows you the response of the filter you designed.

\section*{fircband}


Example 2-design two filters of different order with the stopband constrained to 60 dB . Use excess order (80) in the second filter to improve the passband ripple.
```

b1=fircband(60,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
b2=fircband(80,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
fvtool(b1,1,b2,1)

```

To set the stopband constraint to 60 dB , enter 0.001 , since \(20 * \log (0.001)=-60\), or 60 dB of signal attenuation.


\section*{See Also}
firceqrip, firgr, firls
firpm in the Signal Processing Toolbox
Also refer to "Constrained Band Equiripple FIR Filter Design" in Demos

\section*{firceqrip}

Purpose
Design constrained, equiripple, finite impulse response (FIR) filters
```

Syntax hd = firceqrip(n,wo,del)
hd = firceqrip(...,'slope',r)
hd = firceqrip(...,'passedge')
hd = firceqrip(...,'stopedge')
hd = firceqrip(...,'high')
hd = firceqrip(...,'min')
hd = firceqrip(...,'invsinc',c)

```

Description hd = firceqrip ( \(n\), wo, del) design an order \(n\) filter (filter length equal \(n+1\) ) lowpass FIR filter with linear phase.
firceqrip produces the same equiripple lowpass filters that firpm produces using the Parks-McClellan algorithm. The difference is how you specify the filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element vector del specifies the peak or maximum error allowed in the passband and stopbands. Enter [d1 d2] for del where d1 sets the passband error and d2 sets the stopband error. Since firceqrip works in the normalized frequency domain, you must set wo to be between 0 and \(1(0<w o<1)\).
hd = firceqrip(...,'slope' \(r\) ) uses the input keyword 'slope' and input argument \(r\) to design a filter with a stopband that does not demonstrate equiripple characteristics. \(r\) determines the slope of the stopband in \(d B\) when \(r>0\). Try setting \(r\) to 10 to see the effect on the filter frequency response. In the Examples section, Example 3 designs a filter with \(r\) equal to 20.
hd = firceqrip(..., 'passedge') designs a filter where wo specifies the frequency at which the passband starts to roll off.
hd = firceqrip(...,'stopedge') designs a filter where wo specifies the frequency at which the stopband begins.
hd = firceqrip(..., 'high') designs a high pass FIR filter instead of a lowpass filter.
hd = firceqrip(...,'min') designs an FIR filter with minimum phase.
hd = firceqrip(...,'invsinc', c)) designs a lowpass filter whose passband has the shape of the inverse sinc function. For this syntax, keyword invsinc applies the inverse sinc function as defined by whether c is a scalar or a two-element vector:
- When you use c as a scalar with the invsinc keyword, firceqrip applies the function \(1 / \operatorname{sinc}\left(c^{*}\right.\) w), where \(w\) is the normalized frequency, to the passband.
- When you use c as a two-element vector entered as [c p], with the invsinc keyword, firceqrip applies the function \(1 / \operatorname{sinc}\left(c^{*} w\right)^{p}\) to the passband, where \(w\) is the normalized frequency.

In both cases, c must meet the condition c \(<1 / w_{0}\).
When you use a cascaded-integrated comb (CIC) filter in series with this FIR filter, argument \(p\) lets you compensate for the droop in the passband of the CIC filter. Setting \(p\) equal to the number of stages in your CIC generally produces an FIR filter whose passband neatly compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of the optional input arguments together. Any ordering of the optional arguments worksorder is not important in the function call. Refer to Examples 3 and 4 to see multiple optional input arguments being used.

Note If the wo you specify is too small or too large, or if either cor p is too large, your filter specifications may be unfeasible, causing the design algorithm to fail to generate your filter.

\section*{Examples}

To introduce a few of the variations on FIR filters that you design with firceqrip, these five examples cover both the default syntax hd = firceqrip(n,wo, del) and some of the optional input arguments. For each example, the input arguments \(n\), wo, and del remain the same.

Example 1—Design an order \(=30\) FIR filter without using optional input arguments or keywords.
```

hd = firceqrip(n,wo,del); fvtool(hd)

```

Both the phase and magnitude response for the resulting lowpass filter appear in the plot shown here.

\section*{firceqrip}


Example 2-Design an order \(=30\) FIR filter with the stopedge keyword to define the response at the edge of the filter stopband.
```

hd = firceqrip(n,wo,del,'stopedge'); fvtool(hd,1)

```

Example 3-Design an order = 30 FIR filter with the slope keyword and \(r=20\).
```

hd = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(hd)

```

Example 4-Design an order = 30 FIR filter defining the stopband and specifying that the resulting filter is minimum phase with the min keyword.
```

hd = firceqrip(n,wo,del,'stopedge','min'); fvtool(hd)

```

Comparing this filter to the filter in Example 1, notice that the cutoff frequency wo \(=0.4\) now applies to the edge of the stopband rather than the point at which the frequency response magnitude is 0.5 .

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR filter-the zeros lie on or inside the unit circle, \(\mathrm{z}=1\).


Example 5-Design an order \(=30\) FIR filter with the invsinc keyword to shape the filter passband with an inverse sinc function.
```

hd = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(hd,1)

```

\section*{firceqrip}

With the inverse sinc function being applied defined as \(1 / \operatorname{sinc}\left(2^{*} w\right)^{1.5}\), the figure shows the reshaping of the passband that results from using the invsinc keyword option, and entering \(c\) as the two-element vector [2 1.5].


\section*{See Also}
firhalfband, firnyquist, firgr, ifir, iirgrpdelay, iirlpnorm, iirlpnormc fircls, firls, firpm in your Signal Processing Toolbox documentation

\section*{Purpose}

Use the Parks-McClellan technique to design digital FIR filters

\section*{Syntax}
```

b = firgr(n,f,a,w)
b = firgr(n,f,a,'hilbert')
b = firgr(n,f,a,'differentiator')
$b=\operatorname{firgr}(m, f, a, r)$
$b=f i r g r(\{m, n i\}, f, a, r)$
$b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{w}, \mathrm{e})$
$b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{s})$
b $=$ firgr($n, f, a, s, w, e)$

```

Description
firgr is a minimax filter design algorithm you use to design the following types of real FIR filters:
- Types 1-4 linear phase:
- Type 1 is even order, symmetric
- Type 2 is odd order, symmetric
- Type 3 is even order, antisymmetric
- Type 4 is odd order, antisymmetric
- Minimum phase
- Maximum phase
- Minimum order (even or odd)
- Extra ripple
- Maximal ripple
- Constrained ripple
- Single-point band (notching and peaking)
- Forced gain
- Arbitrary shape frequency response curve filters
\(b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{w})\) returns a length \(\mathrm{n}+1\) linear phase FIR filter which has the best approximation to the desired frequency response described by \(f\) and a in the minimax sense. \(w\) is a vector of weights, one per band. When you omit \(w\), all bands are weighted equally. For more information on the input arguments, refer to firpm in Signal Processing Toolbox User's Guide.
b = firgr(n,f,a,'hilbert') and b = firgr(n,f,a,'differentiator') design FIR Hilbert transformers and differentiators. For more information on designing these filters, refer to firpm in Signal Processing Toolbox User's Guide.
b = firgr(m,f,a,r), where m is one of 'minorder', 'mineven' or 'minodd', designs filters repeatedly until the minimum order filter, as specified in \(m\), that meets the specifications is found. \(r\) is a vector containing the peak ripple per frequency band. You must specify \(r\). When you specify 'mineven' or 'minodd', the minimum even or odd order filter is found.
b = firgr(\{m,ni\},f,a,r) where mis one of 'minorder', 'mineven' or 'minodd', uses ni as the initial estimate of the filter order. ni is optional for common filter designs, but it must be specified for designs in which firpmord cannot be used, such as while designing differentiators or Hilbert transformers.
\(b=f i r g r(n, f, a, w, e)\) specifies independent approximation errors for different bands. Use this syntax to design extra ripple or maximal ripple filters. These filters have interesting properties such as having the minimum transition width. e is a cell array of strings specifying the approximation errors to use. Its length must equal the number of bands. Entries of e must be in the form 'e\#' where \# indicates which approximation error to use for the corresponding band. For example, when e = \{'e1', 'e2', 'e1'\}, the first and third bands use the same approximation error 'e1' and the second band uses a different one 'e2'. Note that when all bands use the same approximation error, such as \{'e1', 'e1', 'e1',..\(\}\), it is equivalent to omitting \(e\), as in \(b=\operatorname{firgr}(n, f, a, w)\).
\(b=\operatorname{firgr}(n, f, a, s)\) is used to design filters with special properties at certain frequency points. \(s\) is a cell array of strings and must be the same length as \(f\) and a. Entries of \(s\) must be one of:
- ' \(n\) ' - normal frequency point.
- 's ' - single-point band. The frequency "band" is given by a single point. The corresponding gain at this frequency point must be specified in a.
- ' \(f\) ' - forced frequency point. Forces the gain at the specified frequency band to be the value specified.
- 'i' - indeterminate frequency point. Use this argument when adjacent bands abut one another (no transition region).

For example, the following command designs a bandstop filter with zero-valued single-point stop bands (notches) at 0.25 and 0.55 .
```

 b = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
 {'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})
 b = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'})
designs a highpass filter with the gain at 0.06 forced to be zero. The band edge
at 0.055 is indeterminate since the first two bands actually touch. The other
band edges are normal.

```
\(b=\operatorname{firgr}(n, f, a, s, w, e)\) specifies weights and independent approximation errors for filters with special properties. The weights and properties are included in vectors w and e. Sometimes, you may need to use independent approximation errors to get designs with forced values to converge. For example,
```

b = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

```
b = firgr(...,'1') designs a type 1 filter (even-order symmetric). You can specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), and type 4 (odd-order antisymmetric) filters as well. Note that restrictions apply to a at \(\mathrm{f}=0\) or \(\mathrm{f}=1\) for FIR filter types 2,3 , and 4 .
b = firgr(...,'minphase') designs a minimum-phase FIR filter. You can use the argument 'maxphase' to design a maximum phase FIR filter.
\(b=\operatorname{firgr}(\ldots\), 'check') returns a warning when there are potential transition-region anomalies.
\(b=\operatorname{firgr}(. . .,\{l g r i d\})\), where \(\{l g r i d\}\) is a scalar cell array. The value of the scalar controls the density of the frequency grid by setting the number of samples used along the frequency axis.
[b,err] = firgr(...) returns the unweighted approximation error magnitudes. err contains one element for each independent approximation error returned by the function.
[b,err, res] = firgr(...) returns the structure res comprising optional results computed by firgr. res contains the following fields.
\begin{tabular}{l|l}
\hline Structure Field & Contents \\
\hline res.fgrid & \begin{tabular}{l} 
Vector containing the frequency grid used in \\
the filter design optimization
\end{tabular} \\
\hline res.des & Desired response on fgrid \\
\hline res.wt & \begin{tabular}{l} 
Weights on fgrid \\
grid
\end{tabular} \\
\hline res.h & \begin{tabular}{l} 
Error at each point (desired response - actual \\
response) on the frequency grid
\end{tabular} \\
\hline res.error & \begin{tabular}{l} 
Vector of indices into fgrid of extremal \\
frequencies
\end{tabular} \\
\hline res.iextr & \begin{tabular}{l} 
Vector of extremal frequencies
\end{tabular} \\
\hline res.fextr & \begin{tabular}{l} 
Filter order
\end{tabular} \\
\hline res.order & \begin{tabular}{l} 
Transition-region anomaly check. One element \\
per band edge. Element values have the \\
following meanings:
\end{tabular} \\
\hline res.edgecheck & \begin{tabular}{l}
\(1=\) OK \\
\(0=\) probable transition-region anomaly \\
\(-1=\) edge not checked
\end{tabular} \\
\hline res.evals & \begin{tabular}{l} 
Computed when you specify the ' check' input \\
option in the function syntax.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Number of s iterations for the optimization
\end{tabular} \\
\hline Number of function evaluations for the \\
reptimization
\end{tabular}
firgr is also a "function function", allowing you to write a function that defines the desired frequency response.
\(b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{fresp}, \mathrm{w})\) returns a length N+1 FIR filter which has the best approximation to the desired frequency response as returned by the user-defined function fresp. Use the following firgr syntax to call fresp:
\[
[d h, d w]=\operatorname{fresp}(n, f, g f, w)
\]
where:
- fresp is the string variable that identifies the function that you use to define your desired filter frequency response.
- \(n\) is the filter order.
- \(f\) is the vector of frequency band edges which must appear monotonically between 0 and 1 , where 1 is one-half of the sampling frequency. The frequency bands span \(f(k)\) to \(f(k+1)\) for \(k\) odd. The intervals \(f(k+1)\) to \(f(k+2)\) for \(k\) odd are "transition bands" or "don't care" regions during optimization.
- gf is a vector of grid points that have been chosen over each specified frequency band by firgr, and determines the frequencies at which firgr evaluates the response function.
- \(w\) is a vector of real, positive weights, one per band, for use during optimization. w is optional in the call to firgr. If you do not specify w, it is set to unity weighting before being passed to fresp.
- \(d h\) and \(d w\) are the desired frequency response and optimization weight vectors, evaluated at each frequency in grid gf.
firgr includes a predefined frequency response function named 'firpmfrf2'. You can write your own based on the simpler 'firpmfrf'. See the help for private/firpmfrf for more information.
\(b=f i r g r(n, f,\{f r e s p, p 1, p 2, \ldots\}, w)\) specifies optional arguments \(p 1\), \(\mathrm{p} 2, \ldots, \mathrm{pn}\) to be passed to the response function fresp.
\(b=\operatorname{firgr}(n, f, a, w)\) is a synonym for \(b=\operatorname{firgr}\left(n, f,\left\{' f i r p m f r f 2^{\prime}, a\right\}, w\right)\), where a is a vector containing your specified response amplitudes at each band edge in \(f\). By default, firgr designs symmetric (even) FIR filters. ' firpmfrf2' is the predefined frequency response function. If you do not specify your own
frequency response function (the fresp string variable), firgr uses 'firpmfrf2'.
\(b=\operatorname{firgr}\left(. . ., h^{\prime}\right)\) and \(b=\operatorname{firgr}\left(. . ., d^{\prime}\right)\) design antisymmetric (odd) filters. When you omit the ' \(h\) ' or ' \(d\) ' arguments from the firgr command syntax, each frequency response function fresp can tell firgr to design either an even or odd filter. Use the command syntax
sym = fresp('defaults',\{n,f,[],w,p1,p2,...\}).
firgr expects fresp to return sym = 'even' or sym = 'odd'. If fresp does not support this call, firgr assumes even symmetry.

For more information about the input arguments to firgr, refer to firpm.

\section*{Examples}

These examples demonstrate some filters you might design using firgr.
Example 1—design an FIR filter with two single-band notches at 0.25 and 0.55
```

b1 = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});

```

Example 2-design a highpass filter whose gain at 0.06 is forced to be zero. The gain at 0.055 is indeterminate since it should abut the band.
```

b2 = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});

```

Example 3-design a second highpass filter with forced values and independent approximation errors.
```

b3 = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1], ...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

```

Use the filter visualization tool to view the results of the filters created in these examples.
```

fvtool(b1,1,b2,1,b3,1)

```

Here is the figure from fvtool.


\section*{See Also}

Reference
butter, cheby1, cheby2, ellip, freqz, filter, firls, fircls, and firpm in your Signal Processing Toolbox documentation

Shpak, D.J. and A. Antoniou, "A generalized Remez method for the design of FIR digital filters," IEEE Trans. Circuits and Systems, pp. 161-174,Feb. 1990.

\section*{firhalfband}

\section*{Purpose Design a halfband FIR filter}
```

Syntax b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband(n,dev,'dev')
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')
b = firhalfband(...,'minphase')

```

\section*{Description}
\(b=f i r h a l f b a n d(n, f p)\) designs a lowpass halfband FIR filter of order \(n\) with an equiripple characteristic. \(n\) must be an even integer. fp determines the passband edge frequency, and it must satisfy \(0<\mathrm{fp}<1 / 2\), where \(1 / 2\) corresponds to \(\pi / 2 \mathrm{rad} /\) sample .
b = firhalfband(n,win) designs a lowpass Nth-order filter using the truncated, windowed-impulse response method instead of the equiripple method. win is an \(n+1\) length vector. The ideal impulse response is truncated to length \(n+1\), and then multiplied point-by-point with the window specified in win.
b = firhalfband(n, dev,' \(\operatorname{dev}\) ') designs an Nth-order lowpass halfband filter with an equiripple characteristic. Input argument dev sets the value for the maximum passband and stopband ripple allowed.
b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order filter, with passband edge \(f p\). The peak ripple is constrained by the scalar dev. This design uses the equiripple method.
b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass minimum-order filter, with passband edge fp . The peak ripple is constrained by the scalar dev. This design uses the Kaiser window method.
b = firhalfband(...,'high') returns a highpass halfband FIR filter.
b = firhalfband(...,'minphase') designs a minimum-phase FIR filter such that the filter is a spectral factor of a halfband filter (recall that \(h=\operatorname{conv}(b, f l i p l r(b))\) is a halfband filter). This can be useful for designing perfect reconstruction, two-channel FIR filter banks. The minphase option for
firhalfband is not available for the window-based halfband filter designsb = firhalfband( \(n\),win) and
b = firhalfband('minorder',fp,dev,'kaiser').
In the minimum phase cases, the filter order must be odd.

\section*{Examples}

This example designs a minimum order halfband filter with specified maximum ripple:
```

b = firhalfband('minorder',.45,0.0001);
h = dfilt.dfsymfir(b);
impz(b) % Impulse response is zero for every other sample

```


The next example designs a halfband filter with specified maximum ripple of 0.0001 dB in the pass and stop bands.

\section*{firhalfband}
```

b = firhalfband(98,0.0001,'dev');
h = mfilt.firdecim(2,b); % Create a polyphase decimator
freqz(h); % 80 dB attenuation in the stopband

```

See Also

References
firnyquist, firgr
fir1, firls, firpm in your Signal Processing Toolbox documentation

Saramaki, T, "Finite Impulse Response Filter Design,"Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

Purpose

\section*{Syntax \\ \[
g=\text { firlp2lp(b) }
\]}

Description

Examples

\section*{See Also}

References

Overlay the original narrowband lowpass and the resulting wideband lowpass
Convert FIR Type I lowpass to FIR Type 1 lowpass with inverse band width
\(g=\) firlp2lp(b) transforms the Type I lowpass FIR filter \(b\) with zero-phase response \(\mathrm{Hr}(\mathrm{w})\) to a Type I lowpass FIR filter g with zero-phase response [1- \(\mathrm{Hr}(\pi-\mathrm{w})\) ].

When b is a narrowband filter, g will be a wideband filter and vice versa. The passband and stopband ripples of \(g\) will be equal to the stopband and passband ripples of \(b\).
```

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);

```
b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
zerophase(b);
hold on
hold on
h = firlp2lp(b);
h = firlp2lp(b);
zerophase(h); hold off
```

zerophase(h); hold off

```
firlp2hp
zerophase in your Signal Processing Toolbox documentation
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{firlp2hp}

\section*{Purpose Convert FIR lowpass filter to Type I FIR highpass filter}
```

Syntax g = firlp2hp(b)
g = firlp2hp(b,'narrow')
g = firlp2hp(b,'wide')

```

Description \(\quad g=\) firlp2hp (b) transforms the lowpass FIR filter b into a Type I highpass FIR filter \(g\) with zero-phase response \(\mathrm{Hr}(\pi-\mathrm{w})\). Filter b can be any FIR filter, including a nonlinear-phase filter.

The passband and stopband ripples of \(g\) will be equal to the passband and stopband ripples of \(b\).
\(\mathrm{g}=\) firlp2hp(b, 'narrow') transforms the lowpass FIR filter b into a Type I narrow band highpass FIR filter \(g\) with zero-phase response \(\operatorname{Hr}(\pi-w)\). b can be any FIR filter, including a nonlinear-phase filter.
\(\mathrm{g}=\mathrm{firlp2hp}(\mathrm{~b}\), 'wide') transforms the Type I lowpass FIR filter b with zero-phase response \(\mathrm{Hr}(\mathrm{w})\) into a Type I wide band highpass FIR filter g with zero-phase response \(1-\mathrm{Hr}(\mathrm{w})\). Note the restriction that b must be a Type I linear-phase filter.

For this case, the passband and stopband ripples of \(g\) will be equal to the stopband and passband ripples of \(b\).

Examples Overlay the original narrowband lowpass (the prototype filter) and the post-conversion narrowband highpass and wideband highpass filters to compare and assess the conversion. The plot below shows the results.
```

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off

```


\section*{See Also}

References
firlp2lp
zerophase in your Signal Processing Toolbox documentation
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{Purpose Least P-norm optimal FIR filter design}
```

Syntax b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

```

Description \(\quad b=\) firlpnorm( \(n, f\), edges, \(a)\) returns a filter of numerator order \(n\) which represents the best approximation to the frequency response described by \(f\) and a in the least-Pth norm sense. P is set to 128 by default, which essentially equivalent to the infinity norm. Vector edges specifies the band-edge frequencies for multiband designs. firlpnorm uses an unconstrained quasi-Newton algorithm to design the specified filter.
\(f\) and a must have the same number of elements, which can exceed the number of elements in edges. This lets you specify filters with any gain contour within each band. However, the frequencies in edges must also be in vector f. Always use freqz to check the resulting filter.

Note firlpnorm uses a nonlinear optimization routine that may not converge in some filter design cases. Furthermore the algorithm is not well-suited for certain large-order (order \(>100\) ) filter designs.
b = firlpnorm( \(n, f\), edges, \(a, w)\) uses the weights in \(w\) to weight the error. \(w\) has one entry per frequency point (the same length as \(f\) and a) which tells firlpnorm how much emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other points. For example,
```

b = firlpnorm(20,[0 . 15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[[1 1 1 1 10 10])

```
designs a lowpass filter with a peak of 1.6 within the passband, and with emphasis placed on minimizing the error in the stopband.
\(b=f i r l p n o r m(n, f, e d g e s, a, w, p)\) where \(p\) is a two-element vector [pmin pmax] lets you specify the minimum and maximum values of \(p\) used in the least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax should be even numbers. The design algorithm starts optimizing the filter with pmin and moves toward an optimal filter in the pmax sense. When \(p\) is the string 'inspect', firlpnorm does not optimize the resulting filter. You might use this feature to inspect the initial zero placement.
b = firlpnorm( \(n, f\), edges, \(a, w, p, d e n s)\) specifies the grid density dens used in the optimization. The number of grid points is [dens* \((n+1)\) ]. The default is 20. You can specify dens as a single-element cell array. The grid is equally spaced.
\(b=\) firlpnorm(n,f,edges, \(a, w, p\), dens, initnum) lets you determine the initial estimate of the filter numerator coefficients in vector initnum. This can prove helpful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initnum.
b = firlpnorm(...,'minphase') where string 'minphase' is the last argument in the argument list generates a minimum-phase FIR filter. By default, firlpnorm design mixed-phase filters. Specifying input option 'minphase' causes firlpnorm to use a different optimization method to design the minimum-phase filter. As a result of the different optimization used, the minimum-phase filter can yield slightly different results.
[b,err] = firlpnorm(...) returns the least-pth approximation error err.

\section*{Examples}

To demonstrate firlpnorm, here are two examples - the first designs a lowpass filter and the second a highpass, minimum-phase filter.
```

% Lowpass filter with a peak of 1.4 in the passband.
b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)

```

\section*{firlpnorm}

From the figure you see the resulting filter is lowpass, with the desired 1.4 peak in the passband (notice the 1.4 specified in vector a).


Now for the minimum-phase filter.
```

% Highpass minimum-phase filter optimized for the 4-norm.
b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...
[2 4],'minphase');
fvtool(b)

```

As shown in the next figure, this is a minimum-phase, highpass filter.


The next zero-pole plot shows the minimum phase nature more clearly.

\section*{firlpnorm}


See Also \(\begin{array}{ll}\text { firgr, iirgrpdelay, iirlpnorm, iirlpnormc } \\ \text { filter, fvtool, freqz, zplane in your Signal Processing Toolbox } \\ \text { documentation }\end{array}\)

\section*{References}
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Design filters using filter specifications from a filter design object and \\
a least-square minimization technique
\end{tabular} \\
Syntax & hd = firls(d)
\end{tabular} Description \(\quad\)\begin{tabular}{l} 
hd = firls(d) designs a discrete-time FIR filter using a least-squares error \\
minimization method. Only halfband and interpolation design objects with \\
SpecificationType of ' \(n\), tw' or 'pl, tw' work as design objects for firls. \\
hd is either a dfilt object (a single-rate digital filter) or an mfilt object (a \\
multirate digital filter) depending on the SpecificationType property of the \\
filter design object d and the design object type—halfband or interp.
\end{tabular}

\section*{firminphase}

Purpose Compute the minimum-phase FIR spectral factor
Syntax \(\quad\)\begin{tabular}{rl}
\(h\) & \(=\) firminphase \((b)\) \\
\(h\) & \(=\) firminphase \((b, n z)\)
\end{tabular}

Description
\begin{tabular}{|c|c|}
\hline Example & This example designs a constrained least squares filter with a nonnegative zero-phase response, and then uses firminphase to compute the minimum-phase spectral factor. \\
\hline & \(f \quad=\left[\begin{array}{lllll}0 & 0.4 & 0.8 & 1\end{array}\right] ;\) \\
\hline & \(\mathrm{a}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\); \\
\hline & up \(=\left[\begin{array}{lll}0.02 & 1.02 & 0.01] ;\end{array}\right.\) \\
\hline & lo = [0 0.98 0]; \% The zeros insure nonnegative zero-phase resp. n \(=32\); \\
\hline & \(\mathrm{b}=\mathrm{fircls}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{up}, \mathrm{lo})\); \\
\hline & \(\mathrm{h}=\) firminphase(b) ; \\
\hline
\end{tabular}

\section*{See Also}

References
firgr
fircls, zerophase in your Signal Processing Toolbox documentation
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{Purpose \\ Design a Lowpass Nyquist (Lth-band) FIR filter}

\section*{Syntax}

Description
firnyquist(n,l,r,varargin)
\(b=\) firnyquist \((n, l, r)\) designs an Nth order, Lth band, Nyquist FIR filter
with a roll-off factor \(r\) and an equiripple characteristic.

The rolloff factor \(r\) is related to the normalized transition width tw by \(t w=2 \pi(r / l)(\mathrm{rad} / \mathrm{sample})\). The order, n , must be even. 1 must be an integer greater than one. If 1 is not specified, it defaults to 4. \(r\) must satisfy \(0<r<1\). If \(r\) is not specified, it defaults to 0.5 .
b = firnyquist('minorder',l,r,dev) designs a minimum-order, Lth band Nyquist FIR filter with a rolloff factor \(r\) using the Kaiser window. The peak ripple is constrained by the scalar dev.
b = firnyquist( \(n, 1, r\), decay) designs an Nth order, Lth band, Nyquist FIR filter where the scalar decay, specifies the rate of decay in the stopband. decay must be nonnegative. If omitted or left empty, decay defaults to 0 which yields an equiripple stopband. A nonequiripple stopband may be desirable for decimation purposes.
b = firnyquist( \(n, l, r\), 'nonnegative') returns an FIR filter with nonnegative zero-phase response. This filter can be spectrally factored into minimum-phase and maximum-phase "square-root" filters. This allows using the spectral factors in applications such as matched-filtering.
\(b=\) firnyquist( \(n, l, r\), 'minphase') returns the minimum-phase spectral factor bmin of order \(n\). bmin meets the condition \(b=c o n v(b m i n, b m a x)\) so that \(b\) is an Lth band FIR Nyquist filter of order 2n with rolloff factor r. Obtain bmax, the maximum phase spectral factor by reversing the coefficients of bmin. For example, bmax = bmin(end:-1:1).

Example 1: This example designs a minimum phase factor of a Nyquist filter.
```

bmin = firnyquist(47,10,.45,'minphase');
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

```

\section*{firnyquist}

Example 2: This example compares filters with different decay rates.
```

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

```

\section*{See Also \\ References \\ firhalfband, firgr, firls, firminphase \\ firrcos, firls in your Signal Processing Toolbox documentation \\ [1] T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.}

Purpose
Design an two-channel, FIR filter bank for perfect reconstruction

\section*{Syntax}

\section*{Description}

\section*{Algorithm}

\section*{Examples}
```

[h0,h1,g0,g1] = firpr2chfb(n,fp)
[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev')
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev)

```
[h0,h1,g0,g1] = firpr2chfb( \(n, f p\) ) designs four FIR filters for the analysis sections (h0 and h1) and synthesis section is (g0 and g1) of a two-channel perfect reconstruction filter bank. The design corresponds to the orthogonal filter banks also known as power-symmetric filter banks.
\(n\) is the order of all four filters. It must be an odd integer. fp is the passband-edge for the lowpass filters h0 and go. The passband-edge argument fp must be less than 0.5 . h1 and g1 are highpass filters with the passband-edge given by (1-fp).
[h0,h1,g0,g1] = firpr2chfb(n, dev, 'dev') designs the four filters such that the maximum stopband ripple of h0 is given by the scalar dev. The stopband-ripple of h 1 is also be given by dev, while the maximum stopband-ripple for both g0 and g1 is ( \(2 * \mathrm{dev}\) ).
[h0,h1,g0,g1] = firpr2chfb('minorder',fp, dev) designs the four filters such that ho meets the passband-edge specification \(f p\) and the stopband-ripple dev using minimum order filters to meet the specification.

For perfect reconstruction, filters that compose the filter bank must fulfill these conditions.

Design a filter bank with filters of order n equal to 99 and passband edges of 0.45 and 0.55 .
```

n = 99;
[h0,h1,g0,g1] = firpr2chfb(n,.45);
fvtool(h0,1,h1,1,g0,1,g1,1);

```

Here are the filters, showing clearly the passband edges.

\section*{firpr2chfb}


Use the following stem plots to verify perfect reconstruction using the filter bank created by firpr2chfb.
```

stem(1/2*conv(g0,h0)+1/2*conv(g1,h1))
n=0:n;
stem(1/2*conv((-1).^n.*h0,g0)+1/2*conv((-1).^n.*h1,g1))
stem(1/2*conv((-1).^n.*g0,h0)+1/2*conv((-1).^n.*g1,h1))
stem(1/2*conv((-1).^n.*g0,(-1).^n.*h0)+1/2*conv((-1).^n.*g1,...
(-1).^n.*h1))
stem(conv((-1).^n.*h1,h0)-conv((-1).^n.*h0,h1))

```

\section*{See Also}
firceqrip, firgr, firhalfband, firnyquist
Purpose

Determine the type of a linear phase FIR filter, either discrete-time or
\(\mathrm{t}=\) firtype(hd)
t = firtype(hm) multirateSyntax

\section*{Description}

Syntax

The next sections describe common firtype operation with discrete-time and multirate filters.

\section*{Discrete-Time Filters}
\(t\) = firtype(hd) determines the type (1 through 4) of a discrete-time FIR filter object hd, returning the type number in \(t\). Filter hd must be both real and have linear phase.

Filter types 1 through 4 are defined as follows:
- Type 1—even order symmetric coefficients
- Type 2—odd order symmetric coefficients
- Type 3-even order antisymmetric coefficients
- Type 4—odd order antisymmetric coefficients

When hd is a cascade or parallel filter and therefore has multiple stages, each stage must be a real FIR filter with linear phase. In this case, t is a cell array containing the filter type of each stage.

\section*{Multirate Filters}
\(\mathrm{t}=\) firtype (hm) determines the type ( 1 through 4) of the multirate filter object hm . The filter must be real and have linear phase.

Filter types 1 through 4 are defined as follows:
- Type 1—even order symmetric coefficients
- Type 2—odd order symmetric coefficients
- Type 3-even order antisymmetric coefficients
- Type 4—odd order antisymmetric coefficients

\section*{firtype}

Examples
When hm has multiple sections, all sections must be real FIR filters with linear phase. In this case, \(t\) is a cell array containing the filter type of each section.

Determine the type of the default interpolator for \(\mathrm{L}=4\).
```

l = 4;
hm = mfilt.firinterp(l);
firtype(hm)
ans =
1

```

\section*{See Also \\ islinphase}

\footnotetext{
Purpose
Compute the frequency response of discrete-time filters, adaptive filters, and multirate filters

Syntax
```

[h,w] = freqz(ha)
[h,w] = freqz(ha,n)
freqz(ha)
[h,w] = freqz(hd)
[h,w] = freqz(hd,n)
freqz(hd)
[h,w] = freqz(hm)
[h,w] = freqz(hm,n)
freqz(hm)

```

Description The next sections describe common freqz operation with adaptive, discrete-time, and multirate filters. For more input options, refer to freqz in the Signal Processing Toolbox.

\section*{Adaptive Filters}

For adaptive filters, freqz returns the instantaneous frequency response based on the current filter coefficients.
[h,w] = freqz(ha) returns the frequency response vector \(h\) and the corresponding frequency vector \(w\) for the adaptive filter ha. When ha is a vector of adaptive filters, freqz returns the matrix \(h\). Each column of \(h\) corresponds to one filter in the vector ha.
\([h, w]=f r e q z(h a, n)\) returns the frequency response vector \(h\) and the corresponding frequency vector \(w\) for the adaptive filter ha. freqz uses the transfer function associated with the adaptive filter to calculate the frequency response of the filter with the current coefficient values. The vectors \(h\) and \(w\) are both of length \(n\). The frequency vector whas values ranging from 0 to \(\pi\) radians per sample. If you do not specify the integer \(n\), or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
freqz (ha) uses FVTool to plot the magnitude and unwrapped phase of the frequency response of the adaptive filter ha. If ha is a vector of filters, freqz plots the magnitude response and phase for each filter in the vector.
}

\section*{Discrete-Time Filters}
[ \(h, w\) ] = freqz (hd) returns the frequency response vector \(h\) and the corresponding frequency vector w for the discrete-time filter hd. When hd is a vector of discrete-time filters, freqz returns the matrix h. Each column of \(h\) corresponds to one filter in the vector hd.
\([h, w]=\) freqz (hd, \(n\) ) returns the frequency response vector \(h\) and the corresponding frequency vector \(w\) for the discrete-time filter hd. freqz uses the transfer function associated with the discrete-time filter to calculate the frequency response of the filter with the current coefficient values. The vectors \(h\) and \(w\) are both of length \(n\). The frequency vector \(w\) has values ranging from 0 to \(\pi\) radians per sample. If you do not specify the integer \(n\), or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
freqz (hd) uses FVTool to plot the magnitude and unwrapped phase of the frequency response of the adaptive filter hd. If hd is a vector of filters, freqz plots the magnitude response and phase for each filter in the vector.

\section*{Multirate Filters}
[h,w] = freqz(hm) returns the frequency response vector \(h\) and the corresponding frequency vector \(w\) for the multirate filter hd. When hd is a vector of multirate filters, freqz returns the matrix \(h\). Each column of \(h\) corresponds to one filter in the vector hd.
[h,w] = freqz(hd,n) returns the frequency response vector \(h\) and the corresponding frequency vector \(w\) for the multirate filter hd. freqz uses the transfer function associated with the multirate filter to calculate the frequency response of the filter with the current coefficient values. The vectors \(h\) and \(w\) are both of length \(n\). The frequency vector \(w\) has values ranging from 0 to \(\pi\) radians per sample. If you do not specify the integer \(n\), or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
freqz (hd) uses FVTool to plot the magnitude and unwrapped phase of the frequency response of the adaptive filter hd. If hd is a vector of filters, freqz plots the magnitude response and phase for each filter in the vector.

\section*{Remarks}

\section*{Algorithm}

\section*{Examples}

There are several ways of analyzing the frequency response of filters. freqz accounts for quantization effects in the filter coefficients, but does not account for quantization effects in filtering arithmetic. To account for the quantization effects in filtering arithmetic, refer to function noisepsd.
freqz calculates the frequency response for a filter from the filter transfer function \(H q(z)\). The complex-valued frequency response is calculated by evaluating \(H q\left(e^{\mathrm{j} \omega}\right)\) at discrete values of \(w\) specified by the syntax you use. The integer input argument \(n\) determines the number of equally-spaced points around the upper half of the unit circle at which freqz evaluates the frequency response. The frequency ranges from 0 to \(\pi\) radians per sample when you do not supply a sampling frequency as an input argument. When you supply the scalar sampling frequency fs as an input argument to freqz, the frequency ranges from 0 to fs \(/ 2 \mathrm{~Hz}\).

Plot the estimated frequency response of a filter. This example uses discrete-time filters, but any adaptfilt, dfilt, or mfilt object would work. First plot the results for one filter.
```

b = fir1(80,0.5,kaiser(81,8));
hd = dfilt.dffir(b);
freqz(hd);

```


If you have more than one filter, you can plot them on the same figure using a vector of filters.
```

b = fir1(40,0.5,kaiser(41,6));
hd2 = dfilt.dffir(b);
h = [hd hd2];
freqz(h);

```


See Also
adaptfilt, dfilt, mfilt fvtool in your Signal Processing Toolbox documentation

\section*{gain}
```

Purpose Return the gain of a cascaded integrator-comb (CIC) filter

Syntax	gain (hm)
	gain $(\mathrm{hm}, \mathrm{j})$

Description
Examples Determine the overall gain and the gain for each section of a CIC interpolator
with zero latency.

```
```

hm=mfilt.cicinterpzerolat(6)

```
hm=mfilt.cicinterpzerolat(6)
hm =
hm =
    FilterStructure: 'Zero-Latency Cascaded Integrator-Comb
    FilterStructure: 'Zero-Latency Cascaded Integrator-Comb
Interpolator'
Interpolator'
            DifferentialDelay: 1
            DifferentialDelay: 1
            NumberOfSections: 2
            NumberOfSections: 2
                    InputBitWidth: 16
                    InputBitWidth: 16
            OutputBitWidth: 16
            OutputBitWidth: 16
            InterpolationFactor: 6
            InterpolationFactor: 6
        ResetBeforeFiltering: 'on'
        ResetBeforeFiltering: 'on'
            States: [2x2 int32]
            States: [2x2 int32]
            NumSamplesProcessed: 0
            NumSamplesProcessed: 0
gain(hm)
gain(hm)
ans =
ans =
    6
    6
gain(hm,1)
gain(hm,1)
ans =
```

ans =

```
```

gain(hm,2)
ans =
4

```

\section*{See Also}
filtmsb

\section*{grpdelay}
```

Purpose Return the group delay for adaptive filters, discrete-time filters, and multirate filters
Syntax $\quad[g d, w]=\operatorname{grpdelay}(h a)$
[gd,w] = grpdelay(ha,n)
[gd,w] = grpdelay(...,f)
grpdelay(ha)
[gd,w] = grpdelay(hd)
[gd,w] = grpdelay(hd,n)
[gd,w] = grpdelay(...,f)
grpdelay(hd)
[gd,w] = grpdelay(hm)
[gd,w] = grpdelay(hm,n)
[gd,w] = grpdelay(....,f)
grpdelay(hm)

```

\section*{Description}

The next sections describe common grpdelay operation with adaptive, discrete-time, and multirate filters. For more input options, refer to grpdelay in the Signal Processing Toolbox.

\section*{Adaptive Filters}

For adaptive filters, grpdelay returns the instantaneous group delay based on the current filter coefficients.
[gd,w] = grpdelay(ha) returns the group delay vector gd and the corresponding frequency vector \(w\) for the adaptive filter ha. When ha is a vector of adaptive filters, grpdelay returns the matrix gd. Each column of gd corresponds to one filter in the vector ha. If you provide a row vector of frequency points \(f\) as an input argument, each row of gd corresponds to one filter in the vector.

Function grpdelay uses the transfer function associated with the adaptive filter to calculate the group delay of the filter with the current coefficient values. The vectors gd and \(w\) are both of length \(n\). The frequency vector \(w\) has values ranging from 0 to \(\pi\) radians per sample. If you do not specify the integer n , or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
[gd, w] = grpdelay ( \(\mathrm{h}, \mathrm{n}\) ) returns length n vectors vector gd containing the current group delay for the adaptive filter ha and the vector \(w\) which contains the frequencies in radians at which grpdelay calculated the delay. Group delay is
\[
-\frac{d}{d w}(\operatorname{angle}(w))
\]

The frequency response is evaluated at n points equally spaced around the upper half of the unit circle. For FIR filters where \(n\) is a power of two, the computation is done faster using FFTs. When you do not specify \(n\), it defaults to 8192 .
grpdelay (ha) uses FVTool to plot the group delay of the adaptive filter ha. If ha is a vector of filters, grpdelay plots the magnitude response and phase for each filter in the vector.

\section*{Discrete-Time Filters}
[gd,w] = grpdelay(hd) returns the group delay vector gd and the corresponding frequency vector w for the discrete-time filter hd. When hd is a vector of discrete-time filters, grpdelay returns the matrix gd. Each column of gd corresponds to one filter in the vector hd. If you provide a row vector of frequency points \(f\) as an input argument, each row of gd corresponds to each filter in the vector.

Function grpdelay uses the transfer function associated with the discrete-time filter to calculate the group delay of the filter. The vectors gd and \(w\) are both of length \(n\). The frequency vector \(w\) has values ranging from 0 to \(\pi\) radians per sample. If you do not specify the integer \(n\), or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
[gd,w] = grpdelay(hd, \(n\) ) returns length \(n\) vectors vector gd containing the current group delay for the discrete-time filter hd and the vector w which contains the frequencies in radians at which grpdelay calculated the delay. Group delay is
\[
-\frac{d}{d w}(\operatorname{angle}(w))
\]

\section*{grpdelay}

The frequency response is evaluated at n points equally spaced around the upper half of the unit circle. For FIR filters where \(n\) is a power of two, the computation is done faster using FFTs. When you do not specify \(n\), it defaults to 8192 .
grpdelay (hd) uses FVTool to plot the group delay of the discrete-time filter hd. If hd is a vector of filters, grpdelay plots the magnitude response and phase for each filter in the vector.

\section*{Multirate Filters}
[gd,w] = grpdelay(hm) returns the group delay vector gd and the corresponding frequency vector w for the multirate filter hm . When hm is a vector of multirate filters, grpdelay returns the matrix gd. Each column of gd corresponds to one filter in the vector hm. If you provide a row vector of frequency points \(f\) as an input argument, each row of gd corresponds to one filter in the vector.

Function grpdelay uses the transfer function associated with the multirate filter to calculate the group delay of the filter. The vectors gd and \(w\) are both of length \(n\). The frequency vector \(w\) has values ranging from 0 to \(\pi\) radians per sample. If you do not specify the integer \(n\), or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
[gd,w] = grpdelay(hm,n) returns length \(n\) vectors vector gd containing the group delay for the multirate filter hm and the vector w which contains the frequencies in radians at which grpdelay calculated the delay. Group delay is
\[
-\frac{d}{d w}(\operatorname{angle}(w))
\]

The frequency response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. For FIR filters where \(n\) is a power of two, the computation is done faster using FFTs. When you do not specify \(n\), it defaults to 8192 .
grpdelay (hm) uses FVTool to plot the magnitude and unwrapped phase of the group delay of the multirate filter hm. If ha is a vector of filters, grpdelay plots the group delay for each filter in the vector.

\section*{See Also}
phasez, zerophase

\section*{Purpose Design interpolated FIR filters}
Syntax \(\quad\)\begin{tabular}{rl}
\(h\) & \(=\operatorname{ifir}(1\), type \(, f, \operatorname{dev})\) \\
\(h\) & \(=\operatorname{ifir}(1\), type \(, f, \operatorname{dev}\), str \()\)
\end{tabular}

Description
\(\mathrm{h}=\) ifir(l, type, \(\mathrm{f}, \mathrm{dev})\) finds a periodic filter \(f\left(z^{l}\right)\) and an image-suppressor filter \(G(z)\) such that
\[
h=f\left(z^{l}\right) G(z)
\]
where \(l\) is the interpolation factor.
\(h\) represents the optimal minimax FIR approximation to the desired response specified by the string type. Specify the filter band edge frequencies in vector f. With ifir, you designs a filter that meets the response defined by type which does not exceed the peak ripple specified in vector dev.
type must be a string with either 'low' to generate lowpass filters or 'high' for highpass filters. f must be a two-element vector containing two values - the first defining the passband edge frequency and the second that defines the stopband edge frequency. Vector dev must contain two values that specify the peak ripple or deviation allowed in the passband and stopband.
\(h=\) ifir(l,type, \(f, \operatorname{dev}, s t r)\) uses the string specified in str to select the degree of optimization the interpolation algorithm uses. str can be one of three allowed strings:
\begin{tabular}{l|l}
\hline str String Value & Description \\
\hline 'simple' & \\
\hline 'intermediate' & \\
\hline 'advanced' & \\
\hline
\end{tabular}
str lets you direct the filter design algorithm to trade between the time it takes to design the filter and optimizing the filter order. The 'advanced' option can substantially reduce the filter order, especially for \(g(z)\).

\section*{Examples}

The first example creates a lowpass filter using ifir with an interpolation factor of 6 . In example 2, the code designs a wideband highpass filter with the same interpolation factor. You can see the plots of the examples after the code sections.

Create a narrowband lowpass design using an interpolation factor of 6.
```

[h,g]=ifir(6,'low',[.12 .14],[.01 .001]);
[Hh,w]=freqz(h,1,1024); Hg=freqz(g,1,1024);
h = hh.*hg; % Compounded response
subplot(2,1,1), freqzplot([hh,hg],w,'mag');
legend('Periodic Filter','Image Suppressor Filter');
subplot(2,1,2), freqzplot(h,w,'mag');
legend('Overall Filter');

```

Use the 'high' option to create a wideband highpass design using an interpolation factor of 6 .
```

[h,g,d]=ifir(6,'high',[.12 .14],[.001 .01]);
[hh,w]=freqz(h,1,1024); hg=freqz(g,1,1024);
h = hh.*hg; % Branch 1 compounded response
hd = freqz(d,1,1024); % Branch 2 response
hoverall = h+hd;
freqzplot(hoverall,w,'mag');
title('Overall Filter');

```




\section*{See Also}

\section*{References}
firgr
fir1, firls, firpm in your Signal Processing Toolbox documentation
[1] Saramaki, T., Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{iirbpc2bpc}

Purpose

Syntax
Description

\section*{Examples}

Transform an IIR complex bandpass filter to an IIR complex bandpass filter with different frequency response characteristics
[Num, Den, AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the complex bandpass prototype by applying a first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with the numerator specified by B and the denominator specified by A.

This transformation effectively places two features of an original filter, located at frequencies \(W_{01}\) and \(W_{02}\), at the required target frequency locations, \(W_{t 1}\), and \(W_{t 2}\) respectively. It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\). In most of the cases the features selected for the transformation are the band edges of the filter passbands. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

This transformation can also be used for transforming other types of filters; e.g., complex notch filters or resonators can be repositioned at two distinct desired frequencies at any place around the unit circle; e.g., in the adaptive system.

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Create a complex passband from 0.25 to 0.75 :
```

[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, num, den);

```

Using FVTool to plot the filters shows you the comparison, presented in this figure.


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter

\section*{iirbpc2bpc}

\section*{Num}

Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}
iirftransf, allpassbpc2bpc, zpkbpc2bpc

\section*{Purpose \\ Design an IIR comb notching or peaking digital filter}

\section*{Syntax \\ Description}
```

[num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb(, 'type')

```
[num, den] = iircomb(n,bw) returns a digital notching filter with order n and
with the width of the filter notch at -3 dB set to bw , the filter bandwidth. The filter order must be a positive integer. \(n\) also defines the number of notches in the filter across the frequency range from 0 to \(2 \pi\)-the number of notches equals \(\mathrm{n}+1\).

For the notching filter, the transfer function takes the form
\[
H(z)=b \times \frac{1-z^{-n}}{1-a z^{-n}}
\]
where \(a\) and \(b\) are the filter coefficients and \(n\) is the filter order or the number of notches in the filter minus 1.

The quality factor ( \(Q\) factor) \(q\) for the filter is related to the filter bandwidth by \(q=\omega_{0} / \mathrm{bw}\) where \(\omega_{0}\) is the frequency to remove from the signal.
[num, den] = iircomb( \(\mathrm{n}, \mathrm{bw}, \mathrm{ab}\) ) returns a digital notching filter whose bandwidth, bw, is specified at a level of -ab decibels. Including the optional input argument ab lets you specify the magnitude response bandwidth at a level that is not the default -3 dB point, such as -6 dB or 0 dB .
[num, den] = iircomb( , 'type') returns a digital filter of the specified type. The input argument type can be either
- 'notch' to design an IIR notch filter. Notch filters attenuate the response at the specified frequencies. This is the default type. When you omit the type input argument, iircomb returns a notch filter.
- 'peak ' to design an IIR peaking filter. Peaking filters boost the signal at the specified frequencies.

\section*{iircomb}

The transfer function for peaking filters is
\[
H(z)=b \times \frac{1+z^{-n}}{1-a z^{-n}}
\]

\section*{Examples}

Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1) that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For this example, set the Q factor for the filter to 35 and use it to specify the filter bandwidth.
```

fs = 600; fo = 60; q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note the type flag 'notch'
fvtool(b,a);

```

Using the Filter Visualization Tool (FVTool) generates the following plot showing the filter notches. Note the notches are evenly spaced and one falls at exactly 60 Hz .


\section*{iirftransf}

Purpose IIR frequency transformation of the digital filter
```

Syntax
[OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

```

Description

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:
[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
Here's the comparison between the filters.


\section*{Arguments}

OrigNum
Numerator of the prototype lowpass filter
OrigDen
Denominator of the prototype lowpass filter
FTFNum
Numerator of the mapping filter
FTFDen
Denominator of the mapping filter
OutNum
Numerator of the target filter
OutDen
Denominator of the target filter

\section*{iirftransf}

\section*{See Also}
zpkftransf

Purpose
Optimal IIR filter design with prescribed group-delay
Syntax
```

[num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

```

\section*{Description}
[num, den] = iirgrpdelay( \(n, f\), edges, a) returns an allpass IIR filter of
order \(n\) ( \(n\) must be even) which is the best approximation to the relative group-delay response described by \(f\) and a in the least-pth sense. \(f\) is a vector of frequencies between 0 and 1 and \(a\) is specified in samples. The vector edges specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses a constrained Newton-type algorithm. Always check your resulting filter using grpdelay or freqz.
[num,den] = iirgrpdelay( \(n, f, e d g e s, a, w)\) uses the weights in \(w\) to weight the error. w has one entry per frequency point and must be the same length length as \(f\) and a). Entries in w tell iirgrpdelay how much emphasis to put on minimizing the error in the vicinity of each specified frequency point relative to the other points.
\(f\) and a must have the same number of elements. \(f\) and a can contains more elements than the vector edges contains. This lets you use \(f\) and a to specify a filter that has any group-delay contour within each band.
[num, den] = iirgrpdelay(n,f,edges, a,w,radius) returns a filter having a maximum pole radius equal to radius, where \(0<\) radius \(<1\). radius defaults to 0.999999 . Filters whose pole radius you constrain to be less than 1.0 can better retain transfer function accuracy after quantization.
[num,den] = iirgrpdelay( \(n, f\), edges,a,w,radius, \(p\) ), where \(p\) is a two-element vector [pmin pmax], lets you determine the minimum and maximum values of \(p\) used in the least-pth algorithm. p defaults to [2 128] which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and

\section*{iirgrpdelay}
pmax should be even. If \(p\) is the string 'inspect', no optimization occurs. You might use this feature to inspect the initial pole/zero placement.
[num,den] = iirgrpdelay(n,f,edges,a,w,radius, p,dens) specifies the grid density dens used in the optimization process. The number of grid points is (dens* \((n+1)\) ). The default is 20 . dens can be specified as a single-element cell array. The grid is not equally spaced.
[num,den] = iirgrpdelay(n,f,edges,a,w,radius, p,dens,initden) allows you to specify the initial estimate of the denominator coefficients in vector initden. This can be useful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initden.
```

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)

``` allows the initial estimate of the group delay offset to be specified by the value of tau, in samples.
[num, den,tau] = iirgrpdelay( \(n, f\), edges, \(a, w)\) returns the resulting group delay offset. In all cases, the resulting filter has a group delay that approximates [a + tau]. Allpass filters can have only positive group delay and a non-zero value of tau accounts for any additional group delay that is needed to meet the shape of the contour specified by ( \(f, a\) ). The default for tau is \(\max (a)\).

Hint: If the zeros or poles cluster together, your filter order may be too low or the pole radius may be too small (overly constrained). Try increasing \(n\) or radius.

For group-delay equalization of an IIR filter, compute a by subtracting the filter's group delay from its maximum group delay. For example,
```

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2); % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);

```

See Also
References
freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane
Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc. 1993.
Purpose Transform an IIR real lowpass filter to an IIR real bandpass filter frequency

Syntax

Description
response
[Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt), where Hd is a dfilt object
[Num, Den, AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a second-order real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(W_{t 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\). This transformation implements the "DC Mobility," meaning that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of \(\mathrm{W}_{\mathrm{t}} \mathrm{s}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature: the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies.
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt) returns transformed dfilt object \(G\) with a real bandpass magnitude response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping

\section*{iirlp2bp}
the prototype filter frequency Wo and target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Create the real bandpass filter by placing the cutoff frequencies of the prototype filter at the band edge frequencies \(W_{t 1}=0.25\) and \(W_{t 2}=0.75\) :
\[
\text { [num, den] }=\text { iirlp2bp(b, a, 0.5, [0.25,0.75]); }
\]

Verify the result by comparing the prototype filter with the target filter: fvtool(b, a, num, den);

You can compare the results in this figure to verify the transformation.

Arguments
B
A
Denominator of the prototype lowpass filter
Wo prototype lowpass filter
Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.
iirftransf, allpasslp2bp, zpklp2bp
References \begin{tabular}{l} 
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE \\
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970. \\
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer \\
function parameters in the discrete-time frequency transformations," \\
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, \\
Canada, vol. 2, pp. 1078-1082, August 1990. \\
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time \\
elliptic transfer functions," Proceedings of the 35th Midwest Symposium on \\
Circuits and Systems, vol. 2, pp. 784-787, 1992.
\end{tabular}

\section*{iirlp2bpc}

\section*{Purpose}

IIR lowpass to complex bandpass frequency transformation frequency response

\section*{Syntax}

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(W_{t 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; for example real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandpass filters for radio receivers from the high-quality prototype lowpass filter.
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt) returns transformed dfilt object \(G\) with a bandpass magnitude response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping
the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Move the cutoffs of the prototype filter to the new locations \(W_{t 1}=0.25\) and \(\mathrm{W}_{\mathrm{t} 2}=0.75\) creating a complex bandpass filter:
[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
PLotting the prototype and target filters together in FVTool lets you compare the filters.

\section*{iirlp2bpc}


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

\section*{Wt}

Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpasslp2bpc, zpklp2bpc

\section*{iirlp2bs}

\section*{Purpose \\ Syntax \\ Description}

\section*{Examples}

Transform an IIR real lowpass filter to an IIR real bandstop filter frequency response
[Num, Den, AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt), where Hd is a dfilt object
[Num, Den, AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a second-order real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(\mathrm{W}_{\mathrm{t} 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(\mathrm{W}_{\mathrm{t} 1}\). This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC, but the Nyquist feature moves to a location dependent on the selection of \(\mathrm{W}_{\mathrm{o}}\) and \(\mathrm{W}_{\mathrm{t}} \mathrm{s}\).

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). After the transformation feature \(F_{2}\) will precede \(F_{1}\) in the target filter. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed dfilt object \(G\) with a bandstop magnitude response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Create the real bandstop filter by placing the cutoff frequencies of the prototype filter at the band edge frequencies \(W_{t 1}=0.25\) and \(W_{t 2}=0.75\) :
```

[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);

```

Verify the result by comparing the prototype filter with the target filter: fvtool(b, a, num, den);


With both filters plotted in the figure, you see clearly the results of the transformation.

\section*{Arguments}

B
Numerator of the prototype lowpass filter

\section*{iirlp2bs}

\section*{A}

Denominator of the prototype lowpass filter

\section*{Wo}

Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

\section*{See Also}

References
iirftransf, allpasslp2bs, zpklp2bs
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

\section*{Purpose}

Syntax

Description

Transform an IIR real lowpass filter to an IIR complex bandstop filter frequency response
[Num, Den, AllpassNum, AllpassDen] = iirlp2bsc(B, A, Wo, Wt)
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt), where Hd is a dfilt object
[Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and the denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(W_{t 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\). Additionally the transformation swaps passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandstop filters for band attenuation or frequency equalizers, from the high-quality prototype lowpass filter.
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt) returns transformed dfilt object \(G\) with a bandstop magnitude response. The coefficients

\section*{iirlp2bsc}

AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector \(W t\). Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Move the cutoffs of the prototype filter to the new locations \(W_{t 1}=0.25\) and \(W_{\mathrm{t} 2}=0.75\) creating a complex bandstop filter:
```

[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);

```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
The last command in the example plots both filters in the same window so you can compare the results.


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter

\section*{Wo}

Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

\section*{iirlp2bsc}

\section*{Num}

Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpasslp2bsc, zpklp2bsc.

9-652

Purpose
Syntax

Description

Transform a discrete time lowpass IIR filter to a highpass filter
[num,den] = iirlp2hp(b,a,wc,wd)
[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt), where Hd is a dfilt object
[num,den] = iirlp2hp(b,a,wc,wd) with input arguments \(b\) and \(a\), the numerator and denominator coefficients (zeros and poles) for a lowpass IIR filter, iirlp2bp transforms the magnitude response from lowpass to highpass. num and den return the coefficients for the transformed highpass filter. For wc, enter a selected frequency from your lowpass filter. You use the chosen frequency to define the magnitude response value you want in the highpass filter. Enter one frequency for the highpass filter - the value that defines the location of the transformed point - in wd. Note that all frequencies are normalized between zero and one. Notice also that the filter order does not change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the magnitude response at the wd values of your bandstop filter to be the same as the magnitude response of your lowpass filter at wc. Filter performance between the values in wd is not specified, except that the stopband retains the ripple nature of your original lowpass filter and the magnitude response in the stopband is equal to the peak response of your lowpass filter. To accurately specify the filter magnitude response across the stopband of your bandpass filter, use a frequency value from within the stopband of your lowpass filter as wc. Then your bandstop filter response is the same magnitude and ripple as your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what makes this function useful. If you have a lowpass filter whose characteristics, such as rolloff or passband ripple, particularly meet your needs, the transformation function lets you create a new filter with the same characteristic performance features, but in a highpass version. Without designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems, resulting in incorrect conversion to the highpass filter. Use fvtool to verify the response of your converted filter.
[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt) returns transformed dfilt object \(G\) with a highpass magnitude response. The coefficients

\section*{iirlp2hp}

AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

This example transforms an IIR filter from lowpass to high pass by moving the magnitude response at one frequency in the source filter to a new location in the transformed filter. To generate a highpass filter whose passband flattens out at 0.4 , we select the frequency in the lowpass filter where the passband starts to rolloff ( \(\mathrm{wc}=0.0175\) ) and move it to the new location at \(w d=0.4\).
```

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[11 1 0 0 0 0],[$$
\begin{array}{llllll}{1}&{1}&{1}&{1}&{10}&{10}\end{array}
$$]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);

```


In the figure showing the magnitude responses for the two filters, the transition band for the highpass filter is essentially the mirror image of the transition for the lowpass filter from 0.0175 to 0.025 , stretched out over a wider frequency range. In the passbands, the filter share common ripple characteristics and magnitude.

See Also iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp

Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, Second Edition, McGraw-Hill, 2001.

\section*{iirlp2lp}

\section*{Purpose}

Transform a discrete time lowpass IIR filter to a different lowpass filter

Syntax

Description
[num,den] = iirlp2lp(b,a,wc,wd)
[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt), where Hd is a dfilt object
[num,den] = iirlp2hp(b,a,wc,wd) with input arguments \(b\) and \(a\), the numerator and denominator coefficients (zeros and poles) for a lowpass IIR filter, iirlp2bp transforms the magnitude response from lowpass to highpass. num and den return the coefficients for the transformed highpass filter. For wc, enter a selected frequency from your lowpass filter. You use the chosen frequency to define the magnitude response value you want in the highpass filter. Enter one frequency for the highpass filter - the value that defines the location of the transformed point - in wd. Note that all frequencies are normalized between zero and one. Notice also that the filter order does not change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the magnitude response at the wd values of your bandstop filter to be the same as the magnitude response of your lowpass filter at wc. Filter performance between the values in wd is not specified, except that the stopband retains the ripple nature of your original lowpass filter and the magnitude response in the stopband is equal to the peak response of your lowpass filter. To accurately specify the filter magnitude response across the stopband of your bandpass filter, use a frequency value from within the stopband of your lowpass filter as wc. Then your bandstop filter response is the same magnitude and ripple as your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what makes this function useful. If you have a lowpass filter whose characteristics, such as rolloff or passband ripple, particularly meet your needs, the transformation function lets you create a new filter with the same characteristic performance features, but in a highpass version. Without designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems, resulting in incorrect conversion to the highpass filter. Use fvtool to verify the response of your converted filter.
[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt) returns transformed dfilt object \(G\) with a lowpass magnitude response. The coefficients AllpassNum
and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

This example transforms an IIR filter from lowpass to high pass by moving the magnitude response at one frequency in the source filter to a new location in the transformed filter. To generate a lowpass filter whose passband extends out to 0.2 , we select the frequency in the lowpass filter where the passband starts to rolloff ( \(\mathrm{wc}=0.0175\) ) and move it to the new location at wd \(=0.2\).
```

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],···
[0 0.0175 0.02 0.0215 0.025 1],[[11 1 0 0 0 0
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);

```

Moving the edge of the passband from 0.0175 to 0.2 results in a new lowpass filter whose peak response in-band is the same as the original filter: same ripple, same absolute magnitude.

\section*{iirlp2lp}


Notice that the rolloff is slightly less steep and the stopband profiles are the same for both filters; the new filter stopband is a "stretched" version of the original, as is the passband of the new filter.

\section*{See Also}

References
iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp
Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, Second Edition, McGraw-Hill, 2001.

Purpose

Syntax

Description

Transform an IIR real lowpass filter to an IIR real M-band filter frequency response
```

[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass)

```
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass to real multibandpass frequency mapping. By default the DC feature is kept at its original location.
[Num,Den,AllpassNum,AllpassDen]=iirlp2mb (B,A,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency locations, \(W_{t 1}, \ldots, W_{t M}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required

\section*{iirlp2mb}
frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed dfilt object \(G\) with an IIR real M-band filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
[G,AllpassNum,AllpassDen] = iirlp2mb(Hd,Wo,Wt) returns transformed dfilt object \(G\) with an IIR real M-band filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass) returns transformed dfilt object G with an IIR real M-band filter frequency response. This syntax allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

Example 1: Create the real multiband filter with two passbands:
```

[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');

```

The second code snippet uses the pass option to select the Nyquist mobility option. In this case the resulting filter is the same.

Example 2: Create the real multiband filter with two stopbands:
```

[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');

```

Verify the result by comparing the prototype filter with target filters:
fvtool(b, a, num1, den1, num2, den2, num3, den3);
Combining all of the filters, prototypes and targets, on one figure makes comparing them straightforward. Passbands for the filters in example 1 appear separately in the figure, although they overlap to a degree that makes them hard to identify-they have identical coefficients.


\section*{Arguments}

B
Numerator of the prototype lowpass filter

\section*{iirlp2mb}

\section*{A}

Denominator of the prototype lowpass filter

\section*{Wo}

Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter

\section*{Pass}

Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the default

\section*{Num}

Numerator of the target filter

\section*{Den}

Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}

\section*{References}
[1] Franchitti, J.C., "All-pass filter interpolation and frequency transformation problems," MSc Thesis, Dept. of Electrical and Computer Engineering, University of Colorado, 1985.
[2] Feyh, G., J.C. Franchitti and C.T. Mullis, "All-pass filter interpolation and frequency transformation problem," Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[3] Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7, Reading, Mass., Addison-Wesley, 1987.
[4] Feyh, G., W.B. Jones and C.T. Mullis, "An extension of the Schur Algorithm for frequency transformations," Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

\footnotetext{
Purpose

Syntax

Description

Transform an IIR real lowpass filter to an IIR complex M-band filter frequency response
[Num, Den, AllpassNum, AllpassDen] = iirlp2mbc(B, A, Wo, Wc)
[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt), where Hd is a dfilt object
[Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency locations, \(W_{t 1}, \ldots, W_{t M}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt) returns transformed dfilt object \(G\) with an IIR complex M-band filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
}

\section*{iirlp2mbc}

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Now create a complex multiband filter with two passbands:
```

[num1, den1] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, num1, den1);

```


You see in the figure that iirlp2mbc replicates the desired feature at 0.5 in the lowpass filter at four locations in the multiband filter.
Arguments ..... BNumerator of the prototype lowpass filter.
ADenominator of the prototype lowpass filter.
WoFrequency value to be transformed from the prototype filter. It should benormalized to be between 0 and 1 , with 1 corresponding to half the sample rate.
Wc
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.
Num
Numerator of the target filter.
Den
Denominator of the target filter.
AllpassNum
Numerator of the mapping filter.
AllpassDen
Denominator of the mapping filter.
See Also
iirftransf, allpasslp2mbc, zpklp2mbc

\section*{iirlp2xc}

\author{
Syntax \\ Description
}

Purpose Transform an IIR real lowpass filter to an IIR complex N-point filter frequency
response
[Num, Den, AllpassNum, AllpassDen] = iirlp2xc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt), where Hd is a dfilt object
[Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

Parameter \(N\) also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places \(N\) features of an original filter, located at frequencies \(W_{01}, \ldots, W_{O N}\), at the required target frequency locations, \(\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}\).

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation. For DC mobility feature \(F_{2}\) will precede \(F_{1}\) after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., a stopband edge, DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating \(N\) bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt) returns transformed dfilt object \(G\) with an IIR complex N-point filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\([b, a]=\operatorname{llip}(3,0.1,30,0.409) ;\)
Create the complex bandpass filter from the real lowpass filter:
[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
REviewing the coefficients and the figure produced by the example shows that the target filter has complex coefficients and is indeed a bandpass filter as expected.

\section*{iirlp2xc}


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter. They should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

\section*{Wt}

Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpasslp2xc, zpklp2xc

\section*{iirlp2xn}
\begin{tabular}{|c|c|}
\hline Purpose & Transform an IIR real lowpass filter to an IIR real N-point filter frequency response \\
\hline \multirow[t]{2}{*}{Syntax} & \[
\begin{aligned}
& \text { [Num, Den,AllpassNum,AllpassDen] }=\text { iirlp2xn(B,A,Wo,Wt) } \\
& \text { [Num, Den,AllpassNum,AllpassDen] }=\text { iirlp2xn(B,A,Wo,Wt,Pass) }
\end{aligned}
\] \\
\hline & [G,AllpassNum,AllpassDen] = iirlp2bpc( \(\mathrm{Hd}, \mathrm{Wo}, \mathrm{Wt}\) ), where Hd is a dfilt object [G,AllpassNum,AllpassDen] = iirlp2bpc(...,Pass) \\
\hline Description & [Num, Den,AllpassNum, AllpassDen] = iirlp2xn(B, \(A, W o, W t)\) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to real multipoint frequency transformation, where \(N\) is the number of features being mapped. By default the DC feature is kept at its original location. \\
\hline
\end{tabular}
[Num,Den,AllpassNum,AllpassDen]=iirlp2xn(B,A,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with the numerator specified by B and the denominator specified by A.

Parameter \(N\) also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places \(N\) features of an original filter, located at frequencies \(W_{01}, \ldots, W_{O N}\), at the required target frequency locations, \(W_{t 1}, \ldots, W_{t M}\).

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation. For DC mobility feature \(F_{2}\) will precede \(F_{1}\) after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating N bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2xn(Hd,Wo,Wt) returns transformed dfilt object \(G\) with an IIR real N-point filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
[G,AllpassNum,AllpassDen] = iirlp2xn(..., Pass) returns transformed dfilt object \(G\) with an IIR real N-point filter frequency response. This syntax allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Move the cutoffs of the prototype filter to the new locations \(W_{t 1}=0.25\) and \(W_{t 2}=0.75\) creating a real bandpass filter:
[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], 'pass');

\section*{iirlp2xn}

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, num, den);

```
iirlp2xn has created the desired bandpass filter with the cutoff locations specified in the command.


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter
Pass
Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}
iirftransf, allpasslp2xn, zpklp2xn

\section*{References}
[1] Cain, G.D., A. Krukowski and I. Kale, "High Order Transformations for Flexible IIR Filter Design," VII European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 1994.
[2] Krukowski, A., G.D. Cain and I. Kale, "Custom designed high-order frequency transformations for IIR filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

\section*{iirlpnorm}

Purpose
Least P-norm optimal IIR filter design
Syntax

\section*{Description}
```

[num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)

```
[num, den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator order n and denominator order d which is the best approximation to the desired frequency response described by f and a in the least-pth sense. The vector edges specifies the band-edge frequencies for multi-band designs. An unconstrained quasi-Newton algorithm is employed and any poles or zeros that lie outside of the unit circle are reflected back inside. \(n\) and \(d\) should be chosen so that the zeros and poles are used effectively. See the "Hints" section. Always use freqz to check the resulting filter.
[num, den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in \(w\) to weight the error. w has one entry per frequency point (the same length as \(f\) and a) which tells iirlpnorm how much emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other points. f and a must have the same number of elements, which may exceed the number of elements in edges. This allows for the specification of filters having any gain contour within each band. The frequencies specified in edges must also appear in the vector f. For example,
```

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[$$
\begin{array}{lllll}{1}&{1}&{1}&{10}&{10}\end{array}
$$])

```
is a lowpass filter with a peak of 1.6 within the passband.
[num, den] = iirlpnorm(n,d,f,edges, \(a, w, p)\) where \(p\) is a two-element vector [pmin pmax] allows for the specification of the minimum and maximum values of \(p\) used in the least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. Pmin and pmax should be even. If p is the string 'inspect', no optimization will occur. This can be used to inspect the initial pole/zero placement.
[num, den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density dens used in the optimization. The number of grid points is (dens* \((n+d+1)\) ). The default is 20 . dens can be specified as a single-element cell array. The grid is not equally spaced.
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden) allows for the specification of the initial estimate of the filter numerator and denominator coefficients in vectors initnum and initden. This may be useful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initnum and initden.

\section*{Hints}
- This is a weighted least-pth optimization.
- Check the radii and locations of the poles and zeros for your filter. If the zeros are on the unit circle and the poles are well inside the unit circle, try increasing the order of the numerator or reducing the error weighting in the stopband.
- Similarly, if several poles have a large radii and the zeros are well inside of the unit circle, try increasing the order of the denominator or reducing the error weighting in the passband.

\author{
See Also \\ iirlpnormc, filter, freqz, iirgrpdelay, zplane \\ References \\ Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc. 1993.
}

\section*{iirlpnormc}

\section*{Purpose Design a constrained least P-norm optimal IIR filter}
```

Syntax [num,den] = iirlpnormc(n,d,f,edges,a)
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,...
dens,initnum,initden)
[num,den,err] = iirlpnormc(...)
[num,den,err,sos,g] = iirlpnormc(...)

```

\section*{Description}
[num, den] = iirlpnormc( \(n, d, f\), edges,a) returns a filter having a numerator order n and denominator order d which is the best approximation to the desired frequency response described by fand a in the least-pth sense. The vector edges specifies the band-edge frequencies for multi-band designs. A constrained Newton-type algorithm is employed. n and d should be chosen so that the zeros and poles are used effectively. See the "Hints" section. Always check the resulting filter using fvtool.
[num, den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight the error. whas one entry per frequency point (the same length as \(f\) and a) which tells iirlpnormc how much emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other points. \(f\) and a must have the same number of elements, which can exceed the number of elements in edges. This allows for the specification of filters having any gain contour within each band. The frequencies specified in edges must also appear in the vector f. For example,
```

[num,den] = iirlpnormc(5,5,[0 . 15 . 4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[[$$
\begin{array}{lllll}{1}&{1}&{1}&{10}&{10}\end{array}
$$])

```
designs a lowpass filter with a peak of 1.6 within the passband.
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having a maximum pole radius of radius where \(0<\) radius \(<1\). radius defaults to 0.999999 . Filters that have a reduced pole radius may retain better transfer function accuracy after you quantize them.
[num,den] = iirlpnormc( \(n, d, f, e d g e s, a, w, r a d i u s, p)\) where \(p\) is a two-element vector [pmin pmax] allows for the specification of the minimum and maximum values of \(p\) used in the least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax should be even. If p is the string 'inspect ', no optimization will occur. This can be used to inspect the initial pole/zero placement.
[num, den] = iirlpnormc(n,d,f,edges, a, w, radius, \(p\), dens) specifies the grid density dens used in the optimization. The number of grid points is (dens* \((n+d+1)\) ). The default is 20 . dens can be specified as a single-element cell array. The grid is not equally spaced.
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius, p,dens,... initnum, initden) allows for the specification of the initial estimate of the filter numerator and denominator coefficients in vectors initnum and initden. This may be useful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initnum and initden.
[num, den, err] = iirlpnormc(...) returns the least-Pth approximation error err.
[num, den,err,sos,g] = iirlpnormc(...) returns the second-order section representation in the matrix SOS and gain G. For numerical reasons you may find SOS and G beneficial in some cases.

\section*{Hints}
- This is a weighted least-pth optimization.
- Check the radii and location of the resulting poles and zeros.
- If the zeros are all on the unit circle and the poles are well inside of the unit circle, try increasing the order of the numerator or reducing the error weighting in the stopband.
- Similarly, if several poles have a large radius and the zeros are well inside of the unit circle, try increasing the order of the denominator or reducing the error weight in the passband.
- If you reduce the pole radius, you might need to increase the order of the denominator.
The message

\section*{iirlpnormc}

Poorly conditioned matrix. See the "help" file.
indicates that iirlpnormc cannot accurately compute the optimization because either:
a The approximation error is extremely small (try reducing the number of poles or zeros-refer to the hints above).
b The filter specifications have huge variation, such as \(\mathbf{a}=\left[\begin{array}{llll}1 & 1 \mathrm{e} & 0 & 0\end{array}\right]\).

\section*{Examples}

This example returns a lowpass filter whose pole radius is constrained to 0.8
```

[b,a,err,s,g] = iirlpnormc(6,6,[0 . 4 . 5 1],[0 . 4 . 5 1],...
[11 1 0 0],[[1 1 1 1 1],.8);
hd = dfilt.df1sos(s,g); % Construct second-order sections filter.
fvtool(hd); % View filter's magnitude response

```

From the magnitude response shown here you see the lowpass nature of the filter. The pole/zero plot following shows that the poles are constrained to 0.8 as specified in the command.

\section*{iirlpnormc}


\section*{iirlpnormc}


\section*{See Also}

References
freqz, filter, iirgrpdelay, iirlpnorm, zplane
Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc. 1993.

Purpose
Syntax

Description

Examples

Design a second-order IIR notch digital filter
```

[num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(wo,bw,ab)

```
[num,den] = iirnotch(w0,bw) turns a digital notching filter with the notch located at w0, and with the bandwidth at the -3 dB point set to bw. To design the filter, w0 must meet the condition \(0.0<w 0<1.0\), where 1.0 corresponds to \(\pi\) radians per sample in the frequency range.

The quality factor ( Q factor) q for the filter is related to the filter bandwidth by \(\mathrm{q}=\omega_{0} / \mathrm{bw}\) where \(\omega_{0}\) is \(w 0\), the frequency to remove from the signal.
[num, den] = iirnotch(w0, bw, ab) returns a digital notching filter whose bandwidth, bw, is specified at a level of -ab decibels. Including the optional input argument ab lets you specify the magnitude response bandwidth at a level that is not the default -3 dB point, such as -6 dB or 0 dB .

Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal at 300 Hz (fs). For this example, set the Q factor for the filter to 35 and use it to specify the filter bandwidth:
```

wo = 60/(300/2); bw = wo/35;
[b,a] = iirnotch(wo,bw);
fvtool(b,a);

```

Shown in the next plot, the notch filter has the desired bandwidth with the notch located at 60 Hz , or \(0.4 \pi\) radians per sample. Compare this plot to the comb filter plot shown on the reference page for iircomb.

\section*{iirnotch}


See Also
firgr, iircomb, iirpeak

Purpose
Design a second-order IIR peak or resonator digital filter

\section*{Syntax}

Description

\section*{Examples}
```

[num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

```
[num, den] = iirpeak(wo,bw) turns a second-order digital peaking filter with the peak located at w0, and with the bandwidth at the +3 dB point set to bw. To design the filter, wo must meet the condition \(0.0<w 0<1.0\), where 1.0 corresponds to \(\pi\) radians per sample in the frequency range.

The quality factor ( Q factor) q for the filter is related to the filter bandwidth by \(\mathrm{q}=\omega_{0} / \mathrm{bw}\) where \(\omega_{0}\) is wo the signal frequency to boost.
[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter whose bandwidth, bw, is specified at a level of +ab decibels. Including the optional input argument ab lets you specify the magnitude response bandwidth at a level that is not the default +3 dB point, such as +6 dB or 0 dB .

Design and plot an IIR peaking filter that boosts the frequency at 1.75 Khz in a signal and has bandwidth of 500 Hz at the -3 dB point:
```

fs = 10000; wo = 1750/(fs/2); bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

```

Shown in the next plot, the peak filter has the desired gain and bandwidth at 1.75 KHz .

\section*{iirpeak}


See Also
firgr, iircomb, iirnotch

\section*{Purpose}

Compute power complementary filter.

\section*{Syntax}

Description
```

[bp,ap] = iirpowcomp(b,a)
[bp,ap,c] = iirpowcomp(b,a)

```
[bp,ap] = iirpowcomp(b,a) returns the coefficients of the power complementary IIR filter \(g(z)=b p(z) / a p(z)\) in vectors bp and ap, given the coefficients of the IIR filter \(h(z)=b(z) / a(z)\) in vectors \(b\) and \(a\). \(b\) must be symmetric (Hermitian) or antisymmetric (antihermitian) and of the same length as a. The two power complementary filters satisfy the relation
\(|\mathrm{H}(\mathrm{w})|^{2}+|\mathrm{G}(\mathrm{w})|^{2}=1\).
[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of magnitude =1, forces \(b p\) to satisfy the generalized hermitian property
```

conj(bp(end:-1:1)) = c*bp.

```

When c is omitted, it is chosen as follows:
- When b is real, chooses C as 1 or -1 , whichever yields bp real
- When b is complex, C defaults to 1
ap is always equal to a.

\section*{Examples}
```

[b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

```

The next figure presents the results of applying iirpowcomp to the Chebyshev filter-the power complementary version of the original filter.

\section*{iirpowcomp}


\section*{See Also}
tf2ca, tf2cl, ca2tf, cl2tf

\section*{Purpose}

Syntax
Description

Upsample an IIR filter by an integer factor
```

[Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)

```
[Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) returns the numerator and denominator vectors, Num and Den respectively, of the target filter being transformed from any prototype by applying an Nth-order rateup frequency transformation, where N is the upsample ratio. Transformation creates \(N\) equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, num, den);

```

As shown in the figure produced by FVTool, the transformed filter appears as expected.

\section*{iirrateup}


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
N
Frequency multiplication ratio
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpassrateup, zpkrateup

\section*{iirshift}

\section*{Purpose Shift the frequency response of an IIR real filter}

\section*{Syntax}
[Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)
Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Perform the real frequency shift by defining where the selected feature of the prototype filter, originally at \(W_{0}=0.5\), should be placed in the target filter, \(W_{\mathrm{t}}=0.75\) :
```

Wo = 0.5; Wt = 0.75;
[num, den] = iirshift(b, a, Wo, Wt);

```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
Shifting the specified feature from the prototype to the target generates the response shown in the figure.


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter

\section*{iirshift}

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

\section*{Num}
Numerator of the target filter

\section*{Den}
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
See Also iirftransf, allpassshift, zpkshift.

Purpose
Syntax
Description

\section*{Examples}

Shift the frequency response of an IIR complex filter
```

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wt)

```
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a first-order complex frequency shift transformation. This transformation rotates all the features of an original filter by the same amount specified by the location of the selected feature of the prototype filter, originally at \(W_{0}\), placed at \(W_{t}\) in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with the numerator specified by B and the denominator specified by A.
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5) calculates the allpass filter for doing the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an original filter in the frequency domain.
[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5) calculates the allpass filter for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an original filter in the frequency domain.

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=e l l i p(3,0.1,30,0.409) ;
\]

Rotate all features of the prototype filter in the frequency domain by the same amount by specifying where the selected feature of an original filter, \(W_{0}=0.5\), should appear in the target filter, \(\mathrm{w}_{\mathrm{t}}=0.25\) :
```

[num, den] = iirshiftc(b, a, 0.5, 0.25);

```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
After applying the shift, the selected feature from the original filter is just where it should be, at \(W_{t}=0.25\).

\section*{iirshiftc}


\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

\section*{Num}

Numerator of the target filter

\section*{Den}

Denominator of the target filter

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

See Also
References
iirftransf, allpassshiftc, zpkshiftc
[1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall International Inc., 1989.
[2] Dutta-Roy, S.C. and B. Kumar, "On digital differentiators, Hilbert transformers, and half-band low-pass filters," IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.
Purpose Compute the impulse response of adaptive filter, discrete-time filters, andmultirate filters
Syntax
```

[h,t] = impz(ha)
[h,t] = impz(...,fs)
impz(ha,...)
[h,t] = impz(hd)
[h,t] = impz(...,fs)
impz(hd,...)
[h,t] = impz(hm)
[h,t] = impz(...,fs)
impz(hm,...)

```
Description The next sections describe common impz operation with adaptive, discrete-time, and multirate filters. For more input options, refer to impz in the Signal Processing Toolbox.

\section*{Adaptive Filters}
For adaptive filters, impz returns the instantaneous impulse response based on the current filter coefficients.
[h,t] = impz(ha) computes the instantaneous impulse response of the adaptive filter ha choosing the number of samples for you, and returns the response in column vector \(h\) and a vector of times or sample intervals in t where ( \(\mathrm{t}=\left[\begin{array}{lll}0 & 1 & 2 . . .\end{array}\right]\) ').
\([h, t]=\operatorname{impz}(. . ., f s)\) returns a matrix \(h\) if ha is a vector. Each column of the matrix corresponds to one filter in the vector. When ha is a vector of adaptive filters, impz returns the matrix h . Each column of h corresponds to one filter in the vector ha. If you provide a sampling frequency fs as an input argument, impz uses fs in when determining the impulse response.
impz (ha, . . .) uses FVTool to plot the impulse response of the adaptive filter ha. If ha is a vector of filters, impz plots the response and for each filter in the vector.

\section*{Discrete-Time Filters}
[h,t] = impz(hd) computes the instantaneous impulse response of the discrete-time filter hd choosing the number of samples for you, and returns the response in column vector \(h\) and a vector of times or sample intervals in \(t\) where ( \(\mathrm{t}=\left[\begin{array}{lll}0 & 1 & 2\end{array} \mathrm{I} .\right]^{\prime}\) ). impz returns a matrix h if hd is a vector. Each column of the matrix corresponds to one filter in the vector. When hd is a vector of discrete-time filters, impz returns the matrix h. Each column of \(h\) corresponds to one filter in the vector hd.
impz (hd) uses FVTool to plot the impulse response of the discrete-time filter hd. If hd is a vector of filters, impz plots the response and for each filter in the vector.

\section*{Multirate Filters}
[ \(\mathrm{h}, \mathrm{t}\) ] = impz (hm) computes the instantaneous impulse response of the multirate filter hm choosing the number of samples for you, and returns the response in column vector h and a vector of times or sample intervals in t where ( \(\mathrm{t}=\left[\begin{array}{lll}0 & 1 & 2 \ldots . .\end{array}\right]^{\prime}\) ). [ \(\left.\mathrm{h}, \mathrm{t}\right]=\operatorname{impz}(\mathrm{hm})\) returns a matrix h if hm is a vector. Each column of the matrix corresponds to one filter in the vector. When hm is a vector of multirate filters, impz returns the matrix h. Each column of \(h\) corresponds to one filter in the vector ha.
impz ( hm ) uses FVTool to plot the impulse response of the multirate filter hm. If ha is a vector of filters, impz plots the response and for each filter in the vector.

Note that the multirate filter impulse response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, impz assumes the filter is running at that rate.

For multistage cascades, impz forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. impz does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be
found. impz uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to impz, the function interprets fs as the rate at which the equivalent filter is running.

Note impz works for both real and complex filters. When you omit the output arguments, impz plots only the real part of the impulse response.

Examples
Create a discrete-time filter for a fourth-order, low-pass elliptic filter with a cutoff frequency of 0.4 times the Nyquist frequency. Use a second-order sections structure to resist quantization errors. Plot the first 50 samples of the impulse response, along with the reference impulse response.
```

% Create a design object for the prototype filter.
d = fdesign.lowpass(.4,.5,1,80)
d =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80
% Use ellip to design the discrete-time filter in second-order.
% section form, order.
hd=ellip(d)
hd =

```

FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'double'
```

 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 ResetBeforeFiltering: 'on'
 States: [2x4 double]
 NumSamplesProcessed: 0
 % Convert hd to fixed-point and check the impulse response
 hd.arithmetic='fixed';
impz(hd)

```


Purpose Return information about an adaptive, discrete-time, or multirate filter
\[
\text { Syntax } \quad \begin{aligned}
& \mathrm{s}=\operatorname{info}(\mathrm{ha}) \\
& \mathrm{s}=\operatorname{info}(\mathrm{hd}) \\
& \mathrm{s}=\operatorname{info}(\mathrm{hm})
\end{aligned}
\]

Description The next sections describe common info operation with adaptive, discrete-time, and multirate filters.

\section*{Adaptive Filters}
\(s=\) info(ha) returns a string matrix with information about the filter ha.
Generally, info returns more information than the default display for the filter.

\section*{Discrete-Time Filters}
\(s=i n f o(h d)\) returns a string matrix with information about the filter hd.
Generally, info returns more information than the default display for the filter.

\section*{Multirate Filters}
\(\mathrm{s}=\mathrm{info}(\mathrm{hm})\) returns a string matrix with information about the filter hm.
Generally, info returns more information than the default display for the filter.

In all instances, when the filter object uses fixed-point arithmetic, info returns additional information about the filter, including the arithmetic setting and details about the filter internals.
\(\begin{array}{ll}\text { Examples } & \text { Given two filters—hd and hm, use info to learn more about each filter. Here is } \\ \text { hd, a discrete-time direct-form FIR filter }\end{array}\)
hd
hd =
```

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x81 double]
PersistentMemory: false

```

Similarly, here is a multirate CIC filter hm.
hm
hm =

FilterStructure: 'Zero-Latency Cascaded Integrator-Comb Interpolator'

DifferentialDelay: 1
NumberOfSections: 4
InputBitWidth: 16
OutputBitWidth: 16
InterpolationFactor: 10
ResetBeforeFiltering: 'on'
States: [2x4 int32]
NumSamplesProcessed: 0
Now use info to get more details about both filters.
s=info (hd)
\(\mathrm{S}=\)

Discrete-Time FIR Filter (real)
Filter Structure : Direct-Form FIR
Filter Order : 32
Stable : Yes
Linear Phase : Yes (Type 1)
s=info(hm)
\(\mathrm{s}=\)

Discrete-Time FIR Multirate Filter (real)
\begin{tabular}{ll} 
Filter Structure & \(:\) Zero-Latency Cascaded Integrator-Comb \\
Interpolator & \\
Differential Delay & \(: 1\) \\
Number of Stages & \(: 4\) \\
Input Bit Width & \(: 16\) \\
Output Bit Width & \(: 16\) \\
Interpolation Factor & \(: 10\) \\
Filter Order & \(: 36\) \\
Stable & \(:\) Yes \\
Linear Phase & \(:\) Yes (Type 1)
\end{tabular}

If you convert your filter object, such as a dfilt or mfilt, to a fixed-point filter, info returns more information about the ranges provided by the fixed-point formats in the filter. After converting hd to fixed arithmetic, info returns this display:
```

info(hd)
Discrete-Time FIR Filter (real)
Filter Structure : Direct-Form FIR
Filter Length : 81
Stable : Yes
Linear Phase : Yes (Type 1)
Arithmetic : fixed
Numerator : s16,15 -> [-1 1)
Input : s16,15 -> [-1 1)
Filter Internals : Full Precision
Output : s39,30 -> [-256 256) (auto determined)
Product : s32,30 -> [-2 2) (auto determined)
Accumulator : s39,30 -> [-256 256) (auto determined)
Round Mode : No rounding
Overflow Mode : No overflow

```

Similarly, the information displayed for a CIC decimator hm looks like this:
info(hm)
Discrete-Time FIR Multirate Filter (real)
\begin{tabular}{ll} 
Filter Structure & \(:\) Cascaded Integrator-Comb Decimator \\
Decimation Factor & \(: 4\)
\end{tabular}
\begin{tabular}{ll} 
Differential Delay & \(: 1\) \\
Number of Sections & \(: 2\) \\
Stable & \(:\) Yes \\
Linear Phase & \(:\) Yes (Type 1) \\
& \\
Input & \(: s 16,15\) \\
Output & \(:\) s16,12 \\
Filter Internals & \(:\) Minimum Word Lengths \\
Integrator Section 1 & \(:\) s19,15 \\
Integrator Section 2 & \(: s 18,14\) \\
Comb Section 1 & \(: s 18,14\) \\
Comb Section 2 & \(: s 17,13\)
\end{tabular}

See Also coefficients, isfir, isstable, islinphase
dfilt in the Signal Processing Toolbox documentation
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Return the states from a CIC filter as a vector containing the numerator and \\
denominator states for all sections of the filter
\end{tabular} \\
Syntax & \begin{tabular}{l} 
integerstates = int (hm.states)
\end{tabular} \\
Description & \begin{tabular}{l} 
integerstates \(=\) int (hm.states) returns the states of a CIC filter in vector \\
form, rather than as the native filtstates object. An important point about \\
int is that it quantizes the state values to the smallest number of bits possible \\
while maintaining the state values.
\end{tabular} \\
Examples & \begin{tabular}{l} 
For many users, the states of multirate filters are most useful as a vector, but \\
the CIC filters store the states as objects. Here is how you get the states from \\
you CIC filter as a vector.
\end{tabular} \\
See Also & \begin{tabular}{l} 
hm = mfilt.cicdecim(
\end{tabular} \\
filtstates.cic, mfilt.cicdecim, mfilt.cicinterp
\end{tabular}

\section*{Purpose}

\section*{Syntax}

Description

\section*{Examples}

See Also

Purpose Test quantized filters to determine whether they are allpass structures
\begin{tabular}{rl} 
Syntax \(\quad\) & \(f l a g=\) isallpass \((f)\) \\
& \(f l a g=\) isallpass \((f, k)\)
\end{tabular}

Description

See Also
isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable

\section*{Purpose}

\section*{Syntax \\ Description}

\section*{Examples}

See Also

Test quantized filters to see whether they are FIR filters
flag = isfir(hq)
flag \(=\) isfir(hq,k)
flag = isfir(hq) determines whether quantized filter hq is an FIR filter, returning flag equal to 1 when the quantized filter is an FIR filter, and 0 when it is IIR.
flag = isfir(hq, \(k\) ) determines whether the kth-section of quantized filter hq is an FIR filter, returning flag equal to 1 when the \(k\) th-section is an FIR filter and 0 when it is IIR.
isfir (hq) looks at filter hq and determines whether the filter, in transfer function form, has a scalar for its denominator. If it does, it is an FIR filter.
```

hq = dfilt.dffir;
isfir(hq)
ans =

```

1
returns 1 for the status of filter hq; the filter is an FIR structure with denominator reference coefficient equal to one.
isallpass, islinphase, ismaxphase, isminphase, isreal, issos, isstable

\section*{islinphase}

Purpose Test quantized filters to see whether they are linear phase

\section*{Syntax \\ Description}

Examples
```

flag = islinphase(hq)
flag = islinphase(hq,k)

```
flag = islinphase(hq) determines if the quantized filter hq is linear phase, and returns 1 if true and 0 if false.
flag = islinphase (hq, k) determines if the kth-section of the filter hq is a linear phase section and returns 1 if true and 0 if false.

The determination is based on the reference coefficients. A filter has linear phase if it is FIR and its transfer function coefficients are symmetric or antisymmetric. If it is IIR and it has poles on or outside the unit circle and both numerator and denominator are symmetric or antisymmetric, it is linear phase also.

This IIR filter has linear phase.
```

num=[1 0 0 0 0 -1];
den=[1-1];
hq = dfilt.df2(num,den);
islinphase(hq)
ans =
1

```

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable

Purpose
Syntax
Description

Examples

See Also

Test quantized filters to see whether they are maximum phase filters
\[
\begin{aligned}
& \text { flag }=\text { ismaxphase(hq) } \\
& \text { flag }=\text { ismaxphase(hq,k) }
\end{aligned}
\]
flag = ismaxphase (hq) determines whether filter hq is maximum phase, returning 1 if true and 0 if false.
flag = ismaxphase(hq, k ) determines if the kth-section of filter hq is a maximum phase section and returns 1 if true and 0 if false.

The determination is based on the reference coefficients. A filter is maximum phase when the zeros of its transfer function are on or outside the unit circle, or when the numerator is a scalar.
```

hq = dfilt.dffirt;
ismaxphase(hq)

```
returns 1 so this is a maximum phase quantized filter. Notice that the filter coefficients (zeros) are 1.0 before quantization. Compare to isminphase.
isallpass, isfir, islinphase, isminphase, isreal, issos, isstable

\section*{isminphase}

Purpose Test filters to see if they are minimum phase
Syntax \(\quad\)\begin{tabular}{rl} 
flag & \(=\) isminphase \((h q)\) \\
flag & \(=\) isminphase \((h q, k)\)
\end{tabular}

Description

\section*{Examples}

See Also
isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable,

\section*{Purpose}

Test quantized filters for purely real coefficients

\section*{Syntax isreal(hq)}

Description

\section*{Examples}

See Also
\% Create a reference filter.
[b,a] = ellip(2,0.5,20,0.4);
\% Create a quantized filter from the reference filter.
hq = dfilt.df2t(b,a);
hq.arithmetic='fixed'; \% Test if all filter coefficients are real.
\(r=i s r e a l(h q)\)
\(r=\)
1
isfir, islinphase, ismaxphase, isminphase, issos, isstable, isallpass

\section*{Purpose \\ Test whether quantized filters are composed of second-order sections}

\section*{Syntax}
flag = issos(hq)
Description

\section*{Examples}

See Also

9-712
flag \(=\) issos (hq) determines whether quantized filter hq consists of second-order sections. Returns 1 if all sections of quantized filter hq have order less than or equal to two, and 0 otherwise.
```

[b,a] = butter(8,.5);
hd = dfilt.df2(b,a);
hd.arithmetic='fixed';
hdsos = sos(Hd,'up',inf)
issos(hdsos)
v =

```

1

Quantized filter hdsos is in second-order section form.
isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, isstable

Purpose
Test whether a quantized filter is stable
\(r=\) isstable(hq)
\(r=\) isstable(hq,k)

Examples

Description

See Also
\(r=\) isstable (hq) tests quantized filter hq to determine whether its poles are inside the unit circle. If the poles lie on or outside the circle, isstable returns \(r=0\). If the poles are inside the circle, isstable returns \(r=1\).
\(r=\) isstable (hq, k) returns the stability of the kth-section of a multiple section quantized filter. Based on the locations of the poles of the specified section, isstable returns \(r=1\) if the filter section is stable, and 0 otherwise.

To determine the filter stability, isstable checks the quantized filter coefficients. When the poles lie on or inside the unit circle, the quantized filter is stable. FIR filters are stable by design since the defining transfer functions do not have denominator polynomials.

Since filter stability is very important in your design process, use isstable to determine whether your quantized IIR filter is indeed stable:
```

hq = dfilt.df2t;
isstable(hq)
ans =
1

```
isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, issos, zplane

\section*{kaiserwin}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Design digital filters or multirate filters using filter specifications from a filter \\
design object and a Kaiser window
\end{tabular} \\
Syntax & hd = kaiserwin(d)
\end{tabular} Description \begin{tabular}{r} 
hd = kaiserwin(d) designs a digital filter hd, or a multirate filter hm that \\
uses a Kaiser window. For kaiserwin to work, the filter order in the design \\
object must be even. In addition, higher order filters filter order greater \\
than 120) tend to be more accurate for smaller transition widths. kaiserwin \\
returns a warning when your filter order may be too low to design your filter \\
accurately.
\end{tabular}

In this example, kaiserwin uses an interpolating filter design object to implement a multirate filter.
```

d=fdesign.interp(4,'pl,tw',120,0.004)

```

\section*{kaiserwin}
```

d =
ResponseType: [1x46 char]
SpecificationType: 'PL,TW'
Description: {2x1 cell}
InterpolationFactor: 4
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 120
TransitionWidth: 0.0040
hm=kaiserwin(d)
hm =
FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
Numerator: [1x480 double]
InterpolationFactor: 4
ResetBeforeFiltering: 'on'
States: [119x1 double]
NumSamplesProcessed: 0

```

With the polyphase length of 120 you do not see the warning about the filter accuracy. Increasing the transition width tw can also reduce the possible inaccuracies.

FVTool shows clearly the multirate filter hm.

\section*{kaiserwin}


See Also equiripple,firls

\section*{Purpose}

Return the maximum step size that allows an adaptive filter to converge

\section*{Syntax}

\section*{Description}

\section*{Examples}
```

mumax = maxstep(ha,x)
[mumax,mumaxmse] = maxstep(ha,x)

```
mumax \(=\operatorname{maxstep}(h a, x)\) predicts a bound on the step size to provide convergence of the mean values of the adaptive filter coefficients. The columns of the matrix \(x\) contain individual input signal sequences. The signal set is assumed to have zero mean or nearly so.
[mumax, mumaxmse] \(=\operatorname{maxstep}(h a, x)\) predicts a bound on the adaptive filter step size to provide convergence of the LMS adaptive filter coefficients in the mean-square sense. maxstep issues a warning when ha. stepsize is outside of the range \(0<\) ha.stepsize \(<\) mumaxmse \(/ 2\).

Note maxstep is available for the following adaptive filter objects:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
—adaptfilt.nlms (uses a different syntax. Refer to the text below.)
—adaptfilt.se

For adaptfilt.nlms filter objects, maxstep uses a slightly different syntax:
```

mumax = maxstep(ha)
[mumax,mumaxmse] = maxstep(ha)

```

The maximum step size for convergence is fully defined by the filter object ha. Matrix \(x\) is not necessary. If you include an \(x\) input matrix, MATLAB returns an error.

Analyze and simulate a 32-coefficient (31st-order) LMS adaptive filter object. To demonstrate the process, run 2000 iterations and 50 trials.
```

% Specify [numiterations,numexamples] = size(x);
x = zeros(2000,50);
d = x;
ha = fir1(31,0.5); % FIR system to be identified

```
```

for k=1:size(x,2); % Create input and desired response signal
% matrices
% Set the (k)th input to the filter
x(:,k) = filter(sqrt(0.75),[1-0.5],sign(randn(size(x,1),1)));
n = 0.1*randn(size(x,1),1); % (k)th observation noise signal
d(:,k) = filter(ha,1,x(:,k))+n; % (k)th desired signal end
mu = 0.1; % LMS step size
ha = adaptfilt.lms(32,mu);
[mumax,mumaxmse] = maxstep(ha,x);

```

\section*{See Also}
msepred, msesim, filter

\section*{Purpose Construct a multirate filter object}

Syntax \(\quad \mathrm{hm}=\) mfilt.structure (input1, input2, )
Description
hm = mfilt.structure(input1, input2, ) returns the object hm of type structure. As with dfilt and adaptfilt objects, you must include the structure string to construct a multirate filter object. You can, however, construct a default multirate filter object of a given structure by not including input arguments in your calling syntax.

Multirate filters include decimators and interpolators, and fractional decimators and fractional interpolators, meaning the resulting interpolation or decimation factor is not an integer.

\section*{Structures}

Each of the following multirate filter structures has a reference page of its own.
\begin{tabular}{l|l}
\hline Filter Structure String & Description of Resulting Multirate Filter \\
\hline mfilt.cascade & \begin{tabular}{l} 
Cascade multirate filters to form another \\
filter
\end{tabular} \\
\hline mfilt.cicdecim & Cascaded integrator-comb decimator \\
\hline mfilt.cicinterp & Cascaded integrator-comb interpolator \\
\hline mfilt.fftfirinterp & Overlap-add FIR polyphase interpolator \\
\hline mfilt.firdecim & Direct-form FIR polyphase decimator \\
\hline mfilt.firfracdecim & \begin{tabular}{l} 
Direct-form FIR polyphase fractional \\
decimator
\end{tabular} \\
\hline mfilt.firfracinterp & \begin{tabular}{l} 
Direct-form FIR polyphase fractional \\
interpolator
\end{tabular} \\
\hline mfilt.firinterp & Direct-form FIR polyphase interpolator \\
\hline mfilt.firsrc & \begin{tabular}{l} 
Direct-form FIR polyphase sample rate \\
converter
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Filter Structure String & Description of Resulting Multirate Filter \\
\hline mfilt.firtdecim & \begin{tabular}{l} 
Direct-form transposed FIR polyphase \\
decimator
\end{tabular} \\
\hline mfilt.holdinterp & FIR hold interpolator \\
\hline mfilt.linearinterp & FIR Linear interpolator \\
\hline
\end{tabular}

\section*{Examples}

Create an FIR decimator that uses a decimation factor equal to three. In this case, the only input argument needed is m , the decimation factor. Other input arguments are available to you-refer to the reference page for the structure that interests you for more information.
\(\mathrm{m}=3\);
hm=mfilt.firdecim(m)
hm =
FilterStructure: 'Direct-Form FIR Polyphase Decimator'
Numerator: [1x73 double]
DecimationFactor: 3
NumberOfSamplesProcessed: 0
ResetStates: 'on'
States: [72x1 double]
To demonstrate a few of the methods that apply to multirate filters, here are two examples of using hm, your FIR decimator.

Use the Filter Visualization tool to review the magnitude response of your decimator.


Now check to see if your filter is stable.
```

isstable(hm)

```
ans \(=\)
1
Finally, pass a signal through the filter to see if it indeed decimates by three.
```

m = 3;
hm = mfilt.firdecim(m);
fs = 44.1e3;
n = 0:10239;
x = sin(2*pi*1e3/fs*n);

```
\% Decimation factor
\% We use the default filter
\% Original sample freq: 44.1 kHz .
\% 10240 samples, 0.232 second long \% signal
\% Original signal, sinusoid at 1 kHz
```

y = filter(hm,x); % 5120 samples, still 0.232 seconds
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1kHz
hold on % Plot decimated signal (22.05kHz) in red
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```

Here is the stem plot that shows the result of the decimation process.

\(\mathrm{hm}=\)
```

FilterStructure: 'Direct-Form FIR Polyphase Decimator'
Numerator: [1x73 double]
DecimationFactor: 3
PersistentMemory: 'on'
States: [72x1 double]

```

Notice that the filter processed 10239 samples with 1 nonprocessed sample whose value is 0.8963 . One nonprocessed sample results from dividing the number of samples, 10240 , by the decimation factor, 3 , to get 3413 output samples and one left over.

See Also
mfilt.firfracdecim, mfilt.firfracinterp, mfilt.firinterp, mfilt.firsrc, mfilt.firtdecim

\section*{mfilt.cascade}

\section*{Purpose Cascade one or more dfilt and mfilt objects into a filter}
```

Syntax hm = cascade(hm1,hm2,...,hmn)

```

Description \(\quad \mathrm{hm}=\) cascade \((\mathrm{hm} 1, \mathrm{hm} 2, \ldots, \mathrm{hmn})\) creates filter object hm by cascading (connecting in series) the individual filter objects hm1, hm2, and so on to hmn.

In block diagram form, the cascade looks like this, with x as the input to the filter hm and y the output from the cascade filter hm :


\section*{Examples}

Create a variety of mfilt objects and cascade them together.
```

hm(1) = mfilt.firdecim(12);
hm(2) = mfilt.firdecim(4);
h1 = mfilt.cascade(hm(1),hm(2));
hm(3) = mfilt.firinterp(4);
hm(4) = mfilt.firinterp(12);
h2 = mfilt.cascade(hm(3),hm(4));

```

Now cascade h1 and h2 together to get another multirate filter.
```

h3 = mfilt.cascade(h1,h2,9600);

```

\section*{See Also}
dfilt.cascade in your Signal Processing Toolbox documentation

Purpose
Construct a fixed-point cascaded integrator-comb decimation filter object
\[
\text { Syntax } \quad h m=m f i l t . c i c d e c i m(r, m, n, i w l, o w l, w l p s)
\]

Description
hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps) returns a cascaded integrator-comb (CIC) decimation filter object. All of the input arguments are optional. When you omit one or more input options, the object applies default values for the omitted input argument as shown in the next table.

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Arguments & Description \\
\hline\(r\) & \begin{tabular}{l} 
Decimation factor applied to the input signal. \\
Sharpens the response curve to let you change \\
the shape of the response. Default value is 2.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l} 
Differential delay. Changes both the shape and \\
number of nulls in the filter response. Also affects \\
the null locations. Increasing m increases the \\
number and sharpness of the nulls and response \\
between nulls. Generally, one or two work best as \\
values for m. Default is 1.
\end{tabular} \\
\hline n & \begin{tabular}{l} 
Number of sections. Deepens the nulls in the \\
response curve. Note that this is the number of \\
either comb or integrator sections, not the total \\
section count. 2 is the default value.
\end{tabular} \\
\hline iwl & \begin{tabular}{l} 
Word length of the input signal. Use any integer \\
number of bits. The default value is 16 bits.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Arguments & Description \\
\hline owl & \begin{tabular}{l} 
Word length of the output signal. It can be any \\
positive integer number of bits. By default, owl is \\
16 bits.
\end{tabular} \\
\hline wlps & \begin{tabular}{l} 
Defines the number of bits per word in each filter \\
section while accumulating the data in the \\
integrator sections or while subtracting the data \\
during the comb sections (using 'wrap' \\
arithmetic). Enter wlps as a scalar or vector of \\
length \(2 * n, ~ w h e r e ~\) \\
\(n\)
\end{tabular} \\
When wlps is a scalar, the scalar value is applied \\
to each filter section. The default is 16 for each \\
section in the decimator.
\end{tabular}

\section*{Constraints and Word Length Considerations}

CIC decimators have the following constraint-the word lengths of the filter section must be monotonically decreasing. The word length of each filter section must be the same size as, or smaller than, the word length of the previous filter section.

The formula for \(B_{\text {max }}\), the most significant bit at the filter output, is given in the Hogenauer paper in the References below.
\[
B_{\max }=\left(N \log _{2} R M+B_{i n}-1\right)
\]
where \(B_{\text {in }}\) is the number of bits of the input.
The cast operations shown in the diagram in "Algorithm" on page 9-737perform the changes between the word lengths of each section. When you specify word lengths that do not follow the constraints above, the constructor returns an error.

When you specify the word lengths correctly, the most significant bit \(B_{\text {max }}\) stays the same throughout the filter, while the word length of each section either decreases or stays the same. This can cause the fraction length to change throughout the filter as least significant bits are truncated to decrease the word length, as shown in "Algorithm" on page 9-737.

\section*{Properties of the Object}

Objects have properties that control the way the object behaves. This table lists all the properties for the filter, with a description of each.
\begin{tabular}{l|l|ll}
\hline Name & Values & Default & Description \\
\hline Arithmetic & fixed & fixed & \begin{tabular}{l} 
Reports the kind of \\
arithmetic the filter uses. \\
CIC decimators are always \\
fixed-point filters.
\end{tabular} \\
\hline DecimationFactor & Any positive integer & 2 & \begin{tabular}{l} 
Amount to reduce the input \\
sampling rate.
\end{tabular} \\
\hline DifferentialDelay & Any integer & 1 & \begin{tabular}{l} 
Sets the differential delay \\
for the filter. Usually a \\
value of one or two is \\
appropriate.
\end{tabular} \\
\hline FilterStructure & mfilt structure & None & \begin{tabular}{l} 
Reports the type of filter \\
string \\
propert. You cannot set this is always read \\
only and results from your \\
choice of mfilt objects.
\end{tabular} \\
\hline InputFracLength & Any positive integer & 15 & \begin{tabular}{l} 
The number of bits applied \\
to the fraction length to \\
interpret the input data to \\
the filter.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline InputOffset & \(0->\mathrm{r}\). & 0 & Indicates the length of the output signal given the length of the input signal. InputOffset starts at zero and cycles through the phases as follows for each input sample:
\[
0->r->(r-1)->(r-2)->(r-p)->0
\] where \(p=r-1\). \\
\hline InputWordLength & Any positive integer & 16 & The number of bits applied to the word length to interpret the input data to the filter. \\
\hline NumSamplesProcessed (not part of the default display) & Any integer & 0 & Returns the number of samples processed during filtering. Use get to see this property. When PersistentMemory is false, this value resets to zero each time you use the filter, even in a loop. To accumulate the total number of samples processed for all the times you use the filter, set PersistentMemory to true. \\
\hline NumberOfSections & Any positive integer & 2 & Number of sections used in the decimator. Generally called \(n\). Reflects either the number of decimator or comb sections, not the total number of sections in the filter. \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l|l}\hline \text { Name } & \text { Values } & \text { Default } & \begin{array}{l}\text { Description }\end{array} \\ \hline \text { OutputFracLength } & \text { Any positive integer } & 15 & \begin{array}{l}\text { The number of bits applied } \\ \text { to the fraction length to } \\ \text { interpret the output data } \\ \text { from the filter. Read-only. }\end{array} \\ \hline \text { OutputWordLength } & \text { Any positive integer } & \text { 16 } & \begin{array}{l}\text { The number of bits applied } \\ \text { to the word length to } \\ \text { interpret the output data } \\ \text { from the filter. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \text { false } & \begin{array}{l}\text { Determines whether the } \\ \text { filter states get restored to } \\ \text { their starting values for } \\ \text { each filtering operation. } \\ \text { The starting values are the } \\ \text { values in place when you } \\ \text { create the filter if you have } \\ \text { not changed the filter since }\end{array} \\ \text { you constructed it. }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline SectionWordLengths & Any integer or a vector of length \(2^{*}\) n. & 16 & Defines the bits per section used while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using 'wrap' arithmetic). Enter SectionWordLengths as a scalar or vector of length \(2^{*} \mathrm{n}\), where n is the number of sections. When SectionWordLengths is a scalar, the scalar value is applied to each filter section. When SectionWordLengths is a vector of values, the values apply to the sections in order. The default is 16 for each section in the decimator. Available when SectionWordLengthMode is SpecifyWordLengths. \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|ll}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { SectionWordLengthMode } & \begin{array}{ll}\text { MinWordLengths or } \\ \text { SpecifyWordLengths }\end{array} & \text { MinWordLength } & \begin{array}{l}\text { Determines whether the } \\ \text { filter object sets the section } \\ \text { word lengths or you provide } \\ \text { the word lengths explicitly. } \\ \text { By default, the filter uses } \\ \text { the input and output word } \\ \text { lengths in the command to } \\ \text { determine the optimal word } \\ \text { lengths for each section, } \\ \text { according to the } \\ \text { information in [1]. When } \\ \text { you choose }\end{array} \\ & & & \begin{array}{l}\text { SpecifyWordLengths, you } \\ \text { provide the word length for } \\ \text { each section. In addition, } \\ \text { choosing }\end{array} \\ \text { SpecifyWordLengths } \\ \text { exposes the }\end{array}\right\}\)
\(\left.\begin{array}{l|l|ll}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { States } & \text { filtstates.cic } \\ \text { object }\end{array} \quad \begin{array}{l}\text { m+1-by-n } \\ \text { matrix of } \\ \text { zeros, after } \\ \text { you call } \\ \text { function int. }\end{array} \begin{array}{l}\text { Stored conditions for the } \\ \text { filter, including values for } \\ \text { the integrator and comb } \\ \text { sections before and after } \\ \text { filtering. mis the } \\ \text { differential delay of the } \\ \text { comb section and } n \text { is the } \\ \text { number of sections in the } \\ \text { filter. The integrator states } \\ \text { are stored in the first } \\ \text { matrix row. States for the } \\ \text { comb section fill the } \\ \text { remaining rows in the } \\ \text { matrix. Available for } \\ \text { modification when }\end{array}\right\}\)

\section*{About the States of the Filter}

In the states property you find the states for both the integrator and comb portions of the filter. states is a matrix of dimensions \(\mathrm{m}+1\)-by-n, with the states apportioned as follows:
- States for the integrator portion of the filter are stored in the first row of the state matrix.
- States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, use int to assign the states to a variable in MATLAB. As an example, here are the states for a CIC decimator hm before and after filtering a data set.
```

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicdecim(2,1,2,16,16,16);

```
```

sts=int(hm.states)
sts =
0 0
0
set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)
sts=int(hm.states)
sts =
10
4 5
28 13

```

STS is an integer matrix that int returns from the contents of the filtstates.cic object in `.

\section*{Design Considerations}

When you design your CIC decimation filter, remember the following general points:
- The filter output spectrum has nulls at \(\omega=k * 2 \pi / \mathrm{rm}\) radians, \(k=1,2,3 \ldots\).
- Aliasing and imaging occur in the vicinity of the nulls.
- \(n\), the number of sections in the filter, determines the passband attenuation. Increasing n improves the filter ability to reject aliasing and imaging, but it also increases the droop (or rolloff) in the filter passband. Using an appropriate FIR filter in series after the CIC decimation filter can help you compensate for the induced droop.
- The DC gain for the filter is a function of the decimation factor. Raising the decimation factor increases the DC gain.

\section*{Examples}

This example applies a decimation factor \(r\) equal to 8 to a 160 -point impulse signal. The signal output from the filter has \(160 / r\), or 20 , points or samples. Choosing 10 bits for the word length represents a fairly common setting for
analog to digital converters. The plot shown after the code presents the stem plot of the decimated signal, with 20 samples remaining after decimation:
```

m = 2; % Differential delays in the filter.
n = 4; % Filter sections
r=8 % Decimation factor
x = int16(zeros(160,1)); x(1) = 1; % Create a 160-point
% impulse signal.
hm = mfilt.cicdecim(r,m,n); % Expects 16-bit input by default.
y = filter(hm,x);
stem(double(y)); % Plot the output as ...
% a stem plot.
xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');

```


The next example demonstrates one way to compute the filter frequency response, using a 4 -section decimation filter with the decimation factor set to 7 :
```

hm = mfilt.cicdecim(7,1,4);
fvtool(hm)

```

FVTool provides ways for you to change the title and x labels to match the figure shown. Here's the frequency response plot for the filter. For details about the transfer function used to produce the frequency response, refer to [1] in the References section.


This final example demonstrates the decimator for converting from 44.1 kHz audio to 22.05 kHz -decimation by two. To overlay the before and after signals, scale the output and plot the signals on a stem plot.
```

r = 2; % Decimation factor.

```
```

hm = mfilt.cicdecim(r); % Use default NumberOfSections \&
% DifferentialDelay.
fs = 44.1e3; % Original sample freq: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n);% Original signal, sinusoid at 1kHz.
% Scale input to use the full dynamic range of the int16 data type.
x = int16((2^15-1)*x/gain(hm));
y_int = filter(hm,x); % 5120 samples, still 0.232 seconds.
% Scale the input and output to overlay plots.
x = double(x); x = x/max(abs(x));
y = double(y_int); y = y/max(abs(y));
stem(n(1:44)/fs,x(2:45)); hold on; % Plot original signal
% sampled at 44.1kHz.
stem(n(1:22)/(fs/r),y(3:24),'r','filled'); % Plot decimated
% signal (22.05kHz)
% in red.
xlabel('Time (seconds)');ylabel('Signal Value');

```


Algorithm
To show how the CIC decimation filter is constructed, the following figure presents a block diagram of the filter structure for a two-section CIC decimation filter \((\mathrm{n}=2)\). \(f s\) is the high sampling rate, the input to the decimation process.

For details about the bits that are removed in the Comb section, refer to [1] in References.

\section*{mfilt.cicdecim}


The word length and fraction length at each section of the decimator are shown in the following table. Either you specify the word length for each filter section in the SectionWordLengths property as a vector of integers, or you let the filter constructor set the word lengths by making MinWordLengths the value for SectionWordLengthMode. The calculation for each fraction length is shown below:

Decimator Word Lengths and Fraction Lengths
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
Position in the \\
Signal Flow
\end{tabular} & Word Length & \multicolumn{1}{c}{ Fraction Length } \\
\hline Filter Input & InputWL & InputFL \\
\hline \(1^{\text {st }}\) section output & sectionOneWL & InputFL \\
\hline \(2^{\text {nd }}\) section output & sectionTwoWL & InputFL + (sectionTwoWL - sectionOneWL) \\
\hline \(3^{\text {rd }}\) section output & sectionThreeWL & \begin{tabular}{l} 
sectionTwoFL \(+(\) sectionThreeWL - \\
sectionTwoWL)
\end{tabular} \\
\hline \(4^{\text {th }}\) section output & sectionFourWL & \begin{tabular}{l} 
sectionThreeFL + (sectionFourWL - \\
sectionThreeWL)
\end{tabular} \\
\hline \(\mathrm{N}^{\text {th }}\) section output & section(N)WL & \begin{tabular}{l} 
section(N-1)FL + (section(N)WL - \\
section(N-1)WL)
\end{tabular} \\
\hline Filter Output & OutputWL & \begin{tabular}{l} 
FinalsectionFL + (OutputWL - \\
FinalsectionWL)
\end{tabular} \\
\hline
\end{tabular}

See Also
mfilt, mfilt.cicinterp
References
[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981
[2] Meyer-Baese, Uwe, "Hogenauer CIC Filters," in Digital Signal Processing with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

\section*{mfilt.cicinterp}

Purpose Construct a fixed-point cascaded integrator-comb interpolation filter object
\[
\text { Syntax } \quad h m=\text { mfilt.cicinterp }(r, m, n, i l w, o w l, w l p s)
\]

Description
hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps) constructs a cascaded integrator-comb (CIC) interpolation filter object that uses fixed-point arithmetic. All of the input arguments are optional. When you omit one or more input options, the omitted option applies default values shown in the table below.

The following table describes the input arguments for creating hm .
\begin{tabular}{ll}
\hline Input Arguments & Description \\
\hline\(r\) & \begin{tabular}{l} 
Interpolation factor applied to the input signal. \\
Sharpens the response curve to let you change \\
the shape of the response. 2 is the default value.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l} 
Differential delay. Changes both the shape and \\
number of nulls in the filter response. Also affects \\
the null locations. Increasing m increases the \\
number and sharpness of the nulls and response \\
between nulls. Generally, one or two work as \\
values for m. 1 is the default.
\end{tabular} \\
\hline n & \begin{tabular}{l} 
Number of sections. Deepens the nulls in the \\
response curve. Note that this is the number of \\
either comb or integrator sections, not the total \\
section count. By default, the filter has two \\
sections.
\end{tabular} \\
\hline iwl & \begin{tabular}{l} 
Word length of the input signal. Use any integer \\
number of bits. The default value is 16 bits.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Arguments & Description \\
\hline owl & \begin{tabular}{l} 
Word length of the output signal. It can be any \\
positive integer number of bits. By default, owl is \\
16 bits.
\end{tabular} \\
\hline wlps & \begin{tabular}{l} 
Defines the number of bits per word in each filter \\
section while accumulating the data in the \\
integrator sections or while subtracting the data \\
during the comb sections (using 'wrap' \\
arithmetic). Enter wlps as a scalar or vector of \\
length \(2^{*}\) n, where n is the number of sections. \\
When wlps is a scalar, the scalar value is applied \\
to each filter section. The default is 16 for each \\
section in the integrator.
\end{tabular} \\
& \begin{tabular}{l} 
When you elect to specify wlps as an input \\
argument, the SectionWordLengthMode property \\
automatically switches from the default value of \\
MinWordLengths to SpecifyWordLengths.
\end{tabular} \\
\hline
\end{tabular}

\section*{Constraints and Conversions}

In Hogenauer [1], the author describes the constraints on CIC interpolator filters. mfilt.cicinterp enforces a constraint-the word lengths of the filter sections must be nondecreasing. That is, the word length of each filter section must be the same size as, or greater than, the word length of the previous filter section.

The formula for \(W_{j}\), the minimum register width, is derived in [1]. The formula for \(W_{j}\) is given by
\[
W_{j}=\operatorname{ceil}\left(B_{i n}+\log _{2} G_{j}\right)
\]
where \(G_{j}\), the maximum register growth up to the \(j\) th section, is given by
\[
G_{j}= \begin{cases}2^{j}, & j=1,2, \ldots, N \\ \frac{2^{2 N-j}(R M)^{j-N}}{R}, & j=N+1, \ldots, 2 N\end{cases}
\]

\section*{mfilt.cicinterp}

When the differential delay, \(M\), is 1 , there is also a special condition for the register width of the last comb, \(W_{N}\), that is given by
\[
W_{N}=B_{i n}+N-1 \quad \text { if } M=1
\]

The conversions denoted by the cast blocks in the integrator diagrams in "Algorithm" on page 9-751 perform the changes between the word lengths of each section. When you specify word lengths that do not follow the constraints described in this section, mfilt.cicinterp returns an error.

The fraction lengths and scalings of the filter sections do not change. At each section the word length is either staying the same or increasing. The signal scaling can change at the output after the final filter section if you choose the output word length to be less than the word length of the final filter section.

\section*{Properties of the Object}

Objects have properties that control the way the object behaves. This table lists all the properties for the filter, with a description of each.
\begin{tabular}{l|l|ll}
\hline Name & Values & Default & Description \\
\hline Arithmetic & fixed & fixed & \begin{tabular}{l} 
Reports the kind of \\
arithmetic the filter uses. \\
CIC interpolators are \\
always fixed-point filters.
\end{tabular} \\
\hline InterpolationFactor & Any positive integer & 2 & \begin{tabular}{l} 
Amount to increase the \\
input sampling rate.
\end{tabular} \\
\hline DifferentialDelay & Any integer & 1 & \begin{tabular}{l} 
Sets the differential delay \\
for the filter. Usually a \\
value of one or two is \\
appropriate.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l|l}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { FilterStructure } & \begin{array}{l}\text { mfilt structure } \\ \text { string }\end{array} & \text { None } & \begin{array}{l}\text { Reports the type of filter } \\ \text { object, such as a } \\ \text { interpolator or fractional } \\ \text { integrator. You cannot set } \\ \text { this property-it is always } \\ \text { read only and results from } \\ \text { your choice of mfilt objects. }\end{array} \\ \hline \text { InputFracLength } & \text { Any positive integer } & 16 & \begin{array}{l}\text { The number of bits applied } \\ \text { as the fraction length to } \\ \text { interpret the input data to } \\ \text { the filter. }\end{array} \\ \hline \text { InputWordLength } & \text { Any positive integer } & 16 & \begin{array}{l}\text { The number of bits applied } \\ \text { to the word length to } \\ \text { interpret the input data to } \\ \text { the filter. }\end{array} \\ \hline \text { NumSamplesProcessed } & \text { Any integer } & 0 & \begin{array}{l}\text { Returns the number of } \\ \text { samples processed during } \\ \text { filtering. When } \\ \text { PersistentMemory is } \\ \text { false, this value resets to } \\ \text { zero each time you use the } \\ \text { filter, even in a loop. To }\end{array} \\ \text { accumulate the total }\end{array}\right\}\)

\section*{mfilt.cicinterp}
\begin{tabular}{l|l|l|l}
\hline Name & Values & Default & Description \\
\hline NumberOfSections & Any positive integer & 2 & \begin{tabular}{l} 
Number of sections used in \\
the interpolator. Generally \\
called n. Reflects either the \\
number of interpolator or \\
comb sections, not the total \\
number of sections in the \\
filter.
\end{tabular} \\
\hline OutputFracLength & Any positive integer & 15 & \begin{tabular}{l} 
The number of bits applied \\
to the fraction length to \\
interpret the output data \\
from the filter. Read-only.
\end{tabular} \\
\hline OutputWordLength & Any positive integer & 16 & \begin{tabular}{l} 
The number of bits applied \\
to the word length to \\
interpret the output data \\
from the filter.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Default } \\ \hline \text { PersistentMemory } & \text { false or true } & \text { false } \\ & & \begin{array}{l}\text { Description }\end{array} \\ & & \begin{array}{l}\text { Determines whether the } \\ \text { filter states get restored to } \\ \text { their starting values for } \\ \text { each filtering operation. } \\ \text { The starting values are the } \\ \text { values in place when you } \\ \text { create the filter if you have } \\ \text { not changed the filter since } \\ \text { you constructed it. } \\ \text { PersistentMemory returns } \\ \text { to zero any state that the } \\ \text { filter changes during } \\ \text { processing. States that the }\end{array} \\ \text { filter does not change are } \\ \text { not affected. When }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline SectionWordLengths & Any integer or a vector of length \(2 * \mathrm{n}\). & 16 & Defines the bits per section used while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using 'wrap' arithmetic). Enter SectionWordLengths as a scalar or vector of length \(2^{*} n\), where \(n\) is the number of sections. When SectionWordLengths is a scalar, the scalar value is applied to each filter section. When SectionWordLengths is a vector of values, the values apply to the sections in order. The default is 16 for each section in the interpolator. Available when SectionWordLengthMode is SpecifyWordLengths. \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Default } \\ \hline \text { SectionWordLengthMode } & \begin{array}{l}\text { MinWordLengths or } \\ \text { SpecifyWordLengths }\end{array} & \text { MinWordLength } \\ & & \begin{array}{l}\text { Description } \\ \text { Determines whether the } \\ \text { filter object sets the section } \\ \text { word lengths or you provide } \\ \text { the word lengths explicitly. } \\ \text { By default, the filter uses } \\ \text { the input and output word } \\ \text { lengths in the command to } \\ \text { determine the proper word } \\ \text { lengths for each section, } \\ \text { according to the } \\ \text { information in [1]. When } \\ \text { you choose }\end{array} \\ \text { SpecifyWordLengths, you } \\ \text { provide the word length for } \\ \text { each section. In addition, } \\ \text { choosing } \\ \text { SpecifyWordLengths } \\ \text { exposes the }\end{array}\right\}\)
\(\left.\left.\begin{array}{l|l|ll}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { States } & \begin{array}{l}\text { filtstates.cic } \\ \text { object }\end{array} & \begin{array}{l}\text { m+1-by-n } \\ \text { matrix of } \\ \text { zeros, after } \\ \text { you call } \\ \text { function int. }\end{array} & \begin{array}{l}\text { Stored conditions for the } \\ \text { filter, including values for } \\ \text { the integrator and comb } \\ \text { sections before and after } \\ \text { filtering. } m \\ \text { differential the delay of the } \\ \text { comb section and } n \text { is the } \\ \text { number of sections in the } \\ \text { filter. The integrator states } \\ \text { are stored in the first } \\ \text { matrix row. States for the } \\ \text { comb section fill the } \\ \text { remaining rows in the } \\ \text { matrix. Available for }\end{array} \\ \text { modification when }\end{array}\right\} \begin{array}{l}\text { PersistentMemory is true. } \\ \text { Refer to the filtstates } \\ \text { object in the Signal }\end{array}\right\}\)

\section*{About the States of the Filter}

In the states property you find the states for both the integrator and comb portions of the filter. states is a matrix of dimensions \(\mathrm{m}+1\)-by-n, with the states apportioned as follows:
- States for the integrator portion of the filter are stored in the first row of the state matrix.
- States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, or any filter object states, use int to assign the states to a variable in MATLAB. As an example, here are the states for a CIC interpolator hm before and after filtering a data set.
```

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicinterp(2,1,2,16,16,16);

```
```

sts=int(hm.states)
sts =
0 0
0
set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)
sts=int(hm.states)
sts =
10 45
28 13

```

\section*{Design Considerations}

When you design your CIC interpolation filter, remember the following general points:
- The filter output spectrum has nulls at \(\omega=k * 2 \pi / \mathrm{rm}\) radians, \(k=1,2,3 \ldots\)
- Aliasing and imaging occur in the vicinity of the nulls.
- \(n\), the number of sections in the filter, determines the passband attenuation. Increasing \(n\) improves the filter ability to reject aliasing and imaging, but it also increases the droop or rolloff in the filter passband. Using an appropriate FIR filter in series after the CIC interpolation filter can help you compensate for the induced droop.
- The DC gain for the filter is a function of the interpolation factor. Raising the interpolation factor increases the DC gain.

\section*{Examples}

Demonstrate interpolation by a factor of two, in this case from 22.05 kHz to 44.1 kHz . Note the scaling required to see the results in the stem plot and to use the full range of the int16 data type.
```

R = 2; % Interpolation factor
hm = mfilt.cicinterp(R); % Use default NumberOfSections and
% DifferentialDelay
fs = 22.05e3; %Original sample freq:22.05 kHz.

```
```

n = 0:5119; % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
% Scale input to use the full dynamic range of the INT16 data type
x = int16((2^15-1)*x/gain(hm));
y_int = filter(hm,x); % 5120 samples, still 0.232 seconds
% Scale the input and output to overlay plots
x = double(x); x = x/max(abs(x));
y = double(y_int); y = y/max(abs(y));
stem(n(1:22)/fs,x(1:22),'filled'); % Plot original signal sampled
% at 22.05 kHz
hold on;
stem(n(1:44)/(fs*R),y(4:47),'r'); % Plot interpolated signal
% (44.1 kHz) in red
xlabel('Time (sec)');ylabel('Signal Value');

```

As you expect, the plot shows that the interpolated signal matches the input sine shape, with additional samples between each original sample.


Use the filter visualization tool (FVTool) to plot the response of the interpolator object. For example, to plot the response of an interpolator with an interpolation factor of 7,4 sections, and 1 differential delay, do something like the following:
```

hm = mfilt.cicinterp(7,1,4)
fvtool(hm)

```

Algorithm
To show how the CIC interpolation filter is constructed, the following figure presents a block diagram of the filter structure for a two-section CIC interpolation filter \((\mathrm{n}=2)\). \(f s\) is the high sampling rate, the output from the interpolation process.

For details about the bits that are removed in the integrator section, refer to [1] in References.

\section*{mfilt.cicinterp}


OutputFormat: [OutWL inFL+(OutWL-WLPS (2N))]
The word length and fraction length at each section of the interpolator are shown in the following table. When you select SpecifyWordLengths for the SectionWordLengthMode, you specify the word length for each filter stage in the SectionWordLengths property. When you select MinWordLengths, the filter section word lengths are automatically set to the minimum number of bits possible in a valid CIC interpolator, in accordance with the formula for \(W_{j}\) in Constraints and Conversions below. The calculation for each fraction length is shown below:

Interpolator Word Lengths and Fraction Lengths
\begin{tabular}{l|l|l}
\hline & Word Length & \multicolumn{1}{c}{ Fraction Length } \\
\hline Filter Input & InputWL & InputFL \\
\hline \(1^{\text {st }}\) Section Output & SectionOneWL & InputFL \\
\hline \(\mathrm{N}^{\text {th }}\) Section Output & Section(N)WL & InputFL \\
\hline Filter Output & OutputWL & InputFL + (OutputWL - FinalsectionWL) \\
\hline
\end{tabular}

\section*{References}
[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981
[2] Meyer-Baese, Uwe, "Hogenauer CIC Filters," in Digital Signal Processing with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

Purpose
Construct a an overlap-add FIR polyphase interpolator filter object
Syntax \(\quad h m=m f i l t . f f t f i r i n t e r p(l, n u m, b l)\)
Description
hm = mfilt.fftfirinterp(l, num, bl) returns a discrete-time FIR filter
object that uses the overlap-add method for filtering input data.

The number of FFT points is given by [bl+ceil(length(num)/l)-1]. It is to your advantage to choose bl such that the number of FFT points is a power of two-using powers of two can improve the efficiency of the FFT and the associated interpolation process.

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l} 
Interpolation factor for the filter. l specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, fftfirinterp uses a lowpass Nyquist \\
filter with gain equal to l and cutoff frequency equal to \\
\(\pi / l\) by default.
\end{tabular} \\
\hline bl & \begin{tabular}{l} 
Length of each block of input data used in the filtering. \\
bl must be an integer. When you omit input bl, it \\
defaults to 100
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.ffffirinterp Object Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for
creating mfilt.fftfirinterp objects. The next table describes each property for an mfilt.fftfirinterp filter object.
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterStructure } & \begin{array}{l}\text { Reports the type of filter object. } \\ \text { You cannot set this property-it } \\ \text { is always read only and results } \\ \text { from your choice of mfilt object. }\end{array} \\ \hline \text { Numerator } & \begin{array}{l}\text { Vector containing the } \\ \text { coefficients of the FIR lowpass } \\ \text { filter used for interpolation. }\end{array} \\ \hline \text { InterpolationFactor } & & \begin{array}{l}\text { Interpolation factor for the filter. } \\ \text { It specifies the amount to } \\ \text { increase the input sampling } \\ \text { rate. It must be an integer. }\end{array} \\ \hline \text { BlockLength } & \begin{array}{l}\text { Length of each block of input } \\ \text { data used in the filtering. }\end{array} \\ \hline \text { PersistentMemory } & \begin{array}{l}\text { false or } \\ \text { true }\end{array} & \begin{array}{l}\text { Determines whether the filter } \\ \text { states are restored to their } \\ \text { starting values for each filtering } \\ \text { operation. The starting values }\end{array} \\ \text { are the values in place when you } \\ \text { create the filter if you have not } \\ \text { changed the filter since you } \\ \text { constructed it. } \\ \text { PersistentMemory returns to } \\ \text { zero any state that the filter } \\ \text { changes during processing. } \\ \text { States that the filter does not } \\ \text { change are not affected. }\end{array}\right\}\)

\title{
mfilt.fftfirinterp
}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline States & & \begin{tabular}{l} 
Stored conditions for the filter, \\
including values for the \\
interpolator states.
\end{tabular} \\
\hline NumSamplesProcessed & \begin{tabular}{l} 
Returns the number of samples \\
processed during filtering. As a \\
check, the number of samples \\
reported processed plus the \\
number of nonprocessed \\
samples should be the total \\
number of input samples.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Interpolation by a factor of 8 . Notice that this object removes the spectral replicas in the signal after interpolation.
```

l = 8; % Interpolation factor
hm = mfilt.fftfirinterp(l); % We use the default filter
n = 8192; % Number of points
hm.blocklength = n; % Set block length to number of points
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:n-1; %0.1858 secs of data
x = sin(2*pi*n*22e3/fs); %Original signal, sinusoid at 22 kHz
y = filter(hm,x); % Interpolated sinusoid
xu = l*upsample(x,8); % Upsample to compare--the spectrum
% does not change
[px,f]=periodogram(xu,[],65536,1*fs);% Power spectrum of original
% signal
[py,f]=periodogram(y,[],65536,l*fs); % Power spectrum of
% interpolated signal
plot(f,10*log10(([fs*px,l*fs*py])))
legend('22 kHz sinusoid sampled at 44.1 kHz',...
'22 kHz sinusoid sampled at 352.8 kHz')
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');

```

To see the results of the example, look at this figure.


\section*{See Also}
mfilt.firinterp, mfilt.holdinterp, mfilt.linearinterp, mfilt.firfracinterp, mfilt.cicinterp
Purpose

Construct floating-point or fixed-point direct-form FIR polyphase decimatorSyntax
hm = mfilt.firdecim(m)
hm = mfilt.firdecim(m,num)

\section*{Description} filters
Syntax
hm = mfilt.firdecim(m)
hm = mfilt.firdecim(m,num)
hm = mfilt.firdecim(m) returns a direct-form FIR polyphase decimator object hm with a decimation factor of m . A lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / \mathrm{m}\) is designed by default.
\(h m=m f i l t . f i r d e c i m(m, n u m)\) uses the coefficients specified by num for the decimation filter. This lets you specify more completely the FIR filter to use for the decimator.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

\section*{Input Arguments}
The following table describes the input arguments for creating hm.

\section*{mfilt.firdecim}
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline m & \begin{tabular}{l} 
Decimation factor for the filter. m specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for m it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for decimation. When num is not provided as \\
an input, mfilt.firdecim constructs a lowpass Nyquist \\
filter with gain of 1 and cutoff frequency equal to \(\pi / \mathrm{m}\) \\
by default. The default length for the Nyquist filter is \\
\(24^{*} \mathrm{~m}\). Therefore, each polyphase filter component has \\
length 24.
\end{tabular}
\end{tabular}

\section*{Object Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firdecim objects. The next table describes each property for an mfilt.firdecim filter object.
\begin{tabular}{lll}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Defines the arithmetic the filter \\
uses. Gives you the options \\
double, single, and fixed. In \\
short, this property defines the \\
operation mode for your filter.
\end{tabular} \\
\hline DecimationFactor & Integer & \begin{tabular}{l} 
Decimation factor for the filter. \\
m specifies the amount to reduce \\
the sampling rate of the input \\
signal. It must be an integer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline FilterStructure & String & Reports the type of filter object. You cannot set this property-it is always read only and results from your choice of mfilt object. Describes the signal flow for the filter object. \\
\hline InputOffset & Integers & Contains a value derived from the number of input samples and the decimation factorInputOffset \(=\bmod (\) length \((n x), m)\) where \(n x\) is the number of input samples that have been processed so far and \(m\) is the decimation factor. \\
\hline Numerator & Vector & Vector containing the coefficients of the FIR lowpass filter used for decimation. \\
\hline PersistentMemory & false, true & \begin{tabular}{l}
Determines whether the filter states get restored to zeros for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. \\
PersistentMemory set to false returns filter states to the default values after filtering. States that the filter does not change are not affected. Setting this to true allows you to modify the States, InputOffset, and PolyphaseAccum properties.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\
\hline \text { PolyphaseAccum } & 0 \text { in } & \begin{array}{l}\text { Differentiates between the } \\
\text { adders in the filter that work in } \\
\text { double, } \\
\text { single, or } \\
\text { full precision at all times } \\
\text { (PolyphaseAccum) and the }\end{array} \\
& \text { fixed for } & \begin{array}{l}\text { adders in the filter that the user } \\
\text { controls and that may introduce }\end{array} \\
& \text { the } & \text { different } \\
& \text { filter } & \text { quantization effects when } \\
& \text { arithmetic } & \text { Filter Internals is set to }\end{array}\right\}\)\begin{tabular}{l} 
SpecifyPrecision.
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the filter. You see one or more of these properties when you set Arithmetic to fixed. Notice that some of the properties have different default values when they refer fixed point filters. One example is the property PolyphaseAccum which stores data as doubles when you use your filter in double-precision mode, but stores a fi object in fixed-point mode.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 8-122.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length used to \\
interpret data output by the accumulator. \\
This is a property of FIR filters.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Any integer \\
number of bits [39]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to store data in \\
the accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l} 
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l} 
Setting this to fixed allows you to modify \\
other filter properties to customize your \\
fixed-point filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to \\
represent filter coefficients without \\
overflowing. Turning this off by setting the \\
value to false enables you to change the \\
NumFracLength property value to specify the \\
precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l} 
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l} 
Controls whether the filter automatically \\
sets the output word and fraction lengths, \\
product word and fraction lengths, and the \\
accumulator word and fraction lengths to \\
maintain the best precision results during \\
filtering. The default value, FullPrecision, \\
sets automatic word and fraction length \\
determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so \\
you can set your own word and fraction \\
lengths for them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits[ 16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length applied to \\
interpret input data.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits
\end{tabular} & \begin{tabular}{l} 
Determines how the filter interprets the \\
filter output data. You can change the value \\
of OutputFracLength when you set
\end{tabular} \\
[32]
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose \\
from either saturate (limit the output to the \\
largest positive or negative representable \\
value) or wrap (set overflowing values to the \\
nearest representable value using modular \\
arithmetic.) The choice you make affects \\
only the accumulator and output arithmetic. \\
Coefficient and input arithmetic always
\end{tabular} \\
saturates. Finally, products never overflow- \\
they maintain full precision.
\end{tabular}

\section*{mfilt.firdecim}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 . \\
- fix-Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflowthey maintain full precision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & fi object & \begin{tabular}{l} 
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
This property contains the filter states \\
before, during, and after filter operations. \\
States act as filter memory between filtering \\
runs or sessions. Notice that the states use \\
fi objects, with the associated properties \\
from those objects. For details, refer to \\
fixed-point objects in your Fixed-Point \\
Toolbox documentation or in the online Help \\
system. For information about the ordering \\
of the states, refer to the filter structure \\
section.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure To provide decimation, mfilt.firdecim uses the following structure. At the input you see a commutator that operates counterclockwise, moving from position 0 to position 2, position 1, and back to position 0 as input samples enter the filter.

The figure below details the signal flow for the direct form FIR filter implemented by mfilt.firdecim.

\section*{mfilt.firdecim}


Notice the order of the states in the filter flow diagram. States 1 through 9 appear in the diagram above each delay element. State 1 applies to the first delay element in phase 2. State 2 applies to the first delay element in phase 1. State 3 applies to the first delay element in phase 0 . State 4 applies to the second delay in phase 2, and so on. When you provide the states for the filter as a vector to the States property, the above description explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are
```

hm.states=[1:9];

```

Examples
Convert an input signal from 44.1 kHz to 22.05 kHz using decimation by a factor of 2 . In the figure that appears after the example code, you see the results of the decimation.
```

m = 2;
% Decimation factor.
hm = mfilt.firdecim(m); % Use the default filter.
fs = 44.1e3; %Original sample freq: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long
% signal.

```
```

x = sin(2*pi*1e3/fs*n); %Original signal--sinusoid at 1kHz.
y = filter(hm,x);
stem(n(1:44)/fs,x(1:44))
hold on
% 5120 samples, 0.232 seconds.
% Plot original sampled at 44.1 kHz.
% Plot decimated signal (22.05 kHz)
% in red.
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```


See Also
mfilt.firtdecim, mfilt.firfracdecim, mfilt.cicdecim

Purpose
Construct a direct-form FIR polyphase fractional decimator filter object

\section*{Syntax}
hm = mfilt.firfracdecim(l,m,num)
Description
hm = mfilt.firfracdecim(l,m,num) returns a direct-form FIR polyphase fractional decimator. Input argument \(l\) is the interpolation factor. 1 must be an integer. When you omit \(l\) in the calling syntax, it defaults to \(2 . \mathrm{m}\) is the decimation factor. It must be an integer. If not specified, it defaults to \(l+1\).
num is a vector containing the coefficients of the FIR lowpass filter used for decimation. If omitted, a lowpass Nyquist filter of gain l and cutoff frequency of \(\pi / \max (1, m)\) is used by default.

By specifying both a decimation factor and an interpolation factor, you can decimate your input signal by noninteger amounts. The fractional decimator first interpolates the input, then decimates to result in an output signal whose sample rate is \(l / \mathrm{m}\) of the input rate. By default, the resulting decimation factor is \(3 / 2\) when you do not provide 1 and \(m\) in the calling syntax. Specify 1 smaller than \(m\) for proper decimation.

\section*{Input Arguments}

The following table describes the input arguments for creating hm .
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l} 
Interpolation factor for the filter. It must be an integer. \\
When you do not specify a value for 1 it defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, firfracdecim uses a lowpass Nyquist \\
filter with gain equal to 1 and cutoff frequency equal to \\
\(\pi / m a x(l, m)\) by default.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l} 
Decimation factor for the filter. \(m\) specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for \(m\) it \\
defaults to \(l+1\).
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firfracdecim Object Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firfracdecim objects. The next table describes each property for an mfilt.firfracdecim filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterStructure & String & \begin{tabular}{l} 
Reports the type of filter object, \\
such as a decimator or fractional \\
decimator. You cannot set this \\
property-it is always read only \\
and results from your choice of \\
mfilt object.
\end{tabular} \\
\hline Numerator & Vector & \begin{tabular}{l} 
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for interpolation.
\end{tabular} \\
\hline RateChangeFactors & {\([1, \mathrm{~m}]\)} & \begin{tabular}{l} 
Reports the decimation (m) and \\
interpolation (l) factors for the \\
filter object. Combining these \\
factors results in the final rate \\
change for the signal.
\end{tabular} \\
\hline PersistentMemory & false or & \begin{tabular}{l} 
Determines whether the filter \\
states are restored to their \\
starting values for each filtering \\
operation. The starting values \\
are the values in place when you \\
create the filter if you have not \\
changed the filter since you \\
constructed it. \\
PersistentMemory returns to \\
zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { States } & \text { Matrix } & \begin{array}{l}\text { Stored conditions for the delays } \\ \text { between each interpolator } \\ \text { phase, the filter states, and the } \\ \text { states at the output of each } \\ \text { phase in the filter. }\end{array} \\ & & \begin{array}{l}\text { The number of states is } \\ \text { (lh-1)*m+(l-1)*(lo+mo) where lh } \\ \text { is the length of each subfilter, } \\ \text { and land mare the interpolation } \\ \text { and decimation factors. lo and } \\ \text { mo, the input and output delays } \\ \text { between each interpolation } \\ \text { phase, are integers from Euclid's } \\ \text { theorem such that lo*l-mo*m }\end{array} \\ \text { (refer to the reference for more } \\ \text { details). Use euclidfactors to } \\ \text { get lo and mo for an } \\ \text { mfilt.firfracdecim object }\end{array}\right\}\)

\section*{Example}

To demonstrate firfracdecim, perform a fractional decimation by a factor of \(2 / 3\). This is one way to downsample a 48 kHz signal to 32 kHz , commonly done in audio processing.
```

l = 2; m = 3; % Interpolation/decimation factors.
hm = mfilt.firfracdecim(l,m); % We use the default
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 second long
% signal

```
```

x = sin(2*pi*1e3/fs*n); %Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 9408 samples, still 0.213 seconds
stem(n(1:49)/fs,x(1:49)); hold on; % Plot original signal sampled
% at 48 kHz
stem(n(1:32)/(fs*l/m),y(13:44),'r','filled') % Plot decimated
% signal at 32 kHz
xlabel('Time (sec)');

```

As shown, the plot clearly demonstrates the reduced sampling frequency of 32 kHz.


See Also mfilt.firsrc, mfilt.firfracinterp, mfilt.firinterp, mfilt.firdecim
References
Fliege, N.J., Multirate Digital Signal Processing, John Wiley \& Sons, Ltd., 1994

\section*{Purpose \\ Construct a direct-form FIR polyphase fractional interpolator filter object}
```

Syntax
hm = mfilt.firfracinterp(l,m,num)

```

Description
hm = mfilt.firfracinterp(l,m,num) returns a direct-form FIR polyphase fractional interpolator mfilt object. \(l\) is the interpolation factor. It must be an integer. If not specified, l defaults to 3 .
\(m\) is the decimation factor. Like 1 , it must be an integer. If you do not specify \(m\) in the calling syntax, it defaults to 1 . If you also do not specify a value for \(1, m\) defaults to 2 .
num is a vector containing the coefficients of the FIR lowpass filter used for interpolation. If omitted, a lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / \mathrm{max}(1, \mathrm{~m})\) is used by default.

By specifying both a decimation factor and an interpolation factor, you can interpolate your input signal by noninteger amounts. The fractional interpolator first interpolates the input, then decimates to result in an output signal whose sample rate is \(1 / \mathrm{m}\) of the input rate. For proper interpolation, you specify \(l\) to be greater than m . By default, the resulting interpolation factor is \(3 / 2\) when you do not provide 1 and \(m\) in the calling syntax.

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Interpolation factor for the filter. 1 specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 3.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an innut, firffracinterp uses a lowpass Nyquist \\
filter with gain equal to 1 and cutoff frequency equal to \\
\(\pi / m a x(1, m)\) by default.
\end{tabular} \\
\(m\) & \begin{tabular}{l} 
Decimation factor for the filter. \(m\) specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for \(m\) it \\
defaults to 1. When you do not specify 1 as well, \(m\) \\
defaults to 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firfracinterp Object Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firfracinterp objects. The next table describes each property for an mfilt.firfracinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterStructure & \begin{tabular}{l} 
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline Numerator & \begin{tabular}{l} 
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for interpolation.
\end{tabular} \\
\hline RateChangeFactors & {\([1, \mathrm{~m}]\)} & \begin{tabular}{l} 
Reports the decimation (m) and \\
interpolation (l) factors for the \\
filter object. Combining these \\
factors results in the final rate \\
change for the signal.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline PersistentMemory & false or \\
true & \begin{tabular}{l} 
Determines whether the filter \\
states are restored to their \\
starting values for each filtering \\
operation. The starting values \\
are the values in place when you \\
create the filter if you have not \\
changed the filter since you \\
constructed it. \\
PersistentMemory returns to \\
the default values any state that \\
the filter changes during \\
processing. States that the filter \\
does not change are not affected.
\end{tabular} \\
\hline States & Matrix & \begin{tabular}{l} 
Stored conditions for the filter, \\
including values for the \\
interpolator and comb states.
\end{tabular} \\
\hline NumSamplesProcessed & Integer & \begin{tabular}{l} 
Returns the number of samples \\
processed during filtering. As a \\
check, the number of samples \\
reported processed plus the \\
number of nonprocessed \\
samples should be the total \\
number of input samples.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

To convert a signal from 32 kHz to 48 kHz requires fractional interpolation. This example uses the mfilt.firfracinterp object to upsample an input signal. Setting \(l=3\) and \(m=2\) returns the same mfilt object as the default mfilt.firfracinterp object.
```

l = 3; m = 2; % Interpolation/decimation factors.
hm = mfilt.firfracinterp(l,m); % We use the default filter
fs = 32e3; % Original sample freq: 32 kHz.
n = 0:6799; % 6800 samples, 0.212 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10200 samples, still 0.212 seconds

```
```

stem(n(1:32)/fs,x(1:32),'filled') % Plot original sampled at
% 32 kHz
hold on;
% Plot fractionally interpolated signal (48 kHz) in red
stem(n(1:48)/(fs*l/m),y(20:67),'r')
xlabel('Time (sec)');ylabel('Signal Value')

```

Having the ability to interpolate by fractional amounts lets us raise the sampling rate from 32 to 48 kHz , something you cannot do with integral interpolators. Both signals appear in the following figure.


See Also mfilt.firsrc,mfilt.firfracdecim, mfilt.firinterp,mfilt.firdecim

Purpose Construct floating-point or fixed-point FIR filter-based interpolators
Syntax \(\quad\)\begin{tabular}{rl}
hm & \(=\) mfilt.firinterp(l) \\
& hm \\
\(=\) mfilt.firinterp(l, num \()\)
\end{tabular}

Description \(\quad \mathrm{hm}=\mathrm{mfilt} . f\) firinterp(l) returns an FIR-based interpolator object hm with an interpolation factor of 1 . A lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / l\) is the default if you do not include 1 as an input.
hm = mfilt.firinterp(l, num) uses the coefficients specified by num for the numerator coefficients of the interpolation filter.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm, 'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Interpolation factor for the filter. l specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for l it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, firinterp uses a lowpass Nyquist filter \\
with gain equal to l and cutoff frequency equal to \(\pi / 1\) \\
by default. The default length for the Nyquist filter is \\
\(24^{*}\). Therefore, each polyphase filter component has \\
length 24.
\end{tabular} \\
\hline
\end{tabular}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firinterp objects. The next table describes each property for an mfilt.firinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Defines the arithmetic the filter \\
uses. Gives you the options \\
double, single, and fixed. In \\
short, this property defines the \\
operation mode for your filter.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l} 
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InterpolationFactor & Integer & \begin{tabular}{l} 
Describes the signal flow for the \\
filter object.
\end{tabular} \\
\hline \begin{tabular}{l} 
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the sampling rate of the \\
input signal. It must be an \\
integer.
\end{tabular} \\
\hline Numerator & Vector & \begin{tabular}{l} 
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for decimation.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|ll}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { PersistentMemory } & \begin{array}{l}\text { [false ], } \\ \text { true }\end{array} & \begin{array}{l}\text { Determines whether the filter } \\ \text { states get restored to zeros for } \\ \text { each filtering operation. The } \\ \text { starting values are the values in } \\ \text { place when you create the filter } \\ \text { if you have not changed the filter } \\ \text { since you constructed it. } \\ \text { PersistentMemory set to false } \\ \text { returns filter states to the } \\ \text { default values after filtering. } \\ \text { States that the filter does not } \\ \text { change are not affected. Setting } \\ \text { this to true allows you to modify } \\ \text { the States property. }\end{array} \\ \hline \text { States } & & \begin{array}{l}\text { Double, } \\ \text { single, } \\ \text { matching } \\ \text { the filter } \\ \text { arithmetic } \\ \text { setting. }\end{array}\end{array} \begin{array}{l}\text { Contains the filter states before, } \\ \text { during, and after filter } \\ \text { operations. States act as filter } \\ \text { memory between filtering runs } \\ \text { or sessions. }\end{array}\right]\)

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.firinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 8-122.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits. \\
[32]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length used to interpret \\
data output by the accumulator. This is a \\
property of FIR filters and lattice filters. IIR \\
filters have two similar properties- \\
DenAccumFracLength and \\
NumAccumFracLength-that let you set the \\
precision for numerator and denominator \\
operations separately.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Any integer \\
number of bits[39]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l} 
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l} 
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l} 
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l} 
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l} 
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l} 
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[39]
\end{tabular} & \begin{tabular}{l} 
Determines the word length used for the output \\
data. You make this property editable by setting \\
Filter Internals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular} \\
& &
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline RoundMode & \begin{tabular}{l} 
[convergent], \\
ceil,fix,floor, \\
round
\end{tabular} & \begin{tabular}{l} 
Sets the mode the filter uses to quantize numeric \\
values when the values lie between \\
representable values for the data format (word \\
and fraction lengths).
\end{tabular} \\
& & \begin{tabular}{l} 
- convergent-Round up to the next allowable \\
quantized value.
\end{tabular} \\
& & \begin{tabular}{l} 
- ceil-Round to the nearest allowable \\
quantized value. Numbers that are exactly
\end{tabular} \\
& & \begin{tabular}{l} 
halfway between the two nearest allowable \\
quantized values are rounded up only if the
\end{tabular} \\
least significant bit (after rounding) would be \\
set to 1.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline [true ], false & \begin{tabular}{l} 
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
fi object to match \\
the filter \\
arithmetic setting.
\end{tabular} & \begin{tabular}{l} 
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure To provide interpolation, mfilt.firinterp uses the following structure.
The figure below details the signal flow for the direct form FIR filter implemented by mfilt. firinterp. In the figure, the delay line updates happen at the lower input rate. The remainder of the filter- the sums and coefficients-operate at the higher output rate.


Examples
This example uses mfilt.firinterp to double the sample rate of a 22.05 kHz input signal. The output signal ends up at 44.1 kHz . Although 1 is set explicitly to 2 , this represents the default interpolation value for mfilt.firinterp objects.
```

l = 2;
hm = mfilt.firinterp(l); % Use the default filter.
% Interpolation factor.
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232s long signal.
x = sin(2*pi*1e3/fs*n); %Original signal, sinusoid at 1 kHz.
y = filter(hm,x); % 10240 samples, still 0.232s.
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
% 22.05 kHz.
hold on;

```
```

% Plot interpolated signal (44.1 kHz) in red
stem(n(1:44)/(fs*l),y(25:68),'r')
xlabel('Time (sec)');ylabel('Signal Value')

```

With interpolation by 2 , the resulting signal perfectly matches the original, but with twice as many samples-one between each original sample, as shown in the following figure.


See Also mfilt.holdinterp, mfilt.linearinterp, mfilt.fftfirinterp,
\begin{tabular}{|c|c|}
\hline Purpose & Construct floating-point or fixed-point direct form FIR polyphase sample rate converters \\
\hline Syntax & hm = mfilt.firsrc(l,m,num) \\
\hline \multirow[t]{4}{*}{Description} & \begin{tabular}{l}
hm = mfilt.firsrc(l,m,num) returns a direct-form FIR polyphase sample rate converter. 1 specifies the interpolation factor. It must be an integer and when omitted in the calling syntax, it defaults to 2 . \\
\(m\) is the decimation factor. It must be an integer. If not specified, \(m\) defaults to 1 . If 1 is also not specified, \(m\) defaults to 3 and the overall rate change factor is \(2 / 3\).
\end{tabular} \\
\hline & You specify the coefficients of the FIR lowpass filter used for sample rate conversion in num. If omitted, a lowpass Nyquist filter with gain 1 and cutoff frequency of \(\pi / \max (1, \mathrm{~m})\) is the default. \\
\hline & Combining an interpolation factor and a decimation factor lets you use mfilt.firsrc to perform fractional interpolation or decimation on an input signal. Using an mfilt.firsrc object applies a rate change factor defined by \(1 / \mathrm{m}\) to the input signal. For proper rate changing to occur, 1 and m must be relatively prime-meaning the ratio \(1 / \mathrm{m}\) cannot be reduced to a ratio of smaller integers. \\
\hline & When you are doing sample-rate conversion with large values of 1 orm , such as 1 or m greater than 20 , using the mfilt.firsrc structure is the most effective approach. Other possible fractional rate change structures, such as mfilt.firfracinterp (where l>m) or mfilt.firfracdecim (where l < m) may have prohibitively large memory requirements for applications that require large rate changes. \\
\hline
\end{tabular}

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm, 'arithmetic', 'fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l} 
Interpolation factor for the filter. 1 specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for l, it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, mfilt.firsrc uses a lowpass Nyquist \\
filter with gain equal to 1 and cutoff frequency equal to \\
\(\pi /\) max \((l, m)\) by default. The default length for the
\end{tabular} \\
\hline \begin{tabular}{l} 
Nyquist filter is \(24^{*} m\). Therefore, each polyphase filter \\
component has length 24.
\end{tabular} \\
\hline \begin{tabular}{l} 
Decimation factor for the filter. \(m\) specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for \(m, ~ i t ~\) \\
defaults to 1 . When 1 is unspecified as well, \(m\) defaults \\
to 3.
\end{tabular}
\end{tabular}

\section*{Object Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firsrc objects. The next table describes each property for an mfilt.firsrc filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
[Double], \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Defines the arithmetic the filter \\
uses. Gives you the options \\
double, single, and fixed. In \\
short, this property defines the \\
operation mode for your filter.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l} 
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object. \\
Describes the signal flow for the \\
filter object.
\end{tabular} \\
\hline InputOffset & Integers & \begin{tabular}{l} 
Contains a value derived from \\
the number of input samples \\
and the decimation factor- \\
InputOffset = mod (length(nx), m) \\
where nx is the number of input \\
samples and mis the decimation \\
factor.
\end{tabular} \\
\hline Numerator & Vector & \begin{tabular}{l} 
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for decimation.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{lll}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { PersistentMemory } & \text { false, true } & \begin{array}{l}\text { Determines whether the filter } \\ \text { states get restored to zeros for } \\ \text { each filtering operation. The } \\ \text { starting values are the values in } \\ \text { place when you create the filter } \\ \text { if you have not changed the filter } \\ \text { since you constructed it. } \\ \text { PersistentMemory set to false } \\ \text { returns filter states to the } \\ \text { default values after filtering. } \\ \text { States that the filter does not } \\ \text { change are not affected. Setting } \\ \text { this to true allows you to modify }\end{array} \\ \text { the States, Input0ffset, and } \\ \text { PolyphaseAccum properties. }\end{array}\right]\)

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.firsrc filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 8-122.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits. \\
[32]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length used to interpret \\
data output by the accumulator. This is a \\
property of FIR filters.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Any integer \\
number of bits [39]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l} 
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l} 
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l} 
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l} 
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l} 
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l} 
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[39]
\end{tabular} & \begin{tabular}{l} 
Determines the word length used for the output \\
data. You make this property editable by setting \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firsrc}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow—they maintain full \\
precision.
\end{tabular} \\
\hline RateChangeFactors & \begin{tabular}{l} 
Positive integers \\
{\([23]\)}
\end{tabular} & \begin{tabular}{l} 
Specifies the interpolation and decimation \\
factors [l m] (the rate change factors) for \\
changing the input sample rate by nonintegral \\
amounts.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. \\
- fix-Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & ftrue], false & \begin{tabular}{l} 
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & fibject & \begin{tabular}{l} 
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system. For information about the \\
ordering of the states, refer to the filter structure \\
section.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This is an example of a common audio rate change process-changing the sample rate of a high end audio ( 48 kHz ) signal to the compact disc sample rate ( 44.1 kHz ). This conversion requires a rate change factor of 0.91875 , or \(\mathrm{l}=147\) and \(\mathrm{m}=160\).
```

l = 147; m = 160; % Interpolation/decimation factors.
hm = mfilt.firsrc(l,m); % Use the default FIR filter.
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 seconds long.
x = sin(2*pi*1e3/fs*n); %Original signal, sinusoid at 1 kHz.
y = filter(hm,x); %9408 samples, still 0.213 seconds.
stem(n(1:49)/fs,x(1:49)) % Plot original sampled at 48 kHz.
hold on
% Plot fractionally decimated signal (44.1 kHz) in red
stem(n(1:45)/(fs*l/m),y(13:57),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```

Fractional decimation provides you the flexibility to pick and choose the sample rates you want by carefully selecting 1 and m , the interpolation and decimation factors, that result in the final fractional decimation. The following figure shows the signal after applying the rate change filter hm to the original signal.


See Also
mfilt.firfracinterp, mfilt.firfracdecim, mfilt.firinterp, mfilt.firdecim

Purpose Construct fixed-point or floating-point direct-form transposed FIR filters
Syntax \(\quad\)\begin{tabular}{rl}
\(h m\) & \(=\) mfilt.firtdecim( \(m\) ) \\
\(h m\) & \(=\) mfilt.firtdecim \((m, n u m)\)
\end{tabular}

Description
\(\mathrm{hm}=\mathrm{mfilt} . f i r t d e c i m(\mathrm{~m})\) returns a polyphase decimator mfilt object hm based on a direct-form transposed FIR structure with a decimation factor of \(m\). A lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / \mathrm{m}\) is the default.
hm = mfilt.firtdecim(m,num) uses the coefficients specified by num for the decimation filter. num is a vector containing the coefficients of the transposed FIR lowpass filter used for decimation. If omitted, a lowpass Nyquist filter with gain of 1 and cutoff frequency of \(\pi / \mathrm{m}\) is the default.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline num & \begin{tabular}{l} 
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, firtdecim uses a lowpass Nyquist filter \\
with gain equal to l and cutoff frequency equal to \(\pi / \mathrm{m}\) \\
by default. The default length for the Nyquist filter is \\
\(24^{*} \mathrm{~m}\). Therefore, each polyphase filter component has \\
length 24.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l} 
Decimation factor for the filter. m specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for m it \\
defaults to 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{Object Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firtdecim objects. The next table describes each property for an mfilt.firtdecim filter object.
\begin{tabular}{l|ll}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline DecimationFactor & Integer & \begin{tabular}{l} 
Decimation factor for the filter. \\
m specifies the amount to reduce \\
the sampling rate of the input \\
signal. It must be an integer.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{l|ll}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterStructure } & \text { String } & \begin{array}{l}\text { Reports the type of filter object. } \\ \text { You cannot set this property-it } \\ \text { is always read only and results } \\ \text { from your choice of mfilt object. } \\ \text { Also describes the signal flow for } \\ \text { the filter object. }\end{array} \\ \hline \text { InputOffset } & \text { Integers } & \begin{array}{l}\text { Contains a value derived from } \\ \text { the number of input samples } \\ \text { and the decimation factor- } \\ \text { InputOffset = mod(length(nx),m) } \\ \text { where nx is the number of input } \\ \text { samples that have been } \\ \text { processed so far and m is the } \\ \text { decimation factor. }\end{array} \\ \hline \text { Numerator } & \text { Vector } & \begin{array}{l}\text { Vector containing the } \\ \text { coefficients of the FIR lowpass } \\ \text { filter used for decimation. }\end{array} \\ \hline \text { PersistentMemory } & \text { [false], } & \begin{array}{l}\text { Determines whether the filter } \\ \text { states get restored to zeros for } \\ \text { each filtering operation. The } \\ \text { starting values are the values in } \\ \text { place when you create the filter } \\ \text { if you have not changed the filter } \\ \text { since you constructed it. }\end{array} \\ \hline \text { trersistentMemory set to false } \\ \text { returns filter states to the } \\ \text { default values after filtering. }\end{array}\right\} \begin{array}{l}\text { States that the filter does not } \\ \text { change are not affected. Setting } \\ \text { this to true allows you to modify } \\ \text { the States, InputOffset, and } \\ \text { PolyphaseAccum properties. }\end{array}\right\}\)
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline PolyphaseAccum & \begin{tabular}{l} 
Double, \\
single [0]
\end{tabular} & \begin{tabular}{l} 
The idea behind having both \\
PolyphaseAccum and Accum is to \\
differentiate between the adders \\
in the filter that work in full \\
precision at all times \\
(PolyphaseAccum) from the \\
adders in the filter that the user \\
controls and that may introduce \\
quantization effects when \\
FilterInternals is set to \\
SpecifyPrecision.
\end{tabular} \\
\hline States & Double, & \begin{tabular}{l} 
Contains the filter states before, \\
during, and after filter
\end{tabular} \\
operations. States act as filter \\
single \\
matching \\
the filter \\
arithmetic \\
setting.
\end{tabular}\(\quad\)\begin{tabular}{l} 
or sessions.
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.firtdecim filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

\section*{mfilt.firtdecim}

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 8-122.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits. \\
[32]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length used to interpret \\
data output by the accumulator. This is a \\
property of FIR filters and lattice filters. IIR \\
filters have two similar properties- \\
DenAccumFracLength and NumAccumFracLength- \\
that let you set the precision for numerator and \\
denominator operations separately.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Any integer \\
number of bits [39]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l} 
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l} 
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterInternals } & \begin{array}{l}\text { [FullPrecision], } \\ \text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Controls whether the filter automatically sets } \\ \text { the output word and fraction lengths, product } \\ \text { word and fraction lengths, and the accumulator } \\ \text { word and fraction lengths to maintain the best } \\ \text { precision results during filtering. The default } \\ \text { value, FullPrecision, sets automatic word and } \\ \text { fraction length determination by the filter. } \\ \text { SpecifyPrecision makes the output and } \\ \text { accumulator-related properties available so you } \\ \text { can set your own word and fraction lengths for } \\ \text { them. }\end{array} \\ \hline \text { InputFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits } \\ \text { [15] }\end{array} & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\ \text { interpret input data. }\end{array} \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Any integer } \\ \text { number of bits } \\ \text { [16] }\end{array} & \begin{array}{l}\text { Specifies the word length applied to interpret } \\ \text { input data. }\end{array} \\ \hline \text { NumFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits [14] }\end{array} & \begin{array}{l}\text { Sets the fraction length used to interpret the } \\ \text { numerator coefficients. }\end{array} \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits } \\ \text { [32] }\end{array} & \begin{array}{l}\text { Determines how the filter interprets the filter } \\ \text { output data. You can change the value of } \\ \text { OutputFracLength when you set }\end{array} \\ \text { FilterInternals to SpecifyPrecision. }\end{array}\right\}\)

\section*{mfilt.firtdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.)) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular} \\
\hline PolyphaseAccum & \begin{tabular}{l} 
fi object with zeros \\
to start
\end{tabular} & \begin{tabular}{l} 
Differentiates between the adders in the filter \\
that work in full precision at all times \\
(PolyphaseAccum) and the adders in the filter \\
that the user controls and that may introduce \\
quantization effects when FilterInternals is \\
set to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 . \\
- fix—Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firtdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & ftrue], false & \begin{tabular}{l} 
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system. For information about the \\
ordering of the states, refer to the filter structure \\
section.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure To provide sample rate changes, mfilt.firtdecim uses the following structure. At the input you see a commutator that operates counterclockwise, moving from position 0 to position 2, position 1, and back to position 0 as input samples enter the filter. To keep track of the position of the commutator, the mfilt object uses the property InputOffset which reports the current position of the commutator in the filter.

The figure below details the signal flow for the direct form FIR filter implemented by mfilt.firtdecim.


Notice the order of the states in the filter flow diagram. States 1 through 3 appear in the diagram below each delay element. State 1 applies to the third delay element in phase 2 . State 2 applies to the second delay element in phase 2 . State 3 applies to the first delay element in phase 2 . When you provide the states for the filter as a vector to the States property, the above description explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are
```

hm.states=[1:3];

```

\section*{Examples}

Demonstrate decimating an input signal by a factor of 2 , in this case converting from 44.1 kHz down to 22.05 kHz . In the figure shown following the code, you see the results of decimating the signal.
```

m = 2; % Decimation factor.
hm = mfilt.firtdecim(m); % Use the default filter coeffs.
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1 kHz.
y = filter(hm,x); % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.
hold on % Plot decimated signal (22.05 kHz) in red

```

\section*{mfilt.firtdecim}
```

stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```


\section*{See Also}
mfilt.firdecim, mfilt.firfracdecim, mfilt.cicdecim

\section*{Purpose \\ Construct fixed-point or floating-point FIR hold interpolators}
```

Syntax hm = mfilt.holdinterp(l)

```

Description
\(\mathrm{hm}=\mathrm{mfilt} . \mathrm{holdinterp}(\mathrm{l})\) returns the object hm that represents a hold interpolator with the interpolation factor 1 . To work, 1 must be an integer. When you do not include 1 in the calling syntax, it defaults to 2 . To perform interpolation by noninteger amounts, use one of the fractional interpolator objects, such as mfilt.firsrc or mfilt.firfracinterp.

When you use this hold interpolator, each sample added to the input signal between existing samples has the value of the most recent sample from the original signal. Thus you see something like a staircase profile where the interpolated samples form a plateau between the previous and next original samples. The example demonstrates this profile clearly. Compare this to the interpolation process for other interpolators in the toolbox, such as mfilt.linearinterp.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');
Input Arguments
The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Interpolation factor for the filter. l specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 2.
\end{tabular}
\end{tabular}

\section*{Object \\ Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt. holdinterp objects. The next table describes each property for an mfilt.interp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l} 
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InterpolationFactor & Integer & \begin{tabular}{l} 
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline PersistentMemory & 'false' or & \begin{tabular}{l} 
Determines whether the filter \\
states are restored to zero for \\
each filtering operation.
\end{tabular} \\
\hline Strue' & \begin{tabular}{l} 
Double or \\
single \\
array
\end{tabular} & \begin{tabular}{l} 
Filter states. states defaults to \\
a vector of zeros that has length \\
equal to nstates(hm). Always \\
available, but visible in the \\
display only when \\
PersistentMemory is true.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 8-122.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l} 
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l} 
Any \\
positive or \\
negative \\
integer \\
number of \\
bits [15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length the \\
filter uses to interpret input \\
data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l} 
Any \\
integer \\
number of \\
bits [16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length \\
applied to interpret input data. \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline InterpolationFactor & Integer & \begin{tabular}{l} 
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline PersistentMemory & 'false' or \\
States & 'true' & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to zero for \\
each filtering operation
\end{tabular} \\
\hline & fi object & \begin{tabular}{l} 
Contains the filter states before, \\
during, and after filter \\
operations. For hold \\
interpolators, the states are \\
always empty-hold \\
interpolators do not have states. \\
Notice that the states use fi \\
objects, with the associated \\
properties from those objects. \\
For details, refer to fixed-point \\
objects in your Fixed-Point \\
Toolbox documentation or in the \\
online Help system.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure Hold interpolators do not have structures or filter coefficients.
Examples To see the effects of hold-based interpolation, interpolate an input sine wave from 22.05 to 44.1 kHz . Note that each added sample retains the value of the most recent original sample.
```

l = 2; % Interpolation factor
hm = mfilt.holdinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; %5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
%22.05 kHz

```
```

hold on
% Plot interpolated signal (44.1 kHz)
in red
stem(n(1:44)/(fs*l),y(1:44),'r')
xlabel('Time (sec)');ylabel('Signal Value')

```

The following figure shows clearly the step nature of the signal that comes from interpolating the signal using the hold algorithm approach. Compare the output to the linear interpolation used in mfilt. linearinterp.


\footnotetext{
See Also
mfilt.linearinterp, mfilt.firinterp, mfilt.firfracinterp, mfilt.cicinterp
}

\title{
Purpose Construct floating-point or fixed-point linear interpolator filters
}
```

Syntax hm = mfilt.linearinterp(l)

```

Description
hm = mfilt.linearinterp(l) returns an FIR linear interpolator hm with an integer interpolation factor \(l\). Provide \(l\) as a positive integer. The default value for the interpolation factor is 2 when you do not include the input argument 1.

When you use this linear interpolator, the samples added to the input signal have values between the values of adjacent samples in the original signal. Thus you see something like a smooth profile where the interpolated samples continue a line between the previous and next original samples. The example demonstrates this smooth profile clearly. Compare this to the interpolation process for mfilt. holdinterp, which creates a stairstep profile.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hm, 'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input argument for mfilt.linearinterp.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l} 
Interpolation factor for the filter. 1 specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 2.
\end{tabular}
\end{tabular}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.linearinterp objects. The next table describes each property for an mfilt.linearinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l} 
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l} 
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l} 
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InterpolationFactor & Integer & \begin{tabular}{l} 
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline PersistentMemory & 'false' or & \begin{tabular}{l} 
Determine whether the filter \\
states get restored to zero for \\
each filtering operation
\end{tabular} \\
\hline 'true' & \begin{tabular}{l} 
Double or \\
single \\
array
\end{tabular} & \begin{tabular}{l} 
Filter states. states defaults to \\
a vector of zeros that has length \\
equal to nstates(hm). Always \\
available, but visible in the \\
display only when \\
PersistentMemory is true.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.holdinterp filter.

\section*{mfilt.linearinterp}

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
```

 info(hm)
    ```
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 8-122.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits. \\
Depends on L. \\
[29 when L=2]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length used to interpret \\
data output by the accumulator.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l} 
Any integer \\
number of bits [33]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l} 
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l} 
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l} 
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l} 
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l} 
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits \\
[29]
\end{tabular} & \begin{tabular}{l} 
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l} 
Any integer \\
number of bits \\
[33]
\end{tabular} & \begin{tabular}{l} 
Determines the word length used for the output \\
data. You make this property editable by setting \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l} 
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.)) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular} \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. \\
- fix-Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & fi object & \begin{tabular}{l} 
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system. For information about the \\
ordering of the states, refer to the filter structure \\
below.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure Linear interpolator structures depend on the FIR filter you use to implement the filter. By default, the structure is direct-form FIR.


\section*{Examples}

Interpolation by a factor of 2 (used to convert the input signal sampling rate from 22.05 kHz to 44.1 kHz .
```

l = 2; % Interpolation factor
hm = mfilt.linearinterp(l);
fs = 22.05e3; %Original sample freq: 22.05 kHz.
n = 0:5119; %5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
% 22.05 kHz
hold on % Plot interpolated signal (44.1
% kHz) in red
stem(n(1:44)/(fs*l),y(2:45),'r')
xlabel('Time (s)');ylabel('Signal Value')

```

Using linear interpolation, as compared to the hold approach of mfilt. holdinterp, provides greater fidelity to the original signal.

\section*{mfilt.linearinterp}


See Also
mfilt.holdinterp, mfilt.firinterp, mfilt.firfracinterp, mfilt.cicinterp

\begin{abstract}
Purpose

Syntax

Description

Calculate and return the predicted mean-squared error for selected adaptive filters
```

[mmse,emse] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m)

```
[mmse,emse] = msepred(ha, x,d) predicts the steady-state values at convergence of the minimum mean-squared error (mmse) and the excess mean-squared error (emse) given the input and desired response signal sequences in x and d and the property values in the adaptfilt object ha.
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d) calculates three sequences corresponding to the analytical behavior of the LMS adaptive filter defined by ha:
- meanw-contains the sequence of coefficient vector means. The columns of matrix meanw contain predictions of the mean values of the LMS adaptive filter coefficients at each time instant. The dimensions of meanw are (size(x,1))-by-(ha.length).
- mse-contains the sequence of mean-square errors. This column vector contains predictions of the mean-square error of the LMS adaptive filter at each time instant. The length of mse is equal to size \((x, 1)\).
- tracek-contains the sequence of total coefficient error powers. This column vector contains predictions of the total coefficient error power of the LMS adaptive filter at each time instant. The length of tracek is equal to size(x,1).
[mmse,emse,meanw,mse,tracek] = msepred(ha, x,d,m) specifies an optional input argument m that is the decimation factor for computing meanw, mse, and tracek. When \(m>1\), msepred saves every mth predicted value of each of these sequences. When you omit the optional argument m, it defaults to one.

Note msepred is available for the following adaptive filters only:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
\end{abstract}
—adaptfilt.nlms
—adaptfilt.se
Using msepred is the same for any adaptfilt object constructed by the supported filters.

\section*{Examples}

Analyze and simulate a 32-coefficient adaptive filter using 25 trials of 2000 iterations each.
```

x = zeros(2000,25); d = x; % Initialize variables
ha = fir1(31,0.5); % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));
n = 0.1*randn(size(x)); % observation noise signal
d = filter(ha,1,x)+n; % desired signal
l = 32; % Filter length
mu = 0.008; % LMS step size.
m 5; % Decimation factor for analysis
% and simulation results
ha = adaptfilt.lms(l,mu);
[mmse,emse,meanW,mse,traceK] = msepred(ha,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:, 12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r');
title('Average Coefficient Trajectories for W(12), W(13),...
W(14) and W(15)');
legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...
(emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse]);
title('Mean-Square Error Performance');
axis([0 size(x,1) 0.001 10]);
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim,nn,traceK,'r');

```
```

title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)...
0.0001 1]);
legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Squared Error Value');

```

Viewing the plots in this figure you see the various error values plotted in both simulation and theory. Each subplot reveals more information about the results as the simulation converges with the theoretical performance.


See Also
filter, maxstep, msesim

\section*{Purpose \\ Calculate and return the measured mean-squared error for an adaptive filter}

Syntax

Description

\section*{Examples}
```

mse = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d,m)

```
mse \(=\) msesim(ha, \(x, d)\) returns the sequence of mean-square errors in column vector mse. The vector contains estimates of the mean-square error of the adaptive filter at each time instant during adaptation. The length of mse is equal to size ( \(x, 1\) ). The columns of matrix \(x\) contain individual input signal sequences, and the columns of the matrix \(d\) contain corresponding desired response signal sequences.
[mse,meanw,w,tracek] = msesim(ha, x,d) calculates three parameters that correspond to the simulated behavior of the adaptive filter defined by ha:
- meanw-sequence of coefficient vector means. The columns of this matrix contain estimates of the mean values of the LMS adaptive filter coefficients at each time instant. The dimensions of meanw are (size(x,1))-by-(ha.length).
- w-estimate of the final values of the adaptive filter coefficients for the algorithm corresponding to ha.
- tracek-sequence of total coefficient error powers. This column vector contains estimates of the total coefficient error power of the LMS adaptive filter at each time instant. The length of tracek is equal to size \((\mathrm{X}, 1)\).
[mse,meanw,w,tracek] = msesim(ha, x,d,m) specifies an optional input argument \(m\) that is the decimation factor for computing meanw, mse, and tracek. When \(m>1\), msepsim saves every mth predicted value of each of these sequences. When you omit the optional argument \(m\), it defaults to one.

Simulation of a 32 -coefficient FIR filter using 25 trials, each trial having 2000 iterations of the adaptation process.
```

x = zeros(2000,25); d = x; % Initialize variables
ha = fir1(31,0.5); % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));
n = 0.1*randn(size(x)); % Observation noise signal
d = filter(ha,1,x)+n; % Desired signal

```
```

l = 32; % Filter length
mu = 0.008; % LMS Step size.
m 5; %Decimation factor for analysis
% and simulation results
ha = adaptfilt.lms(l,mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:, 12),'b',nn,meanWsim(:, 13:15),'b');
title('Average Coefficient Trajectories for W(12), W(13),
W(14) and W(15)');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse);
title('Mean-Square Error Performance'); axis([0 size(x,1) 0.001
10]);
legend('Measured MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim);
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)
0.0001 1]);
xlabel('Time Index'); ylabel('Squared Error Value');

```

Calculating the mean squared error for an adaptive filter is one measure of the performance of the adapting algorithm. In this figure, you see a variety of measures of the filter, including the error values.




\section*{See Also}
filter, msepred
```

Purpose
Syntax
hpsd = noisepsd(hd,l);
hpsd = noisepsd(hd,l, propertyname1, propertyvalue1,
propertyname2,propertyvalue2,);
hpsd = noisepsd(hd,l,opts);

Compute the power spectral density (PSD) of filter output caused by roundoff noise during the quantization process

Syntax
hpsd = noisepsd(hd,l);
hpsd = noisepsd(hd,l, propertyname1, propertyvalue1, propertyname2,propertyvalue2,);
hpsd = noisepsd(hd,l,opts);
hpsd = noisepsd(hd,l) computes the power spectral density (PSD) at the output of filter hd due to roundoff noise produced by quantization errors within the filter. 1 is the number of trials used to compute the average. The PSD is computed from the average over the 1 trials. The more trials you specify, the better the estimate, but at the expense of longer computation time. When you do not explicitly set 1 , it defaults to 10 trials.
hpsd is a psd data object.To extract the PSD vector (the data from the PSD) from hpsd, enter

```
get(hpsd,'data')
```

```
```

get(hpsd,'data')

```
```

at the prompt. Plot the PSD data with plot (hpsd). The average power of the output noise (the integral of the PSD) can be computed with avgpower, a method of dspdata objects:
avgpwr = avgpower(hpsd).
hpsd = noisepsd(hd,l,p1,v1,p2,v2,...) specifies optional parameters via propertyname/propertyvalue pairs. The properties of the psd object, and the valid entries are:

| Property Name | Default Value | Description and Valid Entries |
| :--- | :--- | :--- |
| Nfft | 512 | Specifies the number of FFT
 points to use to calculate the
 PSD. |
| NormalizedFrequency | true | Determines whether to use
 normalized frequency. Enter one
 of the logical true or false. Note
 that you do not use single
 quotations around this property
 value because it is a logical, not
 a string. |
| Fs | normalized | Specifies the sampling frequency
 to use when you set
 NormalizedFrequency to false.
 Any integer value greater than 1
 works. Enter the value in Hz. |

| Property Name | Default Value | Description and Valid Entries |
| :---: | :---: | :---: |
| SpectrumType | onesided | Tells noisepsd whether to generate a one-sided PSD or two-sided. Options are onesided or twosided. If you choose a two-sided computation, you can also choose centerdc $=$ true . Otherwise, centerdc must be false.
 - onesided converts the spectrum to a spectrum calculated over half the Nyquist interval. All properties affected by the new frequency range are adjusted automatically.
 - twosided converts the spectrum to a spectrum calculated over the whole Nyquist interval. All properties affected by the new frequency range are adjusted automatically. |

$\left.\begin{array}{l|l|l}\hline \text { Property Name } & \text { Default Value } & \text { Description and Valid Entries } \\ \hline \text { CenterDC } & \text { false } & \begin{array}{l}\text { Shifts the zero-frequency } \\ \text { component to the center of a } \\ \text { two-sided spectrum. }\end{array} \\ & & \text { - When you set SpectrumType to } \\ \text { onesided, it is changed to } \\ \text { twosided and the data is } \\ \text { converted to a two-sided }\end{array}\right]$

Note If the spectrum data you specify is calculated over half the Nyquist interval and you do not specify a corresponding frequency vector, the default frequency vector assumes that the number of points in the whole FFT was even. Also, the plot option to convert to a whole or two-sided spectrum assumes the original whole FFT length was even.
noisepsd(hd, l, opts) uses an options object opts to specify the optional input arguments instead of specifying property-value pairs in the command. Use opts = noisepsdopts (hd) to create the object. opts then has the noisepsd settings from hd. After creating opts, you change the property values before calling noisepsd:

```
set(opts,'fs',48e3); % Set Fs to 48 kHz.
```


Examples

Compute the PSD of the output noise caused by the quantization processes in a fixed-point, direct form FIR filter.

```
b = firgr(27,[0 . 4 .6 1],[[1 1 0 0] );
h = dfilt.dffir(b); % Create the filter object.
h.arithmetic = 'fixed'; % Quantize the filter to fixed-point.
hpsd = noisepsd(h);
plot(hpsd)
```

hpsd looks like this-the data resulting from the noise PSD calculation. You can review the data in hpsd. data'.

Here is the specification for hpsd.

```
hpsd =
```

```
Name: 'Power Spectral Density'
Data: [257x1 double]
```


SpectrumType: 'Onesided
 Frequencies: [257x1 double]
 NormalizedFrequency: true
 Fs: 'Normalized'

See Also filter, noisepsdopts, norm, reorder, scale spectrum.welch in the Signal Processing Toolbox

McClellan, et al., Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, 1998.

Purpose

Syntax
Description

Create an object that contains options for running the output noise PSD computation noisepsd on a filter

```
opts = noisepsdopts(hd)
```

opts = noisepsdopts(hd) uses the current settings in the filter hd to create an options object opts that contains specified options for computing the output noise PSD for a filter hd. You can pass opts to the scale method as an input argument to apply scaling settings to a second-order filter.

Within opts, the noisepsd options object returned by noisepsdopts, you can set the following properties:

| Property Name | Default Value | Description and Valid Entries |
| :--- | :--- | :--- |
| Nfft | 512 | Specifies the number of FFT
 points to use to calculate the
 PSD. |
| NormalizedFrequency | true | Determines whether to use
 normalized frequency. Enter one
 of the logical true or false. Note
 that you do not use single
 quotations around this property
 value because it is a logical
 value, not a string. |
| Fs | normalized | Specifies the sampling frequency
 to use when you set |
| NormalizedFrequency to false. | | |
| Any integer value greater than 1 | | |
| works. Enter the value in Hz. | | |

noisepsdopts

| Property Name | Default Value | Description and Valid Entries |
| :--- | :--- | :--- |
| SpectrumType | onesided | Tells noisepsd whether to
 generate a one-sided PSD or
 two-sided. Options are onesided
 or twosided. If you choose a
 two-sided computation, you can
 also choose centerdc $=$ true. |
| | | Otherwise, centerdc must be |
| false. | | |

| Property Name | Default Value | Description and Valid Entries |
| :--- | :--- | :--- |
| CenterDC | false | Shifts the zero-frequency
 component to the center of a
 two-sided spectrum. |
| | | - When you set SpectrumType to |
| onesided, it is changed to | | |
| twosided and the data is | | |
| | | converted to a two-sided |
| | | spectrum. |

See Also noisepsd

Purpose Return the p-norm of adaptfilt, dfilt, or mfilt objects

Syntax

$$
\begin{aligned}
& l=\operatorname{norm}(\mathrm{ha}) \\
& 1=\operatorname{norm}(\mathrm{ha}, \mathrm{pnorm}) \\
& 1=\operatorname{norm}(\mathrm{hd}) \\
& 1=\operatorname{norm}(\mathrm{hd}, \operatorname{pnorm}) \\
& 1=\operatorname{norm}\left(\mathrm{hd}, \mathrm{l}^{\prime} \mathrm{l}^{\prime}, \mathrm{tol}\right) \\
& 1=\operatorname{norm}(\mathrm{hm}) \\
& 1=\operatorname{norm}(\mathrm{hm}, \text { pnorm })
\end{aligned}
$$

Description All of the variants of norm return the filter p-norm for the object in the syntax, either an adaptive filter, a digital filter, or a multirate filter. When you omit the pnorm argument, norm returns the L2-norm for the object.

Note that by Parseval's theorem, the L2-norm of a filter is equal to the 12 norm. This equality is not true for the other norm variants.

For adapffilt Objects

l = norm(ha)returns the L2-norm of an adaptive filter.
l = norm(ha, pnorm) adds the input argument pnorm to let you specify the norm returned. pnorm can be either

- Frequency-domain norms specified by one of L1, L2, or Linf
- Discrete-time domain norms specified by one of 11,12 , or linf

For dfilt Objects

$1=\operatorname{norm}(h d)$ returns the L2-norm of a discrete-time filter.
l = norm(hd, pnorm) includes input argument pnorm that lets you specify the norm returned. pnorm can be either

- Frequency-domain norms specified by one of L1, L2, or Linf
- Discrete-time domain norms specified by one of 11,12 , or linf

By Parseval's theorem, the L2-norm of a filter is equal to the 12 norm. This equality is not true for the other norm variants.

IIR filters respond slightly differently to norm. When you compute the 12 , linf, L1, and L2 norms for an IIR filter, norm (. . . , L2, tol) lets you specify the tolerance for the accuracy in the computation. For 11, 12, L2, and linf, norm uses the tolerance to truncate the infinite impulse response that it uses to calculate the norm. For L1, norm passes the tolerance to the numerical integration algorithm. Refer to Examples to see this in use. You cannot specify Linf for the norm and include the tol option.

For mfilt Objects

$1=\operatorname{norm}(\mathrm{hm})$ returns the L2-norm of a multirate filter.
$1=$ norm(hm, pnorm) includes argument pnorm to let you specify the norm returned. pnorm can be either

- Frequency-domain norms specified by one of L1, L2, or Linf
- Discrete-time domain norms specified by one of 11,12 , or linf

Note that, by Parseval's theorem, the L2-norm of a filter is equal to the 12 norm. This equality is not true for the other norm variants.

Examples

Adaptfilt Objects

For the adaptive filter example, compute the 2-norm of an adaptfilt object, here an LMS-based adaptive filter.

```
ha = adaptfilt.lms; % norm(ha) is zero because all coeffs are zero
% Create some data to filter to generate filter coeffs
x = randn(100,1);
d = x + randn(100,1);
[y,e] = filter(ha,x,d);
l2 = norm(ha); % Now norm(ha) is nonzero
12 =
```

1.1231

Dfilt Objects

To demonstrate the tolerance option used with an IIR filter (dfilt object), compute the 2 -norm of filter hd with a tolerance of $1 \mathrm{e}-10$.

```
d=fdesign.lowpass('n,fc',5,0.4)
```

```
    d =
            ResponseType: 'Lowpass with cutoff'
            SpecificationType: 'N,Fc'
            Description: {2x1 cell}
            NormalizedFrequency: true
                                    Fs: 'Normalized'
            FilterOrder: 5
            Fcutoff: 0.4000
hd = butter(d);
l2=norm(hd,'l2',1e-10)
12 =
    0.6336
```


Mfilt Objects

```
In this example, compute the infinity norm of an FIR interpolator, which is an mfilt object.
```

```
hm = mfilt.firinterp;
```

hm = mfilt.firinterp;
linf = norm(hm,inf);
linf = norm(hm,inf);
linf =
linf =
2.0002

```

\section*{See Also}
```

reorder, scale, scalecheck

```

Purpose
Normalize filter numerator or feed-forward coefficients to be between -1 and 1

\section*{Syntax \\ Description}

Examples
normalize(hq)
\(\mathrm{g}=\) normalize(hq)
normalize( hq ) normalizes the filter numerator coefficients for a quantized filter to have values between -1 and 1 . Notice that the coefficients of hq change-normalize does not copy hq and return the copy. To restore the coefficients of hq to the original values, use denormalize.

Note that for lattice filters, the feed-forward coefficients stored in the property lattice are normalized.
\(\mathrm{g}=\) normalize(hd) normalizes the numerator coefficients for the filter hq to between -1 and 1 and returns the gain \(g\) due to the normalization operation. Calling normalize again does not change the coefficients. g always returns the gain returned by the first call to normalize the filter.

Create a direct form II quantized filter that uses second-order sections. Then use normalize to maximize the use of the range of representable coefficients.
```

d=fdesign.lowpass('n,fp,ap,ast', 8,.5,2,40);
hd=ellip(d);
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [4x6 double]
ScaleValues: [5x1 double]
PersistentMemory: 'on'
States: [2x4 double]
NumSamplesProcessed: 0
hd.arithmetic='fixed'
hd =

```

FilterStructure: 'Direct-Form II, Second-Order Sections'
```

 Arithmetic: 'fixed'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: 'on'
States: [1x1 embedded.fi]
NumSamplesProcessed: 0
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
StageInputWordLength: 16
StageInputAutoScale: true
StageOutputWordLength: 16
StageOutputAutoScale: true
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
StateWordLength: 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: false

```

Check the filter coefficients to see that some of them are greater than 1.
```

hd.sosMatrix

```
\begin{tabular}{llllll} 
ans \(=\) \\
1.0000 & 1.5132 & 1.0000 & 1.0000 & -0.9207 & 0.4373 \\
1.0000 & 0.3867 & 1.0000 & 1.0000 & -0.2779 & 0.8242 \\
1.0000 & 0.0929 & 1.0000 & 1.0000 & -0.0514 & 0.9610 \\
1.0000 & 0.0339 & 1.0000 & 1.0000 & -0.0020 & 0.9934
\end{tabular}

Use normalize to modify the coefficients into the range between -1 and 1 . A quick check of the SOS matrix shows all of the numerator coefficients now within the limits. You see that \(g\) contains the gains applied to each section of the SOS filter.
```

g = normalize(hd)
g =
1.5132
1.0000
1.0000
1.0000
hd.sosMatrix
ans =
0.6608 1.0000 0.6608 1.0000 -0.9207 0.4373
1.0000 0.3867 1.0000 1.0000 -0.2779 0.8242
1.0000 0.0929 1.0000 1.0000 -0.0514 0.9610
1.0000 0.0339 1.0000 1.0000 -0.0020 0.9934

```

Notice that none of the numerator coefficients exceed -1 or 1.

\section*{See Also \\ denormalize}

\section*{Purpose Return the number of filter states in a discrete-time filter or multirate filter}
\[
\begin{array}{ll}
\text { Syntax } & n=\text { nstates }(\mathrm{hd}) \\
& \mathrm{n}=\text { nstates }(\mathrm{hm})
\end{array}
\]

\section*{Description Discrete-Time Filters}
\(\mathrm{n}=\) nstates(hd) returns the number of states n in the discrete-time filter hd. The number of states depends on the filter structure and the coefficients.

\section*{Multirate Filters}
\(\mathrm{n}=\) nstates \((\mathrm{hm})\) returns the number of states n in the multirate filter hm . The number of states depends on the filter structure and the coefficients.

Examples Check the number of states for two different filters, one a direct form FIR filter, the other a multirate filter.
```

h=firls(30,[0 .1 .2 .5]*2,[[$$
\begin{array}{llll}{1}&{1}&{0}&{0}\end{array}
$$])
hd=dfilt.dffir(h)
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1\times31 double]
PersistentMemory: 'on'
States: [30x1 double]
NumSamplesProcessed: 0
n=nstates(hd)
n =
30
hm=mfilt.firfracdecim(2,3)

```
```

hm =
FilterStructure: [1x46 char]
Numerator: [1x72 double]
RateChangeFactors: [2 3]
PersistentMemory: false
States: [35x1 double]
NumSamplesProcessed: 0
n=nstates(hm)
n =
35

```

See Also mfilt

Purpose Return the filter order of a quantized filter

\section*{Syntax \(\quad n=\operatorname{order}(h q)\)}

Description

Examples
\(n=\operatorname{order}(\mathrm{hq})\) returns the order n of the quantized filter hq. When hq is a single-section filter, \(n\) is the number of delays required for a minimum realization of the filter.

When hq has more than one section, \(n\) is the number of delays required for a minimum realization of the overall filter.

Create a discrete-time filter. Quantize the filter and convert to second-order section form. Then use order to check the order of the filter.
```

[b,a] = ellip(4,3,20,.6); % Create the reference filter.
hq = dfilt.df2(b,a);
% Quantize the filter and convert to second-order sections.
set(hq,'arithmetic','fixed');
n=order(hq) % Check the order of the overall filter.
n = 4

```

Purpose
Return the phase delay of a discrete-time filter or multirate filter

\section*{Syntax}
```

phasedelay(hd)
[phi,w] = phasedelay(hd,n)
[phi,w] = phasedelay(...,f)
phasedelay(hm)
[phi,w] = phasedelay(hm,n)
[phi,w] = phasedelay(...,f)
[phi,w] = phasedelay(...,fs)

```

\section*{Description}

The following sections describe phasedelay operation for discrete-time filters
and multirate filters. For more information about optional input arguments for phasedelay, refer to phasez in the Signal Processing Toolbox.

\section*{Discrete-Time Filters}
phasedelay (hd) displays the phase delay response of hd in the Filter Visualization Tool (FVTool).
[phi,w]=phasedelay (hd,n) returns vectors phi and w containing the instantaneous phase delay response of the adaptive filter hd, and the frequencies in radians at which it is evaluated. The response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hd is a vector of filter objects, phasedelay returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of phi corresponds to each filter in the vector. You can provide fs, the sampling frequency, as an input as well. phasedelay uses fs to calculate the delay response and plots the response to \(\mathrm{fs} / 2\).

\section*{Multirate Filters}
phasedelay (hm) displays the phase response of hm in the Filter Visualization Tool (FVTool).

\section*{phasedelay}
[phi,w]=phasedelay (hm,n) returns vectors phi and w containing the instantaneous phase delay response of the adaptive filter hm, and the frequencies in radians at which it is evaluated. The response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hm is a vector of filter objects, phasedelay returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of phi corresponds to each filter in the vector.

Note that the multirate filter delay response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, phasedelay assumes the filter is running at that rate.

For multistage cascades, phasedelay forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. phasedelay does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2 -stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. phasedelay uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to phasedelay, the function interprets fs as the rate at which the equivalent filter is running.

See Also
freqz, grpdelay, phasez, zerophase, zplane
freqz, fvtool, phasez, zerophase in the Signal Processing Toolbox documentation

\section*{Purpose}

Syntax

\section*{Description} filter, or multirate filter
```

phasez(ha)

```
phasez(ha)
[phi,w] = phasez(ha,n)
[phi,w] = phasez(ha,n)
[phi,w] = phasez(...,f)
[phi,w] = phasez(...,f)
phasez(hd)
phasez(hd)
[phi,w] = phasez(hd,n)
[phi,w] = phasez(hd,n)
[phi,w] = phasez(...,f)
[phi,w] = phasez(...,f)
phasez(hm)
phasez(hm)
[phi,w] = phasez(hm,n)
[phi,w] = phasez(hm,n)
[phi,w] = phasez(...,f)
[phi,w] = phasez(...,f)
[phi,w] = phasez(...,fs)
```

[phi,w] = phasez(...,fs)

```

Return the unwrapped phase response for an adaptive filter, discrete-time

The following sections describe phasez operation for adaptive filters, discrete-time filters, and multirate filters. For more information about optional input arguments for phasez, refer to phasez in the Signal Processing Toolbox.

\section*{Adaptive Filters}

For adaptive filters, phasez returns the instantaneous unwrapped phase response based on the current filter coefficients.
phasez (ha) displays the phase response of ha in the Filter Visualization Tool (FVTool).
[phi,w]=phasez(ha,n) returns vectors phi and w containing the instantaneous phase response of the adaptive filter ha, and the frequencies in radians at which it is evaluated. The phase response is evaluated at n points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192.

If ha is a vector of filter objects, phasez returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of phi corresponds to each filter in the vector.

\section*{Discrete-Time Filters}
phasez(hd) displays the phase response of hd in the Filter Visualization Tool (FVTool).
[phi,w]=phasez(hd,n) returns vectors phi and w containing the instantaneous phase response of the adaptive filter hd, and the frequencies in radians at which it is evaluated. The phase response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hd is a vector of filter objects, phasez returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of phi corresponds to each filter in the vector.

\section*{Multirate Filters}
phasez (hm) displays the phase response of hm in the Filter Visualization Tool (FVTool).
[phi,w]=phasez(hm,n) returns vectors phi and w containing the instantaneous phase response of the adaptive filter hm , and the frequencies in radians at which it is evaluated. The phase response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hm is a vector of filter objects, phasez returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of phi corresponds to each filter in the vector.

Note that the multirate filter response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, phasez assumes the filter is running at that rate.

For multistage cascades, phasez forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. phasez does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4. An equivalent single-stage filter with an overall interpolation factor of 8 can be found. phasez uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to phasez, the function interprets \(f s\) as the rate at which the equivalent filter is running.

See Also
freqz, grpdelay, phasedelay, zerophase, zplane
freqz, fvtool, phasez in the Signal Processing Toolbox documentation

\section*{polyphase}

Purpose Return the polyphase decomposition of multirate filters
Syntax \(\quad\)\begin{tabular}{l}
\(p=\operatorname{polyphase}(\mathrm{hm})\) \\
polyphase \((\mathrm{hm})\)
\end{tabular}

Description

\section*{Examples}
\(\mathrm{p}=\) polyphase (hm) returns the polyphase matrix p of the multirate filter hm. Each row in the matrix represents one subfilter of the multirate filter. The first row of matrix \(p\) represents the first subfilter, the second row the second subfilter, and so on to the last subfilter.
polyphase (hm) called with no output argument launches the Filter Visualization Tool (FVTool) with all the polyphase subfilters to allow you to analyze each component subfilter individually.

When you create a multirate filter that uses polyphase decomposition, polyphase lets you analyze the component filters indiviually by returning the components as rows in a matrix.

This example creates an interpolate by eight filter.
```

hm=mfilt.firinterp(8)
hm =
FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
Numerator: [1x192 double]
InterpolationFactor: 8
PersistentMemory: false
States: [23x1 double]
NumSamplesProcessed: 0
In this syntax, the matrix p contains all of the subfilters for $h m$, one filter per matrix row.

```
```

p=polyphase(hm)
p =
Columns 1 through 8

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -0.0000 | 0.0002 | -0.0006 | 0.0013 | -0.0026 | 0.0048 | -0.0081 | 0.0133 |
| -0.0001 | 0.0004 | -0.0012 | 0.0026 | -0.0052 | 0.0094 | -0.0160 | 0.0261 |
| -0.0001 | 0.0006 | -0.0017 | 0.0038 | -0.0074 | 0.0132 | -0.0223 | 0.0361 |

```
\begin{tabular}{llllllll}
-0.0002 & 0.0008 & -0.0020 & 0.0045 & -0.0086 & 0.0153 & -0.0257 & 0.0415 \\
-0.0002 & 0.0008 & -0.0021 & 0.0045 & -0.0086 & 0.0151 & -0.0252 & 0.0406 \\
-0.0002 & 0.0007 & -0.0018 & 0.0038 & -0.0071 & 0.0124 & -0.0205 & 0.0330 \\
-0.0001 & 0.0004 & -0.0011 & 0.0022 & -0.0041 & 0.0072 & -0.0118 & 0.0189
\end{tabular}

\section*{Columns 9 through 16}
\begin{tabular}{rrrrrrrr}
0 & 0 & 0 & 0 & 1.0000 & 0 & 0 & 0 \\
-0.0212 & 0.0342 & -0.0594 & 0.1365 & 0.9741 & -0.1048 & 0.0511 & -0.0303 \\
-0.0416 & 0.0673 & -0.1189 & 0.2958 & 0.8989 & -0.1730 & 0.0878 & -0.0527 \\
-0.0576 & 0.0938 & -0.1691 & 0.4659 & 0.7814 & -0.2038 & 0.1071 & -0.0648 \\
-0.0661 & 0.1084 & -0.2003 & 0.6326 & 0.6326 & -0.2003 & 0.1084 & -0.0661 \\
-0.0648 & 0.1071 & -0.2038 & 0.7814 & 0.4659 & -0.1691 & 0.0938 & -0.0576 \\
-0.0527 & 0.0878 & -0.1730 & 0.8989 & 0.2958 & -0.1189 & 0.0673 & -0.0416 \\
-0.0303 & 0.0511 & -0.1048 & 0.9741 & 0.1365 & -0.0594 & 0.0342 & -0.0212
\end{tabular}

Columns 17 through 24
\begin{tabular}{rrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.0189 & -0.0118 & 0.0072 & -0.0041 & 0.0022 & -0.0011 & 0.0004 & -0.0001 \\
0.0330 & -0.0205 & 0.0124 & -0.0071 & 0.0038 & -0.0018 & 0.0007 & -0.0002 \\
0.0406 & -0.0252 & 0.0151 & -0.0086 & 0.0045 & -0.0021 & 0.0008 & -0.0002 \\
0.0415 & -0.0257 & 0.0153 & -0.0086 & 0.0045 & -0.0020 & 0.0008 & -0.0002 \\
0.0361 & -0.0223 & 0.0132 & -0.0074 & 0.0038 & -0.0017 & 0.0006 & -0.0001 \\
0.0261 & -0.0160 & 0.0094 & -0.0052 & 0.0026 & -0.0012 & 0.0004 & -0.0001 \\
0.0133 & -0.0081 & 0.0048 & -0.0026 & 0.0013 & -0.0006 & 0.0002 & -0.0000
\end{tabular}

Finally, using polyphase without an output argument opens the Filter Visualization Tool, ready for you to use the analysis capabilities of the tool to investigate the interpolator hm .
polyphase(hm)
In this figure, we switch FVTool to show the magnitude responses for the subfilters.

\section*{polyphase}


\section*{See Also \\ mfilt}

Purpose
Directly realize a Simulink subsystem block for a direct-form quantized filter
```

Syntax realizemdl(hq)
realizemdl(hq, propertyname1, propertyvalue1,...)

```

Description realizemdl(hq) generates a model of filter hq in a Simulink subsystem block using sum, gain, and delay blocks from Simulink. The properties and values of hq define the resulting subsystem block parameters.
realizemdl requires Simulink. To accurately realize models of quantized filters, use Simulink Fixed-Point.
realizemdl(hq, propertyname1, propertyvalue1, ...) generates the model or hq with the associated propertyname/propertyvalue pairs, and any other values you set in hq.

Note Subsystem filter blocks that you use realizemdl to create support sample-based input and output only. You cannot input or output frame-based signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control more fully the way the block subsystem model gets built, such as where the block goes, what the name is, or how to optimize the block structure. Valid properties and values for realizemdl are listed in this table, with the default value noted and descriptions of what the properties do.
\begin{tabular}{l|l|l}
\hline Property Name & Property Values & Description \\
\hline Destination & \begin{tabular}{l} 
'current ' (default) \\
or 'new'
\end{tabular} & \begin{tabular}{l} 
Specify whether to add the block to your \\
current Simulink model or create a new \\
model to contain the block.
\end{tabular} \\
\hline Blockname & 'filter' (default) & \begin{tabular}{l} 
Provides the name for the new subsystem \\
block. By default the block is named \\
'filter'. To enter a name for the block, use \\
the propertyvalue set to a string \\
'blockname'.
\end{tabular} \\
\hline
\end{tabular}

\section*{realizemdl}
\begin{tabular}{l|l|l}
\hline Property Name & Property Values & Description \\
\hline OverwriteBlock & 'off' or 'on' & \begin{tabular}{l} 
Specify whether to overwrite an existing \\
block with the same name or create a new \\
block.
\end{tabular} \\
\hline OptimizeZeros & \begin{tabular}{l} 
'off' \\
'on'
\end{tabular} & Sefault) or \\
\hline OptimizeOnes & 'off' \(^{\prime}\) 'on' (default) or & \begin{tabular}{l} 
Specify whether to remove zero-gain blocks. \\
with direct connections.
\end{tabular} \\
\hline OptimizeNegOnes & \begin{tabular}{l} 
'off' \\
'on'
\end{tabular} & \begin{tabular}{l} 
Specify whether to replace negative \\
unity-gain blocks with a sign change at the \\
nearest sum block.
\end{tabular} \\
\hline OptimizeDelayChains & \begin{tabular}{l} 
'off' \\
'on'
\end{tabular} & \begin{tabular}{l} 
Specify whether to replace cascaded chains \\
of delay blocks with a single integer delay \\
block to provide an equivalent delay.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

To demonstrate how realizemdl works to create models, these two examples show the default and optional syntaxes in use. Both examples begin from a quantized filter designed by butter in the Signal Processing Toolbox.
```

[b,a] = butter(4,.5);
hq = dfilt.df1(b,a);

```

Example 1—Using the default syntax to realize a model of your quantized filter hq. When you use this syntax, realizemdl uses blocks from Simulink and Simulink Fixed-Point to realize the subsystem in your current Simulink model.
```

realizemdl(hq);

```

Look at the figure to see the model as realized by realizemdl.


Example 2-Using propertyname/propertyvalue pairs to specify the features of the subsystem block model created by realizemdl.

First, convert the filter to fixed-point arithmetic to ensure a few zero valued coefficients:
```

hq.arithmetic = 'fixed';

```

Your filter has two zero value denominators, \(a(2)\) and \(a(4)\) :
FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'
Numerator: [0.0940 0.37590 .56390 .37590 .0940\(]\)
Denominator: [1 00.486000 .0176 ]
PersistentMemory: false
States: Numerator: [4x1 fi]
Denominator:[4×1 fi]
NumSamplesProcessed: 0
Now realize the model implementation.
realizemdl(hq, 'optimizezeros', 'on', ..
'blockname', 'newfiltermodel');

Since this example uses the optional property name optimizezeros, set to 'on', the resulting block subsystem is slightly different-the zero-gain blocks for coefficients a(2) and a(4) are not included in the subsystem.


See Also
realizemdl under the methods for dfilt in the Signal Processing Toolbox

\section*{Purpose}

Syntax \(\quad\) href \(=\) reffilter (hd)
```

href = reffilter(hd)

```

\section*{Examples}

Return the double-precision floating-point reference filter that can correspond to a fixed-point or single-precision floating-point filter
href = reffilter(hd) returns a new filter href that has the same structure as hd, but uses the reference coefficients and has its arithmetic property set to double. Note that hd can be either a fixed-point filter (arithmetic property set to 'fixed', or a single-precision floating-point filter whose arithmetic property is 'single').
reffilter(hd) differs from double(hd) in that
- the filter href returned by reffilter has the reference coefficients of hd.
- double(hd) returns the quantized coefficients of hd represented in double-precision.

To check the performance of your fixed-point filter, use href = reffilter (hd) to quickly have the floating-point, double-precision version of hd available for comparison.

Compare several fixed-point quantizations of a filter with the same double-precision floating-point version of the filter.
```

h = dfilt.dffir(firceqrip(87,.5,[1e-3,1e-6])); % Lowpass filter.
h1 = copy(h); h2 = copy(h); % Create copies of h.
h.arithmetic = 'fixed'; % Set h to filter using fixed-point
% arithmetic.
h1.arithmetic = 'fixed'; % Same for h1.
h2.arithmetic = 'fixed'; % Same for h2.
h.CoeffWordLength = 16; % Use 16 bits to represent the
% coefficients.
h1.CoeffWordLength = 12; % Use 12 bits to represent the
% coefficients.
h2.CoeffWordLength = 8; % Use 8 bits to represent the
% coefficients.
href = reffilter(h);
hfvt = fvtool(href,h,h1,h2);
set(hfvt,'ShowReference','off'); % Reference displayed once
% already.

```
```

legend(hfvt,'Reference filter','16-bits','12-bits','8-bits');

```

The following plot, taken from FVTool, shows href, the reference filter, and the effects of using three different word lengths to represent the coefficients.


As expected, the fidelity of the fixed-point filters suffers as you change the representation of the coefficients. With href available, it is easy to see just how the fixed-point filter compares to the ideal.

See Also double

\section*{Purpose}

Rearrange the order of the sections in a second-order section filter

\author{
Syntax \\ Description
}
```

reorder(hd,order)
reorder(hd,numorder,denorder)
reorder(hd,numorder,denorder,svorder)
reorder(hd,filter_type)
reorder(hd,dir_flag)
reorder(hd,dir_flag,sv))

```
reorder (hd, order) rearranges the sections of filter hd using the vector of indices provided in order.
order does not need to contain all of the indices of the filter. Omitting one or more filter section indices removes the omitted sections from the filter. You can use a logical array to remove sections from the filter, but not to reorder it (refer to the Examples to see this done).
reorder (hd, numorder, denorder) reorders the numerator and denominator separately using the vectors of indices in numorder and denorder. These two vectors must be the same length.
reorder(hd, numorder, denorder, svorder) the scale values can be independently reordered. When svorder is not specified, the scale values are reordered with the numerator. The output scale value always remains on the end when you use the argument numorder to reorder the scale values.
reorder(hd,filter_type) where filter_type is one of auto, lowpass, highpass, bandpass, or bandstop, reorders hd in a way suitable for the filter type you specify by filter_type. This reordering mode can be especially helpful for fixed-point implementations where the order of the filter sections can significantly affect your filter performance.

The auto option and automatic ordering only apply to filters that you used fdesign to create. With the auto option as an input argument, reorder automatically rearranges the filter sections depending on the specification response type of the design, such as lowpass, or bandstop. This technique appears in the first example.
reorder(hd,dir_flag) if dir_flag is up, the first filter section contains the poles closest to the origin, and the last section contains the poles closest to the
unit circle. When dir_flag is down, the sections are ordered in the opposite direction. reorder always pairs zeros with the poles closest to them.
reorder(hd,dir_flag,sv) sv is either the string poles or zeros and describes how to reorder the scale values. By default the scale values are not reordered when you use the dir_flag option.

\section*{Examples}

Being able to rearrange the order of the sections in a filter can be a powerful tool for controlling the filter process. This example uses reorder to change the sections of a df2sos filter, and displays the results of the changes in Filter Visualization Tool using setfilter to select the filter to display.

First use the automatic reordering option on a lowpass filter.
```

d = fdesign.lowpass('n,fc',15,0.5)
hd = butter(d);
d =
ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 15
Fcutoff: 0.5000
reorder(hd,'auto')
hd
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [8x6 double]
ScaleValues: [9x1 double]
PersistentMemory: false
States: [2x8 double]
NumSamplesProcessed: 0

```

Create an SOS filter in the direct form II implementation.
```

[z,p,k] = butter(15,.5);
[sos, g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);

```

Reorder the sections by moving the second section to be between the seventh and eighth sections.
```

reorder(hd, [1 3:7 2 8]);
hfvt = fvtool(hd, 'analysis', 'coefficients');

```

Remove the third, fourth and seventh sections.
```

hd1 = copy(hd);
reorder(hd1, logical([1 1 0 0 1 1 0 1]));
setfilter(hfvt, hd1);

```

Move the first filter to the end and remove the eighth section
```

hd2 = copy(hd);
reorder(hd2, [2:7 1]);
setfilter(hfvt, hd2);

```

Move the numerator and denominator independently.
```

hd3 = copy(hd);
reorder(hd3, [1 3:8 2], [1:8]);
setfilter(hfvt, hd3);

```

\section*{See Also}
cumsec, scale, scaleopts
Reference
Schlichthärle, Dietrich, Digital Filters Basics and Design, Springer-Verlag Berlin Heidelberg, 2000.
\(\left.\begin{array}{ll}\text { Purpose } & \begin{array}{l}\text { Reset the properties of adaptive filters, discrete-time filters, and multirate } \\
\text { filters to their initial conditions }\end{array} \\
\text { Syntax } \\
\text { reset (ha) } \\
\text { reset (hd) } \\
\text { reset (hm) }\end{array} \quad \begin{array}{l}\text { reset (ha) resets all the properties of the adaptive filter ha that are updated } \\
\text { when filtering to the value specified at construction. If you do not specify } \\
\text { a value for any particular property when you construct an adaptive filter, the } \\
\text { property value for that property is reset to the default value for the property. } \\
\text { reset (hd) resets all the properties of the discrete-time filter hd to their factory } \\
\text { values that are modifed when you run the filter. In particular, the } \\
\text { NumSamplesProcessed and States properties are reset to zero. }\end{array}\right\}\)\begin{tabular}{l} 
reset (hm) resets all the properties of the multirate filter hm to their factory \\
value that are modifed when the filter is run. In particular, the \\
NumSamplesProcessed and States properties are reset to zero when hm is a \\
decimator. Additionally, the filter internal properties are also reset to their \\
factory values.
\end{tabular}

Purpose
Scale the sections of second-order section filters

\section*{Syntax \\ Description}
scale(hd)
scale(hd, pnorm)
scale(hd, pnorm,p1v, p2, v2, )
scale(hd, pnorm, opts)
scale(hd) scales the second-order section filter hd using peak magnitude response scaling (L-infinity, Linf), to reduce the possibility of overflows when your filter hd operates in fixed-point arithmetic mode.
scale(hd, pnorm) specifies the norm used to scale the filter. pnorm can be either a discrete-time-domain norm or a frequency-domain norm.

Valid time-domain norm values for pnorm are 11, 12, and linf. Valid frequency-domain norm values are L1, L2, and Linf. Note that L2 norm is equal to 12 norm (by Parseval's theorem) but this is not true for other norms-l1 is not the same as L1 and Linf is not the same as linf.

Filter norms can be ordered in terms of how stringent they are, as follows from most stringent to least:
\(11>=\operatorname{Linf}>=L 2=12>=L 1>=\operatorname{linf}\)
Using 11 , the most stringent scaling, produces a filter that is least likely to overflow, but has the worst signal-to-noise ratio performance. Linf scaling, the least stringent, and the default scaling, is the most commonly used scaling norm.
scale(hd, pnorm, p1, v1, p2, v2, ...) uses parameter name/parameter value pair input arguments to specify optional scaling parameters. Valid parameter names and options values appear in the table.
\begin{tabular}{l|l|l}
\hline Parameter & Default & Description and Valid Value \\
\hline MaxNumerator & 2 & \begin{tabular}{l} 
Maximum allowed value for \\
numerator coefficients.
\end{tabular} \\
\hline MaxScaleValue & Not Used & \begin{tabular}{l} 
Maximum allowed scale values. \\
The filter applies the \\
MaxScaleValue limit only when \\
you set ScaleValueConstraint to \\
a value other than unit (the \\
default setting). Setting \\
MaxScaleValue to any numerical \\
value automatically changes the \\
ScaleValueConstraint setting to \\
none.
\end{tabular} \\
\hline NumeratorConstraint & none & \begin{tabular}{l} 
Specifies whether and how to \\
constrain numerator coefficient \\
values. Options are none, \\
normalize, po2, and unit
\end{tabular} \\
\hline OverflowMode & wrap & \begin{tabular}{l} 
Sets the way the filter handles \\
arithmetic overflow situations \\
during scaling. Choose from wrap, \\
saturate or satall.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline Parameter & Default & Description and Valid Value \\
\hline ScaleValueConstraint & unit & \begin{tabular}{l} 
Specify whether to constrain the \\
filter scale values, and how to \\
constrain them. Valid options are \\
none, po2, and unit. Choosing \\
unit for the constraint disables \\
the MaxScaleValue property \\
setting. po2 constrains the scale \\
values to be powers of 2, while \\
none removes any constraint on \\
the scale values.
\end{tabular} \\
\hline sosReorder & auto & \begin{tabular}{l} 
Reorder filter sections prior to \\
applying scaling. Select one of \\
auto, none, up, or down.
\end{tabular} \\
\hline
\end{tabular}

If your device does not have guard bits available and you are using saturation arithmetic for filtering, use the satall setting for OverFlowMode instead of saturate.

With the Arithmetic property of hd set to double or single, the filter uses the default values for all options that you do not specify explicitly. When you set Arithmetic to fixed, the values used for the scaling options are set according to the settings in filter hd. However, if you specify a scaling option different from the settings in hd, the filter uses your explicit option selection for scaling purposes, but does not change the property setting in hd.
scale(hd, pnorm, opts) uses an input scale options object opts to specify the optional scaling parameters in lieu of specifying parameter-value pairs. You can create the opts object using
```

opts = scaleopts(hd)

```

For more information about scaling objects, refer to scaleopts in the Help system.

\section*{Examples}

Demonstrate the Linf-norm scaling of a lowpass elliptic filter with second-order sections. Start by creating a lowpass elliptical filter in zero, pole, gain ( \(z, p, k\) ) form.
```

$[z, p, k]=\operatorname{ellip}(5,1,50, .3) ;$
[sos,g] $=z p 2 s o s(z, p, k)$;
hd $=$ dfilt.df2sos(sos,g);
scale(hd,'linf','scalevalueconstraint','none','maxscalevalue',2)

```

See Also
cumsec, norm, reorder, scalecheck, scaleopts

Purpose
Syntax \(\quad s=\) scalecheck(hd, pnorm)
Description

Examples Check the Linf-norm scaling of a filter.
```

hs = fdesign.lowpass; % Create a filter design specifications
object.
hd = ellip(hs); % Design an elliptic sos filter
scale(hd,'Linf');
s = scalecheck(hd,'Linf')

```

Or, in another form:
```

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
hd =

```
            FilterStructure: 'Direct-Form I, Second-Order Sections'
                    Arithmetic: 'double'
                    sosMatrix: [5x6 double]
                    ScaleValues: [6x1 double]
                PersistentMemory: false
                    States: [1x1 filtstates.dfiir]
                NumSamplesProcessed: 0
    \(1 \times 1\) struct array with no fields.
    scalecheck(hd,'Linf')
    ans =
        \(\begin{array}{lllll}0.7631 & 0.9627 & 0.9952 & 0.9994 & 1.0000\end{array}\)
See Also
norm, reorder, scale, scaleopts

Purpose Create an object that contains scaling options for second-order section scaling

\section*{Syntax \\ opts = scaleopts(hd)}

Description
opts \(=\) scaleopts (hd) uses the current settings in the filter hd to create an options object opts that contains specified scaling options for second-order section scaling. You can pass opts to the scale method as an input argument to apply scaling settings to a second-order filter.

Within opts, the scaling options object returned by scaleopts, you can set the following properties:
\begin{tabular}{l|l|l}
\hline Parameter & Default & Description and Valid Value \\
\hline MaxNumerator & 2 & \begin{tabular}{l} 
Maximum allowed value for \\
numerator coefficients.
\end{tabular} \\
\hline MaxScaleValue & \begin{tabular}{l} 
No default \\
value
\end{tabular} & \begin{tabular}{l} 
Maximum allowed scale values. \\
The filter applies the \\
MaxScaleValue limit only when \\
you set ScaleValueConstraint \\
to a value other than unit. \\
Setting MaxScaleValue to \\
a numerical value \\
automatically changes the \\
ScaleValueConstraint setting \\
to none.
\end{tabular} \\
\hline NumeratorConstraint & none & \begin{tabular}{l} 
Specifies whether and how to \\
constrain numerator coefficient \\
values. Options are none, \\
normalize, po2, and unit,
\end{tabular} \\
\hline
\end{tabular}

\section*{scaleopts}
\begin{tabular}{l|l|l}
\hline Parameter (Continued) & Default & Description and Valid Value \\
\hline OverflowMode & wrap & \begin{tabular}{l} 
Sets the way the filter handles \\
arithmetic overflow situations \\
during scaling. Choose either \\
wrap or saturate
\end{tabular} \\
\hline ScaleValueConstraint & unit & \begin{tabular}{l} 
Specify whether to constrain \\
the filter scale values, and how \\
to constrain them. Valid options \\
are none, po2, and unit
\end{tabular} \\
\hline
\end{tabular}

When you set the properties of opts and then use opts as an input argument to scale(hd,opts), scale applies the settings in opts to scale hd.

\section*{Examples}

From a filter hd, you can create an options scaling object that contains the scaling options settings you require.
```

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
opts=scaleopts(hd)
opts =
MaxNumerator: 2
NumeratorConstraint: 'none'
OverflowMode: 'wrap'
ScaleValueConstraint: 'unit'
MaxScaleValue: 'Not used'

```

See Also cumsec, norm, reorder, scale, scalecheck

\section*{Purpose}

Syntax

Description

\section*{Examples}

Set the specifications for an existing filter design (fdesign) object
```

setspecs(d,specvalue1,specvalue2,...)
setspecs(d,SpecificationType,specvalue1,specvalue2,...)
setspecs(...,fs)
setspecs(...,inputunits)

```
setspecs(d, specvalue1, specvalue2,...) Set the specifications in the order that they appear in the SpecificationType property for the design object \(d\).
setspecs(d,SpecificationType, specvalue1, specvalue2,...) lets you change the specifications for the object and set values for the new specifiers. When you already have a filter design object, this syntax lets you change the SpecificationType string and the associated specification values for the object, rather than recreating the object to change it.
setspecs (...fs) Set the fs. If you choose to specify the fs, it must be immediately after you provide all of the specifications for the current SpecificationType. Refer to Examples to see this being used.
setspecs(..., inputunits) Specifying the inputunits option allows you to specify your filter magnitude specification values in different units.
inputunits can be either of these strings:
- 'linear'—to indicate that your input specification values represent linear units, such as decimal values for the filter feature locations when you select normalized sampling frequency.
- 'squared'—indicating that your input specification values represent squared magnitude values, usually dB. This is the default value. When you omit the inputunits argument, setspecs assumes all specification values are in square magnitude form.

You are not required to provide fs, the sampling frequency, as an input when you use the inputunits option. As you see from the syntax options, the inputunits option must be the rightmost input argument in the syntaxinputunits must be passed as the final input.

To demonstrate using setspecs, the following examples show how to use various syntax forms to set the values in filter design objects.

\section*{Example 1}

Create a lowpass design object d using filter order and a cutoff value for the location of the edge of the passband. Then change the cutoff and order specifications of \(d\).
```

d = fdesign.lowpass('n,fc')
d =
ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 10
Fcutoff: 0.5000
setspecs(d, 20, .4);
d =
ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 20
Fcutoff: 0.4000

```

\section*{Example 2}

Now specify a sampling frequency after you make d.
```

d = fdesign.lowpass('n,fc')
d =
ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true

```
```

 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff: 0.5000
 setspecs(d, 20, 4, 20);
d
d =
ResponseType: 'Lowpass with cutoff'
SpecificationType: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: false
Fs: 20
FilterOrder: 20
Fcutoff: 4

```

\section*{Example 3}

This example uses the inputunits argument to change from the default setting of square to linear unit. Start with the default lowpass design object that specifies the edge locations for the passband and stopband, and the desired attenuation in the pass- and stopbands.
```

d=fdesign.lowpass
d =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60

```

Convert to linear input values and reset the filter spec for d at the same time. With the linear argument included, the inputs for the response features now need to be in linear units.
```

setspecs(d,.4,.5,.1,.05,'linear')
d
d =
ResponseType: 'Minimum-order lowpass'
SpecificationType: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
Fpass: 0.4000
Fstop: 0.5000
Apass: 1.7430
Astop: 26.0206

```

\section*{Example 4}

Finally, use setspecs to change the SpecificationType string and apply new filter specifications to \(d\).
```

d=fdesign.decim(3)
d =
ResponseType: 'Minimum-order nyquist'
SpecificationType: 'TW,Ast'
Description: {2x1 cell}
DecimationFactor: 3
NormalizedFrequency: true
Fs: 'Normalized'
TransitionWidth: 0.1000
Astop: 80
setspecs(d,'n,ast', 16,70)
d
d =
ResponseType: 'Nyquist with filter order and stopband attenuation'
SpecificationType: 'N,Ast'
Description: {2x1 cell}
DecimationFactor: 3

```

\title{
NormalizedFrequency: true
}

Fs: 'Normalized'
PolyphaseLength: 16
Astop: 70
See Also
designmethods, fdesign.bandpass, fdesign.bandstop, fdesign.decim, fdesign. halfband, fdesign.highpass, fdesign.interp, fdesign.lowpass, fdesign.nyquist, fdesign.src
\begin{tabular}{|c|c|c|c|}
\hline Purpose & \multicolumn{3}{|l|}{Provide access to all the fixed-point scaling modes and features in direct-form FIR filter objects} \\
\hline Syntax & \multicolumn{3}{|l|}{```
specifyall(hd)
specifyall(hd,false)
specifyall(hd,true)
```} \\
\hline \multirow[t]{8}{*}{Description} & \multicolumn{3}{|l|}{specifyall sets all of the autoscale property values of direct-form FIR filters to false and all *modes of the filters to SpecifyPrecision. In this table, you see the results of using specifyall with direct-form FIR filters.} \\
\hline & Property Name & Default & Setting After Applying specifyall \\
\hline & CoeffAutoScale & true & false \\
\hline & OutputMode & AvoidOverflow & SpecifyPrecision \\
\hline & ProductMode & Fullprecision & SpecifyPrecision \\
\hline & AccumMode & KeepMSB & SpecifyPrecision \\
\hline & RoundMode & convergent & convergent \\
\hline & OverflowMode & wrap & wrap \\
\hline
\end{tabular}
specifyall(hd) gives you maximum control over all settings in a filter hd by setting all of the autoscale options that are true to false, turning off all autoscaling and resetting all modes-OutputMode, ProductMode, and AccumMode-to SpecifyPrecision. After you use specifyall, you must supply the property values for the mode- and scaling related properties.
specifyall provides an alternative to changing all these properties individually. Do note that specifyall changes all of the settings; to set some but not all of the modes, set each property as you require.
specifyall(hd,false) performs the opposite operation of specifyall(hd) by setting all of the autoscale options to true; all of the modes to their default values; and hiding the fraction length properties in the display, meaning you cannot access them to set them or view them.
specifyall(hd,true) is equivalent to specifyall(hd).

\section*{Examples}

This examples demonstrates using specifyall to provide access to all of the fixed-point settings of an FIR filter implemented with the direct-form structure. Notice the displayed property values shown after you change the filter to fixed-point arithmetic, then after you use specifyall to disable all of the automatic filter scaling and reset the mode values.
```

b = fircband(12,[0 0.4 0.5 1], [11 1 0 0], [1 0.2], {'w' 'c'});
hd = dfilt.dffir(b);
hd.arithmetic = 'fixed'
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [1x13 double]
PersistentMemory: false
States: [1x1 embedded.fi]
NumSamplesProcessed: 0
CoeffWordLength: 16
CoeffAutoScale: 'true'
Signed: 'on'
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: 40
CastBeforeSum: 'on'
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: 'off'
specifyall(hd)

```
```

hd
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [1\times13 double]
PersistentMemory: false
States: [1x1 embedded.fi]
NumSamplesProcessed: 0
CoeffWordLength: 16
CoeffAutoScale: false
NumFracLength: 16
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'SpecifyPrecision'
OutputFracLength: 11
ProductMode: 'SpecifyPrecision'
ProductWordLength: 32
ProductFracLength: 31
AccumMode: 'SpecifyPrecision'
AccumWordLength: 40
AccumFracLength: 31
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: false

```

The mode properties InputMode, ProductMode, and AccumMode now have the value SpecifyPrecision and the fraction length properties appear in the display. Now you use the properties (InputFracLength, ProdFracLength,

AccumFracLength) to set the precision the filter applies to the input, product, and accumulator operations. CoeffAutoScale switches to false, meaning autoscaling of the filter coefficients will not be done to prevent overflows. None of the other filter properties change when you apply specifyall.

\section*{See Also}
double, reffilter
fi, fimath in the Fixed-Point Toolbox

\section*{Purpose Convert a quantized filter to second-order section form, order, and scale}

\section*{Syntax}

Description

\section*{Examples}

\section*{See Also}
convert, dfilt
tf2sos in your Signal Processing Toolbox documentation

\section*{Purpose Return the step response for adaptive, discrete-time, or multirate filters}
Syntax \(\quad\left[\begin{array}{ll}{[h, t]=\operatorname{stepz}(h a)} \\ & \operatorname{stepz}(h a) \\ & {[h, t]=\operatorname{stepz}(h m)} \\ & \text { stepz }(h m)\end{array}\right.\)

\section*{Description}

The next sections describe common stepz operation with adaptive and multirate filters. For more input options and for information about using stepz with discrete-time filters, refer to stepz in the Signal Processing Toolbox.

\section*{Adaptive Filters}

For adaptive filters, stepz returns the instantaneous zero-phase response based on the current filter coefficients.
[\(\mathrm{h}, \mathrm{t}\)] = stepz(ha) returns the step response h of the multirate filter ha. The length of column vector \(h\) is the length of the impulse response of ha. Returned vector \(t\) contains the time samples at which stepz evaluated the step response. stepz returns \(h\) as a matrix when ha is a vector of filters. Each column of the matrix corresponds to one filter in the vector.
stepz (ha) displays the filter step response in the Filter Visualization Tool (FVTool).

\section*{Multirate Filters}
\([\mathrm{h}, \mathrm{t}]=\operatorname{stepz}(\mathrm{hm})\) returns the step response h of the multirate filter hm. The length of column vector \(h\) is the length of the impulse response of hm . The vector \(t\) contains the time samples at which stepz evaluated the step response. stepz returns h as a matrix when hm is a vector of filters. Each column of the matrix corresponds to one filter in the vector.
stepz (hm) displays the step response in the Filter Visualization Tool (FVTool).

Note that the response is computed relative to the rate at which the filter is running. If a sampling frequency is specified, it is assumed that the filter is running at that rate.

Note that the multirate filter delay response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, stepz assumes the filter is running at that rate.

For multistage cascades, stepz forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. stepz does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. stepz uses the equivalent filter for the analysis. If you specify a sampling frequency fs as an input argument to stepz, the function interprets fs as the rate at which the equivalent filter is running.

See Also freqz, impz

\section*{Purpose Transfer function to coupled allpass conversion}
```

Syntax
[d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a)
[d1,d2,beta] = tf2ca(b,a)

```

Description [d1,d2] = tf2ca(b,a) where \(b\) is a real, symmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, returns real vectors d1 and d2 containing the denominator coefficients of the allpass filters \(H 1(z)\) and \(H 2(z)\) such that
\[
H(z)=\frac{B(z)}{A(z)}=\frac{1}{2[H 1(z)+H 2(z)]}
\]
representing a coupled allpass decomposition.
[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, returns real vectors d1 and d2 containing the denominator coefficients of the allpass filters \(H 1(z)\) and \(H 2(z)\) such that
\[
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[H 1(z)-H 2(z)]
\]

In some cases, the decomposition is not possible with real \(H 1(z)\) and \(H 2(z)\). In those cases a generalized coupled allpass decomposition may be possible, whose syntax is
\[
[d 1, d 2, b e t a]=t f 2 c a(b, a)
\]
to return complex vectors d1 and d2 containing the denominator coefficients of the allpass filters \(H 1(z)\) and \(H 2(z)\), and a complex scalar beta, satisfying |beta| = 1, such that
\[
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[\bar{\beta} \bullet H 1(z)+\beta \bullet H 2(z)]
\]
representing the generalized allpass decomposition.

In the above equations, \(H 1(z)\) and \(H 2(z)\) are real or complex allpass IIR filters given by
\[
H 1(z)=\frac{f l i p l r(\overline{(D 1(z))})}{D 1(z)}, H 2(1)(z)=\frac{f l i p l r((\overline{D 2(1)(z)}))}{D 2(1)(z)}
\]
where \(D 1(z)\) and \(D 2(z)\) are polynomials whose coefficients are given by d1 and d2.

Note A coupled allpass decomposition is not always possible. Nevertheless, Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be factored in this manner. For details, refer to Signal Processing Toolbox User's Guide.

\section*{Examples}

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

\section*{Purpose Transfer function to coupled allpass lattice conversion}

\section*{Syntax \(\quad[k 1, k 2]=\operatorname{tf2cl}(b, a)\) \\ [k1,k2] = tf2cl(b,a)}

Description \(\quad[k 1, k 2]=\operatorname{tf2cl}(b, a)\) where \(b\) is a real, symmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, will perform the coupled allpass decomposition
\[
H(z)=\frac{B(z)}{A(z)}=\frac{1}{2[H 1(z)+H 2(z)]}
\]
of a stable IIR filter \(H(z)\) and convert the allpass transfer functions \(H 1(z)\) and H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1 and k 2 .
[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, performs the coupled allpass decomposition
\[
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[H 1(z)-H 2(z)]
\]
of a stable IIR filter \(H(z)\) and converts the allpass transfer functions \(H 1(z)\) and \(H 2(z)\) to a coupled lattice allpass structure with coefficients given in vectors k1 and k 2 .

In some cases, the decomposition is not possible with real \(H 1(z)\) and \(H 2(z)\). In those cases, a generalized coupled allpass decomposition may be possible, using the command syntax
\[
[k 1, k 2, b e t a]=\operatorname{tf2cl}(b, a)
\]
to perform the generalized allpass decomposition of a stable IIR filter \(H(z)\) and convert the complex allpass transfer functions \(H 1(z)\) and \(H 2(z)\) to corresponding lattice allpass filters
\[
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[\bar{\beta} \bullet H 1(z)+\beta \bullet H 2(z)]
\]
where beta is a complex scalar of magnitude equal to 1 .

Note Coupled allpass decomposition is not always possible. Nevertheless, Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be factored in this manner. For details, refer to Signal Processing Toolbox User's Guide.

\section*{Examples}
```

[b,a]=cheby1(9,.5,.4);
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.
[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed
% numerator and denominators.

```

\section*{See Also}
ca2tf, cl2tf, iirpowcomp
latc2tf, tf2ca, tf2latc in Signal Processing Toolbox

\section*{window}

\section*{Purpose Design an FIR filter using the windowed impulse response method}
```

Syntax h = window(d,fcnhndl,fcnarg)
h = window(d, win)

```

\section*{Examples}

These examples design filters using the two design techniques of specifying a function handle or passing a window vector as an input argument.

\section*{Example 1}

Use a function handle and optional input arguments to design a multirate filter. We use a function handle to the function Kaiser to provide the window. Since this example creates a decimating filter design object, window returns a multirate filter.
```

d = fdesign.decim(4,'pl',14);
hm = window(d,@kaiser,2.5);
fvtool(hm)

```


\section*{Example 2}

Use a window vector provided by the hamming window design function. For this example, the design object is a Nyquist filter, thus window returns hd as a discrete-time filter.
```

d = fdesign.nyquist(5,'n',150);
hd = window(d,hamming(151));
fvtool(hd)

```

\section*{window}

\footnotetext{
See Also
firls, kaiserwin
}
PurposeReturn the zero-phase response for adaptive, discrete-time, and multirate filters
Syntax zerophase(ha)
[hr,w] = zerophase(ha, n)
[hr,w] = zerophase(...,f)
zerophase(hd)
[hr,w] = zerophase(hd, n)
[hr,w] = zerophase(...,f)
zerophase(hm)
[hr,w] = zerophase(hm, n)
\([h r, w]=\) zerophase(...,f)
[hr,w] = zerophase(....,fs)

\section*{Description}
The next sections describe common zerophase operation with adaptive, discrete-time, and multirate filters. For more input options, refer to zerophase in the Signal Processing Toolbox.

\section*{Adaptive Filters}
For adaptive filters, zerophase returns the instantaneous zero-phase response based on the current filter coefficients.
zerophase(ha) displays the zero-phase response of ha in the Filter Visualization Tool (FVTool).
[\(\mathrm{hr}, \mathrm{w}\)] = zerophase (ha, n) returns length n vectors hr and w containing the instantaneous zero-phase response of the adaptive filter ha, and the frequencies in radians at which zerophase evaluated the response. The zero-phase response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. For an FIR filter where \(n\) is a power of two, the computation is done faster using FFTs. If n is not specified, it defaults to 8192.
[\(\mathrm{hr}, \mathrm{w}\)] = zerophase(ha) returns a matrix hr if ha is a vector of filters. Each column of the matrix corresponds to each filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of \(h r\) corresponds to one filter in the vector.

\section*{Discrete-Time Filters}
zerophase(hd) displays the zero-phase response of hd in the Filter Visualization Tool (FVTool).
[hr,w] = zerophase(hd, n) returns length n vectors hr and w containing the instantaneous zero-phase response of the adaptive filter hd, and the frequencies in radians at which zerophase evaluated the response. The zero-phase response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. For an FIR filter where \(n\) is a power of two, the computation is done faster using FFTs. If n is not specified, it defaults to 8192.
[hr,w] = zerophase(hd) returns a matrix hr if hd is a vector of filters. Each column of the matrix corresponds to each filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of \(h r\) corresponds to one filter in the vector.

\section*{Multirate Filters}
zerophase (hm) displays the zero-phase response of hd in the Filter Visualization Tool (FVTool).
[hr,w] = zerophase(hm,n) returns length \(n\) vectors \(h r\) and \(w\) containing the instantaneous zero-phase response of the adaptive filter hm, and the frequencies in radians at which zerophase evaluated the response. The zero-phase response is evaluated at \(n\) points equally spaced around the upper half of the unit circle. For an FIR filter where \(n\) is a power of two, the computation is done faster using FFTs. If n is not specified, it defaults to 8192.
[\(\mathrm{hr}, \mathrm{w}\)] = zerophase \((\mathrm{hm})\) returns a matrix hr if hm is a vector of filters. Each column of the matrix corresponds to each filter in the vector. If you provide a row vector of frequency points \(f\) as an input argument, each row of \(h r\) corresponds to one filter in the vector.

Note that the response is computed relative to the rate at which the filter is running. If a sampling frequency is specified, it is assumed that the filter is running at that rate.

\section*{zerophase}

Note that the multirate filter delay response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, zerophase assumes the filter is running at that rate.

For multistage cascades, zerophase forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. zerophase does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. zerophase uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to zerophase, the function interprets \(f s\) as the rate at which the equivalent filter is running.

\section*{See Also}
freqz, fvtool, grpdelay, impz, mfilt, phasez, zerophase, zplane

\section*{zpkbpc2bpc}

Purpose Zero-pole-gain complex bandpass frequency transformation

\section*{Syntax}
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)
Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Create a complex passband from 0.25 to 0.75 :
```

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z, p, k, [0.25, 0.75], [-0.75, -0.25]);

```

Verify the result by comparing the prototype filter with the target filter: fvtool(b, a, k2*poly(z2), poly(p2));

Comparing the filters in FVTool shows the example results. Use the features in FVTool to check the filter coefficients, or other filter analyses.

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

\section*{zpkbpc2bpc}

Wo
Frequency value to be transformed from the prototype filter

\section*{Wt}

Desired frequency location in the transformed target filter

\section*{Z2}

Zeros of the target filter

\section*{P2}

Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

\section*{See Also}
zpkftransf, allpassbpc2bpc, iirbpc2bpc

\section*{Purpose}

Syntax
Description

\section*{Examples}

Zero-pole-gain frequency transformation of the digital filter
[Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)
[Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros, \(\mathrm{Z}_{2}\), poles, \(\mathrm{P}_{2}\), and gain factor, \(\mathrm{K}_{2}\), of the transformed lowpass digital filter. The prototype lowpass filter is given with zeros, \(Z\), poles, \(P\), and gain factor, K. If AllpassDen is not specified it will default to 1 . If neither AllpassNum nor AllpassDen is specified, then the function returns the input filter.

Design a prototype real IIR halfband filter using a standard elliptic approach:
[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, k2*poly(z2), poly(p2));
After transforming the filter, you get the response shown in the figure, where the passband has been shifted towards zero.

\section*{zpkftransf}

\section*{Arguments}

\section*{Z}

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
FTFNum
Numerator of the mapping filter

\section*{FTFDen}

Denominator of the mapping filter

\section*{Z2}

Zeros of the target filter

P2
Poles of the target filter
K2
Gain factor of the target filter
See Also iirftransf

\section*{zpklp2bp}

Purpose Zero-pole-gain lowpass to bandpass frequency transformation
Syntax [Z2, P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z, P, K, Wo, Wt \()\)
Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

```
```

[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{Arguments}

See Also zpkftransf, allpasslp2bp, iirlp2bp
References
Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter to half the sample rate.

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
[1] Constantinides, A.G., "Spectral transformations for digital filters," \(I E E\) Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

\section*{Purpose}

Syntax
Description

\section*{Examples}

Zero-pole-gain lowpass to complex bandpass frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, P , and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(W_{t 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandpass filters for radio receivers from the high-quality prototype lowpass filter.

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);

```

\section*{zpklp2bpc}
```

k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{Arguments}

See Also
zpkftransf, allpasslp2bpc, iirlp2bpc

\section*{Purpose}

Syntax
Description

\section*{Examples}

Zero-pole-gain lowpass to bandstop frequency transformation
```

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

```
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying a second-order real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, P , and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency \(-W_{0}\), at the required target frequency location, \(W_{t 1}\), and the second feature, originally at \(+W_{0}\), at the new location, \(W_{t 2}\). It is assumed that \(W_{t 2}\) is greater than \(W_{t 1}\). This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC, but the Nyquist feature moves to a location dependent on the selection of \(W_{0}\) and \(W_{t} s\).

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). After the transformation feature \(F_{2}\) will precede \(F_{1}\) in the target filter. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{zpklp2bs}
Arguments Z
See Also zpkftransf, allpasslp2bs, iirlp2bs
References
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE
Zeros of the prototype lowpass filter

PPoles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
WoFrequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transferfunction parameters in the discrete-time frequency transformations,"Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

\section*{zpklp2bsc}

\section*{Purpose Zero-pole-gain lowpass to complex bandstop frequency transformation}
\[
\text { Syntax } \quad[Z 2, P 2, K 2, A l l p a s s N u m, A l l p a s s D e n]=\text { zpklp2bsc }(Z, P, K, \text { Wo,Wt })
\]

Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

```
```

[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also zpkftransf, allpasslp2bsc, iirlp2bsc

\section*{zpklp2hp}

Purpose
Syntax
Description

\section*{Examples}

Zero-pole-gain lowpass to highpass frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to real highpass frequency mapping. This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency location, \(W_{t}\), at the same time rotating the whole frequency response by half of the sampling frequency. Result is that the DC and Nyquist features swap places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, \(P\), and the gain factor, \(K\).

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). After the transformation feature \(F_{2}\) will precede \(F_{1}\) in the target filter. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, or the deep minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way without designing them again.

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{Arguments}

See Also zpkftransf, allpasslp2hp, iirlp2hp

\section*{Z}

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
[1] Constantinides, A.G., "Spectral transformations for digital filters," \(I E E\) Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters," Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

\section*{Purpose}

Syntax
Description

\section*{Examples}

Zero-pole-gain lowpass to lowpass frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to real lowpass frequency mapping. This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency location, \(\mathrm{W}_{\mathrm{t}}\).

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, \(P\), and gain factor, \(K\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way without designing them again.

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{zpklp2lp}

Using zpklp2lp creates the desired half band IIR filter with the transformed features that you specify in the transformation function. This figure shows the results.

\section*{Arguments}

\section*{Z}

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
WtDesired frequency location in the transformed target filter
Z2Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filterFrequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.
See Also zpkftransf, allpasslp2lp, iirlp2lp
References [1] Constantinides, A.G., "Spectral transformations for digital filters," IEEProceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transferfunction parameters in the discrete-time frequency transformations,"Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-timeelliptic transfer functions," Proceedings of the 35th Midwest Symposium onCircuits and Systems, vol. 2, pp. 784-787, 1992.[4] Constantinides, A.G., "Frequency transformations for digital filters,"Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

\section*{zpklp2mb}

\section*{Purpose Zero-pole-gain lowpass to M-band frequency transformation}

> Syntax
> Description
> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)
> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass to real multibandpass frequency mapping. By default the DC feature is kept at its original location.
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, \(P\), and gain factor, \(K\).

This transformation effectively places one feature of an original filter, located at frequency \(W_{0}\), at the required target frequency locations, \(W_{t 1}, \ldots, W_{t M}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

```

The resulting multiband filter that replicates features from the prototype appears in the figure shown. Note the accuracy of the replication process.

\section*{zpklp2mb}
Arguments
See Also
zpkftransf, allpasslp2mb, iirlp2mb
zpkftransf, allpasslp2mb, iirlp2mb
References
Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
WoFrequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
PassChoice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filterFrequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.
[1] Franchitti, J.C., "All-pass filter interpolation and frequency transformationproblems," MSc Thesis, Dept. of Electrical and Computer Engineering,University of Colorado, 1985.[2] Feyh, G., J.C. Franchitti and C.T. Mullis, "All-pass filter interpolation andfrequency transformation problem," Proceedings 20th Asilomar Conference on

Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, Reading, Massachusetts, Addison-Wesley, 1987.
[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm for frequency transformations, Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

\section*{zpklp2mbc}

\section*{Purpose Zero-pole-gain lowpass to complex M-band frequency transformation}

\section*{Syntax \\ [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)}

Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

```

You could review the coefficients to compare the filters, but the graphical comparison shown here is quicker and easier.

However, looking at the coefficients in FVTool shows the complex nature desired.

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

\section*{zpklp2mbc}

Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

\section*{Z2}

Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

\section*{See Also}
zpkftransf, allpasslp2mbc, iirlp2mbc

\section*{Purpose}

Syntax
Description

\section*{Examples}

Zero-pole-gain lowpass to complex N-point frequency transformation
```

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

```
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, P , and gain factor, K .

Parameter \(N\) also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places \(N\) features of an original filter, located at frequencies \(W_{01}, \ldots, W_{o N}\), at the required target frequency locations, \(\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}\).

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation. For DC mobility feature \(F_{2}\) will precede \(F_{1}\) after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating N bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

\section*{zpklp2xc}
```

z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25]);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

Plotting the filters on the same axes lets you compare the results graphically, shown here.

\section*{Arguments}

\section*{Z}

Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter. They should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

\section*{See Also}

\section*{zpklp2xn}

Purpose
Syntax

Description

Zero-pole-gain lowpass to N-point frequency transformation
\[
\begin{aligned}
{[\mathrm{Z2,P2}, \mathrm{~K} 2, \text { AllpassNum,AllpassDen] }} & =\text { zpklp2xn(Z,P,K,Wo,Wt }) \\
{[\mathrm{Z2,P2,K2,AllpassNum,AllpassDen]}} & =\text { zpklp2xn(Z,P,K,Wo,Wt,Pass })
\end{aligned}
\]
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to real multipoint frequency transformation, where \(N\) is the number of features being mapped. By default the DC feature is kept at its original location.
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, \(Z\), poles, \(P\), and gain factor, \(K\).

Parameter \(N\) also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places \(N\) features of an original filter, located at frequencies \(W_{01}, \ldots, W_{O N}\), at the required target frequency locations, \(W_{t 1}, \ldots, W_{\mathrm{tM}}\).

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation. For DC mobility feature \(F_{2}\) will precede \(F_{1}\) after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC , the deep minimum in the stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

\section*{zpklp2xn}

As demonstrated by the figure, the target filter has the desired response shape and values replicated from the prototype.

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

\section*{Wo}

Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Pass
Choice ('pass'/ 'stop') of passband/stopband at DC, 'pass' being the default
Z2
Zeros of the target filter
P2
Poles of the target filter
K2Gain factor of the target filter
AllpassDen
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.
See Also zpkftransf, allpasslp2xn, iirlp2xn[1] Cain, G.D., A. Krukowski and I. Kale, "High Order Transformations forFlexible IIR Filter Design," VII European Signal Processing Conference(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September1994.
[2] Krukowski, A., G.D. Cain and I. Kale, "Custom designed high-order frequency transformations for IIR filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
References

\section*{zpkrateup}

\section*{Purpose Zero-pole-gain complex bandpass frequency transformation}

\section*{Syntax \\ [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)}

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter being transformed from any prototype by applying an Nth-order rateup frequency transformation, where N is the upsample ratio. Transformation creates \(N\) equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The original lowpass filter is given with zeros, Z, poles, P , and gain factor, K.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

```

Upsample the prototype filter four times:
```

[z2,p2,k2] = zpkrateup(z, p, k, 4);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

Applying the upsample process creates a bandpass filter, as shown here.

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
N
Integer upsampling ratio
Z2
Zeros of the target filter
P2
Poles of the target filter

\section*{zpkrateup}

K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

\section*{See Also}
zpkrateup, allpassrateup, iirrateup

\section*{Purpose}

Syntax
Description

\section*{Examples}

Zero-pole-gain real shift frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt) returns zeros, \(Z_{2}\), poles, \(P_{2}\), and gain factor, \(K_{2}\), of the target filter transformed from the real lowpass prototype by applying a second-order real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass mapping filter, AllpassDen. The prototype lowpass filter is given with zeros, Z, poles, P , and gain factor, K .

This transformation places one selected feature of an original filter, located at frequency \(W_{0}\), at the required target frequency location, \(W_{t}\). This transformation implements the "DC Mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of \(W_{0}\) and \(W_{t}\).

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way without the need to design them again.

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);

```

\section*{zpkshift}

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, k2*poly(z2), poly(p2));

```

It is clear from the following figure that the shift process has taken the response value at 0.5 in the prototype and replicated it in the target at 0.25 , as specified.

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K

K
Gain factor of the prototype lowpass filter

\section*{Wo}

Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also
zpkftransf, allpassshift, iirshift

\section*{zpkshiftc}

Purpose
Zero-pole-gain complex shift frequency transformation

\section*{Syntax}
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)
Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

```

Example 1: Rotation by -0.25 :
```

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));

```

Example 2: Hilbert transform:
```

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

```

Example 3: Inverse Hilbert transform:
[z2, p2,k2] = zpkshiftc(z, p, k, 0, -0.5); fvtool(b, a, k2*poly(z2), poly(p2));

\section*{Result of Example 1}

After performing the rotation, the resulting filter shows the features desired.

\section*{Result of Example 2}

Similar to the first example, performing the Hilbert transformation generates the desired target filter, shown here.

\section*{zpkshiftc}

\section*{Result of Example 3}

Finally, using the inverse Hilbert transformation creates yet a third filter, as the figure shows.

\section*{Arguments}

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter

\section*{zpkshiftc}

P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassDen
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

\section*{See Also}

References
zpkftransf, allpassshiftc, iirshiftc
[1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall International Inc., 1989.
[2] Dutta-Roy, S.C. and B. Kumar, "On digital differentiators, Hilbert transformers, and half-band low-pass filters," IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

Purpose
Syntax

\section*{Description}

Compute a zero-pole plot for quantized filters
```

zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)

```

This function displays the poles and zeros of quantized filters, as well as the poles and zeros of the associated unquantized reference filter.
zplane \((\mathrm{Hq})\) plots the zeros and poles of a quantized filter Hq in the current figure window. The poles and zeros of the quantized and unquantized filters are plotted by default. The symbol o represents a zero of the unquantized reference filter, and the symbol \(x\) represents a pole of that filter. The symbols \(\square\) and + are used to plot the zeros and poles of the quantized filter Hq. The plot includes the unit circle for reference.
zplane (Hq, 'plotoption') plots the poles and zeros associated with the quantized filter Hq according to one specified plot option. The string 'plotoption' can be either of the following reference filter display options:
- ' on' to display the poles and zeros of both the quantized filter and the associated reference filter (default)
- 'off' to display the poles and zeros of only the quantized filter
zplane(Hq,'plotoption','plotoption2') plots the poles and zeros associated with the quantized filter Hq according to two specified plot options. The string 'plotoption' can be selected from the reference filter display options listed in the previous syntax. The string 'plotoption2' can be selected from the section-by-section plotting style options described below:
- 'individual' to display the poles and zeros of each section of the filter in a separate figure window
- 'overlay ' to display the poles and zeros of all sections of the filter on the same plot
- 'tile' to display the poles and zeros of each section of the filter in a separate plot in the same figure window

\section*{zplane}
[zq, pq, kq] = zplane(Hq) returns the vectors of zeros zq, poles pq, and gains kq . If Hq has \(n\) sections, \(\mathrm{zq}, \mathrm{pq}\), and kq are returned as 1 -by- \(n\) cell arrays. If there are no zeros (or no poles), zq (or pq) is set to the empty matrix [].
[\(\mathrm{zq}, \mathrm{pq}, \mathrm{kq}, \mathrm{zr}, \mathrm{pr}, \mathrm{kr}\)] = zplane(Hq) returns the vectors of zeros zr , poles pr , and gains kr of the reference filter associated with the quantized filter Hq , and returns the vectors of zeros zq , poles pq , and gains kq for the quantized filter Hq .

\section*{Examples}

Create a quantized filter Hq from a fourth-order digital filter with cutoff frequency of 0.6 . Scale the transfer function parameters to avoid overflows due to coefficient quantization. Plot the quantized and unquantized poles and zeros associated with this quantized filter.
```

[b,a] = ellip(4,.5,20,.6);
Hq = dfilt.df2(b/2 a/2);
Hq.arithmetic = 'fixed';
zplane(Hq);

```


See Also freqz, impz

\section*{Bibliography}

Advanced Filters (p. 10-2)

Adaptive Filters (p. 10-2)
Multirate Filters (p. 10-3)
Frequency Transformations (p. 10-3)

Suggested reading and sources for advanced filter design topics

Suggested reading and sources for adaptive filter topics Suggested reading and sources about multirate filters

Suggested reading and sources for information about filter frequency transformations

\section*{Advanced Filters}
[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc., 1993.
[2] Chirlian, P.M., Signals and Filters, Van Nostrand Reinhold, 1994.
[3] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons, 1994.
[4] Jackson, L., Digital Filtering and Signal Processing with MATLAB Exercises, Third edition, Kluwer Academic Publishers, 1996.
[5] Lapsley, P., J. Bier, A. Sholam, and E.A. Lee, DSP Processor
Fundamentals: Architectures and Features, IEEE Press, 1997.
[6] McClellan, J.H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, 1998.
[7] Mayer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Springer, 2001, refer to the BiQuad block diagram on pp. 126 and the IIR Butterworth example on pp. 140.
[8] Moler, C., "Floating points: IEEE Standard unifies arithmetic model," Cleve's Corner, The MathWorks, Inc., 1996. See http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf.
[9] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989.
[10] Shajaan, M., and J. Sorensen, "Time-Area Efficient Multiplier-Free Recursive Filter Architectures for FPGA Implementation," IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996, pp. 3269-3272.

\section*{Adaptive Filters}
[11] Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley and Sons, 1996.
[12] Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

\section*{Multirate Filters}
[13] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons, 1994.
[14] Mitra, S.K., Digital Signal Processing, McGraw-Hill, 1998.
[15] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Inc., 1996.

\section*{Frequency Transformations}
[16] Constantinides, A.G., "Spectral Transformations for Digital Filters," IEEE Proceedings, Vol. 117, No. 8, pp. 1585-1590, August 1970.
[17] Nowrouzian, B., and A.G. Constantinides, "Prototype Reference Transfer Function Parameters in the Discrete-Time Frequency Transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, Vol. 2, pp. 1078-1082, August 1990.
[18] Feyh, G., J.C. Franchitti, and C.T. Mullis, "Allpass Filter Interpolation and Frequency Transformation Problem," Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[19] Krukowski, A., G.D. Cain, and I. Kale, "Custom Designed High-Order Frequency Transformations for IIR Filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

10 Bibliography

\section*{A}

AccumFracLength 8-21
AccumWordLength 8-22
adaptfilt
about 9-28
copying 9-36
adaptfilt object
apply to data 4-16
adaptfilt object properties
Algorithm 8-115
AvgFactor 8-115
BkwdPredErrorPower 8-115
BkwdPrediction 8-115
Blocklength 8-117
Coefficients 8-117
ConversionFactor 8-117
Delay 4-43, 8-117
DesiredSignalStates 8-118
EpsilonStates 8-118
ErrorStates 8-118
FFTCoefficients 8-118
FFTStates 8-118
FilteredInputStates 8-118
FilterLength 8-118
ForgettingFactor 8-118
FwdPredErrorPower 8-119
FwdPrediction 8-119
InitFactor 8-119
InvCov 8-119
KalmanGain 8-119
KalmanGainStates 8-119
Leakage 8-119
NumSamplesProcessed 8-119
Offset 8-120
OffsetCov 8-120
Power 8-120
ProjectionOrder 8-120

ReflectionCoeffs 4-46
ReflectionCoeffsStep 8-120
ResetBeforeFiltering 8-120
SecondaryPathCoeffs 8-121
SecondaryPathEstimate 8-121
SecondaryPathStates 8-121
SqrtInvCov 8-121
States 8-121
StepSize 8-121
SwBlockLength 8-121
adaptive filter object
See adaptfilt object
adaptive filter properties
SqrtCov 8-121
advanced FIR filter design 2-7
advanced IIR filter design 2-42
Algorithm 8-115
algorithm
firgr 2-7
antisymmetricfir 8-57
arithmetic
about fixed-point 8-22
arithmetic property
double 8-23
fixed 8-25
single 8-24
AvgFactor 8-115

\section*{B}
binary point 3-28
interpretation 3-28
bits
definition 3-27
BkwdPredErrorPower 8-115
BkwdPrediction 8-115

Blocklength 8-117
Bmax
See CIC filter 5-28

\section*{C}

CastBeforeSum 3-24
changing quantized filter properties in FDATool 7-24
CIC filter
Bmax 5-28
MSB 5-28
CoeffAutoScale 8-38
CoeffFracLength 8-43
Coefficients 8-117
CoeffWordLength 8-43
context-sensitive help 7-90
controls
FDATool 7-12
ConversionFactor 8-117
convert filters 8-71
converting filter structures in FDATool 7-30

\section*{D}
data format
about 3-28
Delay 8-117
DenAccumFracLength 8-44
DenFracLength 8-44
Denominator 8-45
DenProdFracLength 8-45
DenStateFracLength 8-45
DenStateWordLength 8-45
designing advanced FIR filters 2-7
designing advanced IIR filters 2-42
DesiredSignalStates 8-118
df1 8-50
df1t 8-51
df2 8-52
df2t 8-55
dfilt
cascade 9-287
df1 9-289
df1sos 9-299
df1t 9-311
df1tsos 9-323
df2 9-336
df2sos 9-346
df2t 9-359
df2tsos 9-370
direct-form antisymmetric FIR 9-383
direct-form FIR transposed 9-402
direct-form II transposed (df2t) 9-359
direct-form IIR 9-393
direct-form symmetric FIR 9-412
lattice allpass 9-423
lattice autoregressive 9-433
lattice moving-average maximum 9-454
lattice moving-average minimum 9-463
parallel 9-473
scalar 9-474
See Signal Processing Toolbox documentation
dfilt objects 1-14
See also quantized filters
dfilt properties
arithmetic 8-22
dfilt.cascade 9-287
dfilt.df1 9-289
dfilt.df1sos 9-299
dfilt.df1t 9-311
dfilt.df1tsos 9-323
dfilt.df2 9-336
dfilt.df2sos 9-346

\section*{Index-2}
dfilt.df2t 9-359
dfilt.df2tsos 9-370
dfilt.dffir 9-393
dfilt.dffirt 9-402
dfilt.dfsymfir 9-412
dfilt.latticeallpass 9-423
dfilt.latticear 9-433
dfilt.latticemamax 9-454
dfilt.latticemamin 9-463
dfilt.parallel 9-473
dfilt.scalar 9-474
direct-form I 8-51
transposed 8-51
direct-form II 8-52
transposed 8-55
double
property value 8-23
dynamic properties 8-6
dynamic range
fixed-point 3-31

\section*{E}
envelope delay
See group delay
EpsilonStates 8-118
equiripple filters 2-6
errors
\(L p\) norm 2-4
quantization 2-64
ErrorStates 8-118
exporting quantized filters in FDATool 7-57

\section*{F \\ FDATool}
about 7-3
about importing and exporting filters 7-55
about quantization mode 7-10
apply option 7-13
changing quantized filter properties 7-24
context-sensitive help 7-90
controls 7-12
convert structure option 7-30
converting filter structures 7-30
exporting quantized filters 7-57
frequency point to transform 7-65
getting help 7-90
import filter dialog 7-56
importable filter structures 7-55
importing filters 7-56
original filter type 7-62
quantized filter properties 7-14
quantizing filters 7-14
quantizing reference filters 7-23
set quantization parameters dialog 7-14
setting properties 7-14
specify desired frequency location 7-66
switching to quantization mode 7-10
transform filters in FDATool 7-66
transformed filter type 7-66
user options 7-12
FFTCoefficients 8-118
FFTStates 8-118
filter
initial conditions 9-36
states 9-36
filter 9-568
filter conversions 8-72
filter design
adaptive 4-1
advanced FIR 2-7
advanced IIR 2-42
filter design (cont.)
minimax 2-4
multirate 9-11
optimal 2-2
Filter Design and Analysis Tool
See FDATool
filter design GUI
context-sensitive help 7-90
help about 7-90
filter design methods
firgr 2-7
firgr design examples 2-8
firlpnorm 2-5
IIR filter design examples 2-43
iirgrpdelay 2-42
iirlpnorm 2-42
iirlpnorm design examples 2-45
iirlpnormc 2-42
iirlpnormc design examples 2-50
filter sections
specifying 8-72
filter structures
about 8-46
all-pass lattice 8-63
direct-form antisymmetric FIR 8-57
direct-form FIR 8-60
direct-form I 8-50
direct-form I SOS IIR 8-51
direct-form I transposed 8-51
direct-form I transposed IIR 8-51
direct-form II 8-52
direct-form II IIR 8-52
direct-form II SOS IIR 8-54
direct-form II transposed 8-55
direct-form II transposed IIR 8-55
direct-form symmetric FIR 8-69
direct-form transposed FIR 8-61

FIR transposed 8-61
fixed-point 8-49
lattice allpass 8-63
lattice AR 8-65
lattice ARMA 8-67
lattice autoregressive moving average 8-67
lattice moving average maximum phase 8-64
lattice moving average minimum phase 8-66
FilteredInputStates 8-118
filtering data
function for 9-568
logs of overflows 9-570
logs of underflows 9-570
obtaining states 9-570
FilterLength 8-118
filters
about equiripple 2-6
converting 8-71
direct-form 3-13
exporting as MAT-file 7-59
exporting as text file 7-58
exporting from FDATool 7-57
FIR 8-46
getting filter coefficients after exporting 7-58
importing and exporting 7-55
importing into FDATool 7-56
impulse response 9-696
lattice 8-46
low-sensitivity 2-64
robust 2-64
state-space 8-46
test if filter coefficients are real 9-16
testing for allpass structure 9-17
testing for FIR structure 9-17
testing for linear phase sections 9-17
testing for maximum phase design 9-17

Index-4
filters (cont.)
testing for minimum phase design 9-17
testing for purely real coefficients 9-17
testing for second-order sections 9-17
testing for stability 9-17
FilterStructure property 8-46
finite impulse response
antisymmetric 8-57
symmetric 8-69
fir 8-60
FIR filters 8-46
firgr 2-7
algorithm 2-7
design examples \(2-8\)
firlpnorm design method 2-5
firt 8-61
fixed
arithmetic property value 8-25
fixed-point 3-27
sign bit 3-27
fixed-point filter properties
AccumFracLength 8-21
AccumWordLength 8-22
Arithmetic 8-22
CastBeforeSum 8-36
CoeffAutoScale 8-38
CoefffracLength 8-43
CoeffWordLength 8-43
DenAccumFracLength 8-44
DenFracLength 8-44
Denominator 8-45
DenProdFracLength 8-45
DenStateFracLength 8-45
DenStateWordLength 8-45
FilterStructure 8-46
fixed-point filter structures 8-49
fixed-point filters
dynamic properties 8-6
fixed-point format 3-28
fixed-point numbers
scaling 3-31
ForgettingFactor 8-118
format 3-28
format for numeric data 3-28
fraction length 3-29
about 8-32
negative number of bits 8-32
frequency point to transform 7-65
frequency response 9-613
freqz 9-613
function for opening FDATool 7-10
FwdPredErrorPower 8-119
FwdPrediction 8-119

\section*{G}
getting filter coefficients after exporting 7-58
getting started 1-17
getting started example 1-17
group delay
about 2-56
prescribed 2-42

\section*{I}
iirgrpdelay 2-42
iirgrpdelay design examples 2-56
iirlpnorm 2-42
iirlpnorm filter design examples 2-43
iirlpnormc 2-42
iirlpnormc filter design examples 2-43
import filter dialog in FDATool 7-56

Index-5
import filter dialog options 7-56
discrete-time filter 7-56
frequency units 7-56
import/export filters in FDATool 7-55
importing filters 7-56
importing quantized filters in FDATool 7-56
InitFactor 8-119
initial conditions 9-36
InvCov 8-119
isallpass 9-17
isfir 9-17
islinphase 9-17
ismaxphase 9-17
isminphase 9-17
isreal 9-16, 9-711
issos 9-17
isstable 9-17

\section*{K}

KalmanGain 8-119
KalmanGainStates 8-119

\section*{L}
latcallpass 8-63
latcmax 8-64
lattice filters
allpass 8-63
AR 8-65
ARMA 8-67
autoregressive 8-65
MA 8-66
moving average maximum phase 8-64
moving average minimum phase 8-66
latticear 8-65
latticearma 8-67
latticeca 8-64
latticema 8-66
Leakage 8-119
least significant bit 3-28
low-sensitivity filters 2-64
Lp norm 2-4
LSB 3-28

\section*{M}
mfilt object 9-719
mfilt objects 9-11
minimax filter designs 2-4
most significant bit 3-27
MSB 3-27
multiple sections
specifying 8-72
multirate filter functions 9-11
multirate object
See mfilt

\section*{N}
negative fraction length interpret 8-32
new users tips for 1-8
normalize 3-32
NumSamplesProcessed 8-119

\section*{0}
object
adaptfilt 9-28
changing properties 9-36
mfilt 9-719
viewing parameters 9-35

\section*{Index-6}
object properties 1-14
AccumWordLength 8-22
objects in this toolbox 1-14
Offset 8-120
OffsetCov 8-120
opening FDATool
function for 7-10
optimal filter design
problem statement 2-2
solutions 2-5
theory 2-2
options
FDATool 7-12
original filter type 7-62

\section*{P}

Parks-McClellan method 2-6
plots
zero-pole, command for 9-941
pole-zero plots 9-941
polyphase filters
See multirate filter functions 9-11
Power 8-120
precision 8-33
fixed-point 3-31
See fraction length 3-28
prescribed group delay 2-42
ProjectionOrder 8-120
properties
about 1-14
dynamic 8-6
FilterStructure 8-46
ScaleValues 8-90

\section*{Q}
quantization errors 2-64
quantization mode in FDATool 7-10
quantized filter properties
changing in FDATool 7-24
FilterStructure 3-13
quantized filters
architecture 8-46
constructing 3-10
dfilt objects 1-14
direct-form FIR 8-60
direct-form FIR transposed 8-61
direct-form symmetric FIR 8-69
filtering data 9-566
finite impulse response 8-61
frequency response 9-613
lattice allpass 8-63
lattice AR 8-65
lattice ARMA 8-67
lattice coupled-allpass 8-63
lattice MA maximum phase 8-64
lattice MA minimum phase 8-66
real coefficients 9-711
reference filter 8-70
scaling 8-90
specifying 8-70
specifying coefficients for multiple sections 8-72
state vectors 9-570
structures 8-46
symmetric FIR 8-57
zero-pole plots 9-941
quantized filters properties
ScaleValues 8-90
quantizing filters in FDATool 7-23

\section*{R}
range
fixed-point 3-31
reference coefficients
specifying 8-70
ReflectionCoeffs 8-120
ReflectionCoeffsStep 8-120
Remez exchange algorithm 2-6
represent numeric data 8-32
ResetBeforeFiltering 8-120
robust filters 2-64

\section*{S}

ScaleValues property 8-90
interpreting 8-91
scaling
2 norm 2-4
implementing for quantized filters 8-91
infinity norm 2-4
\(L p\) norm 2-4
quantized filters 8-90
SecondaryPathCoeffs 8-121
SecondaryPathEstimate 8-121
SecondaryPathStates 8-121
second-order sections
normalizing 8-73
set quantization parameters dialog 7-14
setting filter properties in FDATool 7-14
single
property value 8-24
solution
minimax 2-4
specifying desired frequency location 7-66
SqrtCov 8-121
SqrtInvCov 8-121
starting FDATool 7-10
state vectors 9-570
States 8-121
StepSize 8-121
SwBlockLength 8-121
symmetricfir 8-69

\section*{T}
toolbox
getting started 1-17
transform filter
frequency point to transform 7-65
original filter type 7-62
specify desired frequency location 7-66
transformed filter type 7-66
transformed filter type 7-66
two's complement arithmetic 3-27

\section*{U}
using adaptfilt objects 4-16
using FDATool 7-56

\section*{W}
word length
about 8-32

\section*{Z}
zero-pole plots 9-941
zplane 9-941
plotting options 9-941

\section*{Index-8}```

[^0]: - "Getting Started—Designing Multirate Filters" on page 5-4

[^1]: See Also
 dfilt, filter, mfilt

[^2]: See Also
 adaptfilt.blmsfft, adaptfilt.fdaf, adaptfilt.lms
 Reference J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

[^3]: See Also
 scale, scalecheck

[^4]: Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

[^5]: Scale Factors:
 0.41510009765625
 0.371826171875
 0.33746337890625
 0.3099365234375
 0.287841796875
 0.27008056640625
 0.25579833984375

[^6]: 'Filter Order'

[^7]: See Also

 References
 adaptfilt, impz, mfilt, nstates
 dfilt in the Signal Processing Toolbox
 [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Pren-tice-Hall, 1989.

